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Chapter 7Linear lassi�ationIn this hapter we ontinue our disussion of elementary building bloks for graphial models,treating the ase of a disrete node taking on a �nite number of values. As in Chapter 6, ourinterest is in the onditional relationship between the node Y and a vetor of explanatory variablesX. We explore a number of possible representations for the onditional probability p(y jx).What form should our model of p(y jx) take in the ase of disrete Y ? If X is also disrete, thenwe might onsider models in whih all possible ombinations of X and Y are represented in a table.We will indeed onsider suh a model in this hapter; however, it is important to keep in mind thatthe size of suh a table is exponential in the number of omponents of X, and we would like todevelop models to handle the (ommonplae) situation in whih this number is large. Moreover, wewish to develop tools that allow for ontinuous-valued X. In either ase a natural �rst step is to tryand mimi what we did with regression, exploiting the simpliity and mathematial onvenieneof linearity assumptions. It is unlear, however, how to represent the onditional expetation ofY|a number between zero and one for Bernoulli and multinomial variables|within the frameworkof a linear model. Some sort of nonlinearity seems to be needed, but whih nonlinearity? Doesintroduing suh a nonlinearity leave us with any role for linearity?One way to help organize our thinking on these issues is to reall that we have already seenproblems involving disrete Y in Chapter 5. In partiular, in our disussion of lassi�ation modelsin that hapter, we found it useful to explore the relationship between two kinds of models: dis-riminative models|in whih Y is the hild of X|and generative models|in whih Y is the parentof X. While the former approah represents p(y jx) expliitly, the latter approah makes use ofBayes rule to represent the posterior probability p(y jx) impliitly, in terms of the lass-onditionalprobability p(x j y) and the prior p(y). Thus we an begin to get ideas for representations of p(y jx)by studying generative models in whih Y is a parent of X, and using Bayes rule to invert themodel and thereby alulate the orresponding posterior probability p(y jx). This approah willallow us to ahieve some of the goals that we alluded to above|it will suggest a ertain basimathematial struture in whih linearity plays a role, and it will ope with both disrete-valuedand ontinuous-valued X. Moreover, it will suggest a natural \upgrade path" to more omplexmodels.In this hapter we retain our assumption from the previous hapter that both X and Y are3



4 CHAPTER 7. LINEAR CLASSIFICATIONobserved in our data set. We ast our presentation within the ontext of lassi�ation, where asbefore we refer to Y and X as the \lass label" and the \feature vetor," respetively. We will�ll in some of the details that were glossed over in Chapter 5 regarding the parameterization andestimation of generative and disriminative approahes to the lassi�ation problem. We presentmaximum likelihood methods for parameter estimation in both frameworks.While we plae our ativity in this hapter within the framework of lassi�ation, it is worthnoting that there are aspets of lassi�ation problems that fall beyond the sope of our disussion.In partiular, our goal in this hapter is that of obtaining a model of the onditional probabilityp(y jx). While p(y jx) is a desirable quantity to model in a lassi�ation setting, it is also true thatlassi�ation involves something more than evaluating a probability|in partiular, lassi�ationinvolves making a deision. We an threshold the probability distribution p(y jx) to obtain adeision, but this is only one possible way to use this probability; perhaps there are others. Indeed,perhaps there are some deisions whih are in some sense more ostly than others; our thresholdingsheme should be sensitive to suh osts. Moreover, we an imagine lassi�ation algorithms thatdo not make use of posterior probability p(y jx) at all; rather they go diretly from a data set toa deision rule. Evaluating these alternatives appropriately requires the mathematial frameworkof deision theory. In partiular a deision-theoreti approah to lassi�ation allows us to speifyosts assoiated with deisions and to evaluate alternative approahes to forming deision rules.We will return to these issues in Chapter 27, where we present a full treatment of deision theoryin the graphial model setting. In that disussion we will in fat show that a reasonable �rst stepin lassi�ation problems is to obtain a model of the onditional probability p(y jx).It is also worth noting that there is a ip side to this oin|there are problems other thanlassi�ation problems for whih the methods of this hapter are useful. In partiular in Chapter 10we disuss models that are struturally idential to the models in this hapter, but for whih Y isno longer assumed to be observed; that is, for whih Y is a latent variable. The results that weobtain here will play an important role in that hapter.7.1 Linear regression and linear lassi�ationA disrete-valued node an be viewed as a speial ase of a real-valued node, and this leads oneto wonder why we need a separate treatment of disrete nodes. In partiular, why not use theregression methods that we developed in Chapter 6 to solve lassi�ation problems?To see some of the problems that arise if we pursue this approah, onsider the simple ase ofa binary lassi�ation problem with a salar-valued feature variable X. Let us represent the lasslabel with a real-valued variable Y , with Y = 0 and Y = 1 representing the two lasses. Figure 7.1presents an example of suh a problem, with the data pairs (xn; yn) represented as points in theplane. The linear regression �t to these data is also shown in the �gure. Note that even thoughthe data fyng are restrited to the values zero and one, the �tted line is not restrited to thesevalues. How are we to interpret this line? In Chapter 6 we showed that the linear regression �tis a onditional mean|the expeted value of Y onditioned on the observed value of X. For anindiator random variable Y the expeted value is the same as the probability that the variabletakes on the value 1. The fat that the �tted line in Figure 7.1 strays outside of the range (0; 1)
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xFigure 7.1: Data for a binary lassi�ation problem. The absissa represents the one-dimensionalfeature vetor x, and the ordinate represents the binary lass label y, with 0 and 1 representing thetwo lasses. Also shown is the least squares linear regression �t.makes it diÆult to sustain suh an interpretation, however, in the setting of binary output data.Even more serious problems arise when we onsider in more detail how the regression �t dependson the data. Suppose in partiular that we add the point (1:5; 1) to the data set (see Figure 7.2).The earlier �t (Figure 7.1) yields a �tted value of 2:01 at x = 1:5, suggesting, under any reasonableinterpretation of this value (e.g., thresholding), that the predited lass label at x = 1:5 shouldbe 1. This orretly predits the lass of the new data point, suggesting that the parameters analready aommodate the new data point and need not be hanged. Re�tting the linear regression,however, hanges the slope parameter from 1:55 to 1:23 and the interept parameter from �0:32to �0:17 (see Figure 7.2). Moreover, taking the value at whih the �t equals 0.5 as the boundarybetween the two lasses, this boundary hanges signi�antly after the introdution of the new datapoint, leading to hanges in the lassi�ation of some of the points near the boundary. If we addfour additional data points at x = 1:5 the boundary moves even further, as shown in Figure 7.2.Given that these new data points are predited orretly by the original �t, and are far from theboundary, this behavior is disonerting.The assumptions underlying linear regression are learly not met in the lassi�ation setting; inpartiular, the assumption that the variable Y is Gaussian is learly false. This mismath betweenthe assumptions and the data is responsible for the problems that we have identi�ed. One we havemade probabilisti assumptions that are appropriate for the lassi�ation setting|in partiularone we have disarded the Gaussian assumption|we will obtain lassi�ation models in whih the�tted values behave in an intuitively reasonable manner.As in Chapter 6 we fous on linear models throughout the urrent hapter. The notion of
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xFigure 7.2: Three least squares regression �ts. The solid line is the same �t as shown in Figure 7.1,the dash-dot line is the �t to the data with one additional point at (1.5,1), and the dashed line isthe �t to the data with �ve additional points at (1.5,1).\linearity" in the urrent hapter is, however, di�erent from that in Chapter 6. We postpone themathematial details until later setions, where in fat we will �nd that di�erent lassi�ationmodels invoke the linearity assumption in somewhat di�erent ways. All of the lassi�ation modelsthat we study, however, an be viewed as providing a partitioning of the feature spae into regionsorresponding to the lass labels. For linear models the boundaries between these regions arehyperplanes (see Figure 7.3).7.2 Generative modelsFigure 7.4 presents three graphial representations of generative lassi�ation models. In all threeases the lass label node Y is the parent of the feature vetor X = (X1;X2; : : : ;Xm). In Fig-ure 7.4(a), the omponent features are treated as separate nodes; in this ase, the hildren Xj areassumed to be onditionally independent given Y , as on�rmed by the d-separation properties of thegraph. This is a simplifying assumption that provides a starting point for our presentation and willbe our fous through most of this setion. In Figure 7.4(b), we have an alternative model in whihthe omponents of the feature vetor are interdependent, with spei� onditional independeniesassumed to hold among spei� sets of features. In this model general graphial model mahinerymust be invoked both to parameterize the lass-onditional densities and to learn the values of theparameters. Aordingly we will not treat this model expliitly in this setion but will return to itin later hapters one the appropriate mahinery is in plae. Finally, in Figure 7.4(), we have amodel in whih no spei� onditional independenies are assumed among the omponents of the
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Figure 7.3: A binary lassi�ation problem in a two-dimensional feature spae. The feature vetorsin the training set are plotted as x's and o's for the two lasses. Based on the training set, alassi�er partitions the feature spae into deision regions, one region for eah lass. In the ase ofa linear lassi�er, the boundaries between these regions are hyperplanes.
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(c)Figure 7.4: Three examples of generative lassi�ation models: (a) the ase of onditionally indepen-dent features, (b) the ase of dependent features with some onditional independene assumptions,and () the ase of no onditional independene assumptions.



8 CHAPTER 7. LINEAR CLASSIFICATIONfeature vetor. In this ase we represent the feature vetor as a single node. This model, despite itssimple graphial appearane, is the most general model of the three. We will disuss an exampleof this model in this setion, where a Gaussian assumption for the lass-onditional densities willallow us to obtain a simple model despite the absene of onditional independenies.In all of the examples that we disuss, our goal is twofold: to desribe the parametri represen-tation of the posterior probability p(y jx) for partiular models, and to present maximum likelihoodmethods for estimating the parameters of the model from data.7.2.1 Gaussian lass-onditional densitiesWe begin by disussing the model in Figure 7.4(a) in the setting in whih the features are ontinuousand endowed with Gaussian distributions. We initially treat the ase of binary lassi�ation, inwhih the lass label Y an take on one of two values. The extension to multiple lasses is disussedin Setion 7.2.1.The model in Figure 7.4(a) requires a marginal probability for Y and a onditional probabilityfor X given Y . Let Y 2 f0; 1g be a Bernoulli random variable with parameter �:p(y j�) = �y(1� �)1�y: (7.1)Given the onditional independene assumption expressed by the graph, the probability p(x j y)fators into a produt over onditional probabilities p(xj j y). For Y = 0, let eah Xj have aGaussian distribution:p(xj jY = 0; �j) = 1(2��2j )1=2 exp(� 12�2j (xj � �0j)2) ; (7.2)where �0j is the jth omponent of the mean vetor for lass Y = 0. For Y = 1 we have:p(xj jY = 1; �j) = 1(2��2j )1=2 exp(� 12�2j (xj � �1j)2) : (7.3)Note that we use �j to denote all of the parameters for feature omponent xj, inluding the means�0j and �1j , and the variane �2j . Note also that the varianes �2j are allowed to vary aross featureomponents xj, but are assumed to be onstant between the two lasses.Figure 7.5(a) presents an example of a ontour plot of two Gaussians in a two-dimensionalfeature spae for the ase in whih �20 = �21 . An example in whih the varianes are unequal isshown in Figure 7.5(b).The joint probability assoiated with the graph in Figure 7.4(a) is as follows:p(x; y j �) = p(y j�) mYj=1 p(xj j y; �j); (7.4)where � = (�; �1; �2; : : : ; �m).
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Figure 7.5: (a) A ontour plot of Gaussian lass-onditional densities for �1 = 1 and �2 = 1. (b) Aontour plot for Gaussian lass-onditional densities when �1 = 0:5 and �2 = 2:0.Posterior probabilityLet us alulate the posterior probability p(Y = 1 jx; �). The algebra is somewhat simpli�ed if wework with matrix notation. Thus let:p(x j y = k; �) = 1(2�)1=2j�j1=2 exp��12(x� �k)T��1(x� �k)� ; (7.5)for eah of the two lasses k 2 f0; 1g, where �k , (�k1; �k2; : : : ; �km)T is the vetor of means forthe kth Gaussian, and where � , diag(�21 ; �22 ; : : : ; �2m) is a diagonal ovariane matrix. We have:p(Y = 1 jx; �) = p(x jY = 1; �)p(Y = 1 j�)p(x jY = 1; �)p(Y = 1 j�) + p(x jY = 0; �)p(Y = 0 j�)= � expf�12(x� �1)T��1(x� �1)g� expf�12(x� �1)T��1(x� �1)g+ (1� �) expf�12 (x� �0)T��1(x� �0)g= 11 + expf� log �1�� + 12 (x� �1)T��1(x� �1)� 12(x� �0)T��1(x� �0)g= 11 + expf�(�1 � �0)T��1x+ 12(�1 � �0)T��1(�1 + �0)� log �1��g (7.6)= 11 + expf��Tx� g (7.7)where the �nal equation de�nes parameters � and :� , ��1(�1 � �0)  , �12(�1 � �0)T��1(�1 + �0) + log �1� � : (7.8)
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Figure 7.6: A plot of the logisti funtion.We see that the posterior probability that Y = 1 takes the form:�(z) , 11 + e�z ; (7.9)where z = �Tx +  is an aÆne funtion of x. The funtion �(z) is a smooth, sigmoid-shapedfuntion known as the logisti funtion (see Figure 7.6).The fat that the feature vetor x enters into the posterior probability via an aÆne funtionhas an important geometri interpretation; in partiular, this implies that the ontours of equalposterior probability are lines in the feature spae. That is, the term �Tx is proportional to theprojetion of x on �, and this projetion is equal for all vetors x that lie along a line orthogonalto �. Consider in partiular the ase in whih the varianes �2j are equal to one; thus let � = I.In this ase � is equal to �1��0, and the ontours of equal posterior probability are lines that areorthogonal to the di�erene vetor between the means of the two lasses (see Figure 7.7(a)).We obtain equal values of posterior probability for the two lasses when z = 0 (beause thelogisti funtion in Eq. (7.9) evaluates to 0.5 when z = 0). To interpret this result geometrially,onsider �rst the ase in whih the prior probabilities � and 1� � are equal. In this ase the termlog(�=(1 � �)) vanishes and we an rewrite z as follows:z = (�1 � �0)T �x� (�1 + �0)2 � : (7.10)This is equal to zero for vetors x whose projetion on (�1 ��0) is equal to the arithmeti averageof the two lass means. Thus the posterior probabilities for the two lasses are equal when x isequidistant from the two means. This orresponds to the solid line in Figure 7.7(a).The prior probability � enters via the log odds ratio log(�=(1��)). This e�et of this term anbe interpreted as a shift along the absissa in Figure 7.6. For values of � larger than 0:5 we obtaina shift to the left, whih, for a given point in the feature spae, orresponds to a larger value of the
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(b)Figure 7.7: (a) The dashed lines and the solid line are ontours of equal posterior probability. Notethat they are orthogonal to the dotted line onneting the two mean vetors. (b) When �1 6= �2,the ontours of equal posterior probability are still lines, but they are no longer orthogonal to thedi�erene between the mean vetors.posterior for lass Y = 1 (see Figure 7.8(a)). We obtain a shift to the right for � smaller than 0:5(see Figure 7.8(b)).Finally, let us onsider the ase of a general matrix �. The ontours of equal posterior prob-ability are still lines in the feature spae, but in general these lines are no longer orthogonal tothe di�erene vetor between the means. If we de�ne new features w via the equation w , ��1x,however, we obtain the orthogonal geometry of Figure 7.7(a) in the w feature spae, whih impliesan aÆne geometry in the original feature spae. Figure 7.7(b) is an example of this ase. Notethat the set of vetors that have equal posterior probability for the two lasses|the solid line inthe �gure|are no longer equidistant from the two lass means.1As in Chapter 6 it is ommon to suppress the di�erene between linear and aÆne funtions tosimplify our notation. Thus we augment the vetor x to inlude a �rst omponent that is equal to1, and de�ne the augmented parameter vetor � , ( � log(�=(1 � �)); �T )T . Using this notation,we an summarize the results of this setion as follows: for Gaussian lass-onditional densities,the posterior probability takes the form:p(Y = 1 jx; �) = 11 + e��T x (7.11)where the parameter vetor � is a funtion of the means �k, the ovariane matrix �, and the priorprobability �.In summary, we have found that the posterior probability for Gaussian lass-onditional den-sities is the logisti funtion of a linear funtion of a feature vetor x. We thus have obtained a1We an rede�ne the distane metri, however, basing it on the matrix ��1. In this ase the points on the solidline are equidistant from the lass means. This metri is known as Mahalanobis distane; see Exerise ?? for moredetails.
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(a)Figure 7.8: The lass Y = 1 is the upper rightmost of the two Gaussians. (a) When the prior� is greater than 0.5, the ontours are shifted to the left, orresponding to a greater posteriorprobability of Y = 1 for a given point in the feature spae. (b) When the prior � is less than 0.5,the ontours are shifted to the right.linear lassi�er|ontours of equal posterior probability are lines in the feature spae. Inspetingthe derivation that yielded this result, we see that the key assumption is that the ovariane matrixis the same in the two lasses; this leads to a anellation of the quadrati xT��1x term in thenumerator and denominator of the posterior probability. If we retrat this assumption and allowdi�erent ovariane matries for the two lasses, we still obtain a logisti form for the posteriorprobability, but the argument to the logisti funtion is now quadrati in x. The orrespondinglassi�er, whih has quadrati ontours of equal posterior probability, is referred to as a quadratilassi�er.Maximum likelihood estimatesIn this setion we show how to obtain maximum likelihood parameter estimates based on a trainingset D omposed of N observations: D = f(xn; yn);n = 1; : : : ; Ng. This problem has a straightfor-ward solution that makes use of our work on density estimation in Chapter 5. Reasoning intuitively,suppose that we split the training data into two subsets, one in whih yn = 0 and the other inwhih yn = 1. To estimate � we alulate the proportion of the data in the subset orresponding toyn = 1; this is the maximum likelihood estimate of �. Moreover, we obtain separate maximum like-lihood estimates of the Gaussian parameters for eah of the two lasses, pooling the estimates of thevarianes to take aount of the fat that �j is the same in the two lasses. This intuitively-de�nedsolution is in fat the overall maximum likelihood solution, as we now verify.We �rst form the log likelihood:l(� j D) = log8<: NYn=1 p(yn j�) mYj=1 p(xj;n j yn; �j)9=; (7.12)



7.2. GENERATIVE MODELS 13= NXn=1 log p(yn j�) + NXn=1 mXj=1 log p(xj;n j yn; �j); (7.13)where we see that we obtain two separate terms, one for the marginal distribution of Y and theother for the onditional distribution of Xj given Y . Maximizing with respet to � involves onlythe former term, and for � we therefore obtain:�̂ML = arg max� NXn=1 log p(yn j�) (7.14)= arg max� NXn=1 fyn log � + (1� yn) log(1� �)g ; (7.15)where the latter equation uses Eq. (7.1). As we have seen in Chapter 5 (f. Eq. (5.37)), the solutionto this onstrained optimization problem is the sample proportion:�̂ML = PNn=1 ynN ; (7.16)where the numeratorPNn=1 yn is the ount of the number of times that the lass Y = 1 is observed.Maximization with respet to the parameters �j involves only the seond term in Eq. (7.13),whih we expand further as:NXn=1 mXj=1 log p(xj;n j yn; �j)= NXn=1 mXj=1 log �p(xj;n j yn = 1; �j1; �j)ynp(xj;n j yn = 0; �j0; �j)1�yn	 (7.17)= mXj=1( NXn=1 yn log p(xj;n j yn = 1; �j1; �j) + NXn=1(1� yn) log p(xj;n j yn = 0; �j0; �j)) : (7.18)Eah term in the brakets depends on only one of the parameter vetors �j = (�j0; �j1; �j). Thusthe problem deomposes into m separate optimization problems, one for eah j.Let us �rst onsider the estimation of �j1. Plugging in from Eq. (7.3) for p(xj;n j yn = 1; �j1; �j),and dropping onstants, we have:�̂j1;ML = arg max�j1 (�12 NXn=1 yn(xj;n � �1j)2) : (7.19)This is a weighted least-squares problem, where the \weights" are the binary values yn. Taking thederivative and setting to zero, we obtain:�̂j1;ML = PNn=1 ynxj;nPNn=1 yn : (7.20)



14 CHAPTER 7. LINEAR CLASSIFICATIONThus the maximum likelihood estimate is the sample average of the values xj;n for those data pointsin lass Y = 1. Similarly, for �̂j0 we obtain:�̂j0;ML = PNn=1(1� yn)xj;nPNn=1(1� yn) ; (7.21)whih is the average of the xj;n for those data points in lass Y = 0.Finally, as we ask the reader to verify in Exerise ??, maximization with respet to the variane�2j yields: �̂2j;ML = PNn=1 yn(xj;n � �̂j1;ML)2 +PNn=1(1� yn)(xj;n � �̂j0;ML)2N ; (7.22)a pooled estimate of the variane.Multiway lassi�ationIn this setion we onsider the generalization to multiway lassi�ation, in whih the lass label Yan take on one of K values.Let Y be a multinomial random variable with omponents Y k and parameter vetor �. Byde�nition we have: �k = p(Y k = 1 j�): (7.23)For eah of the K values of Y , de�ne a Gaussian lass-onditional density:p(x jY k = 1; �) = 1(2�)m=2j�j1=2 exp��12(x� �k)T��1(x� �k)� ; (7.24)where �k is the mean assoiated with the kth lass and � is a ovariane matrix, assumed onstantaross the K lasses. If � is diagonal, then the omponents of X are onditionally independentgiven the lass label Y and the appropriate graphial model is given by Figure 7.4(a). For general�, we represent our model as Figure 7.4().The posterior probability of lass k is obtained via Bayes rule:p(Y k = 1 jx; �) = p(x jY k = 1; �)p(Y k = 1 j�)Pl p(x jY l = 1; �p(Y l = 1 j�)) (7.25)= �k expf�12 (x� �k)T��1(x� �k)gPl �l expf�12 (x� �l)T��1(x� �l)g (7.26)= expf�Tk��1x� 12�Tk��1�k + log �kgPl expf�Tl ��1x� 12�Tl ��1�l + log �lg ; (7.27)where the anellation of the quadrati xT��1x terms again leaves us with exponents that arelinear in x. De�ning parameter vetors �k:�k , � ��Tk��1�k + log �k��1�k � (7.28)
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Figure 7.9: Contours of the softmax funtion. Eah line is obtained by setting �k(z) = �l(z) fork 6= l. Suh a line is a ontour of equal posterior probability for lasses k and l.and again simplifying our result by augmenting the vetor x to inlude a �rst omponent equal toone, we have: p(Y k = 1 jx; �) = e�Tk xPl e�Tl x : (7.29)The funtion �k(z) , ezk=Pl ezl is a smooth funtion known as the softmax funtion.The softmax funtion is a generalization of the logisti funtion and it has a similar geomet-ri interpretation. Indeed we an transfer muh of our earlier work to the multiway setting byonsidering the ratios of posterior probabilities between pairs of lasses. In taking the ratio ofp(Y k = 1 jx; �) and p(Y l = 1 jx; �), for k 6= l, the denominator in the softmax funtion anelsand we obtain an exponential with exponent (�k � �l)Tx. This again involves a projetion andthus ontours of equal pairwise probability are again lines in the feature spae (see Figure 7.9).Moreover, the prior probabilities � again take the form of log odds and at as additive onstantsin the exponential.When � = �I, we see from Eq. (7.28) that �k is proportional to �k, and thus the ontours ofequal probability are again orthogonal to the di�erenes between the lass means. For general �we obtain the same orthogonal geometry for the transformed oordinates w , ��1x, whih impliesan aÆne geometry for the features x.The alulation of maximum likelihood estimates for the multiway Gaussian lassi�er is straight-forward and we we ask the reader to arry out the alulation in Exerise ??. The results an besummarized as follows: We again divide the data into subsets orresponding to the di�erent valuesof Y . Separate maximum likelihood estimates of the Gaussian parameters are obtained for eahlass, and the ovariane estimates are pooled. Moreover, the maximum likelihood estimates of �are the proportions of data falling into the K lasses.The lassi�er that we have presented in this setion is again a linear lassi�er. The linearity



16 CHAPTER 7. LINEAR CLASSIFICATIONagain arises from the Gaussian assumption for the lass-onditional densities, together with theassumption of a onstant ovariane matrix.7.2.2 The naive Bayes lassi�erWe now turn to the setting of disrete features, in whih eah feature Xj an take on one of Kvalues. In this setting the graphial model shown in Figure 7.4(a) is often referred to as the \naiveBayes lassi�er." We disuss the naive Bayes lassi�er in this setion, alulating the posteriorprobability and maximum likelihood parameter estimates.Muh of the work in the previous setion arries over to the disrete setting. In partiular, thejoint probability remains the same as before:p(x; y j �) = p(y j�) mYj=1 p(xj j y; �j): (7.30)We again let Y be a multinomial random variable with omponents Y k, de�ning the probabilityvetor �, where: �k , p(Y k = 1 j�): (7.31)Finally, treating the variables Xj as multinomial random variables with omponents Xkj , whereXkj = 1 for one and only one value of k, we write the lass-onditional densities as follows:p(x1; x2; : : : ; xm jY i = 1; �) =Yj Yk �xkjijk; (7.32)where �ijk , p(xkj = 1 jY i = 1; �) is the probability that the jth feature Xj takes on its kth value,for the ith value of the lass label Y . Note that the produt over k in Eq. (7.32) arises from thede�nition of multinomial probabilities, and the produt over j reets the assumption that thefeatures are onditionally independent.Posterior probabilityLet us alulate the posterior probability for the naive Bayes lassi�er. We have:p(Y i = 1 jx; �) = �iQjQk �xkjijkPl �lQjQk �xkjljk (7.33)= expflog �i +PjPk xkj log �ijkgPl expflog �l +PjPk xkj log �ljkg : (7.34)As in the Gaussian ase, this is again a softmax funtion of a linear ombination of the features.We an express this result in the standardized form:p(Y i = 1 jx; �) = e�Ti xPl e�Tl x ; (7.35)



7.2. GENERATIVE MODELS 17with a bit of reativity in the de�nitions of x and �. In partiular, we rede�ne the vetor x bystaking the multinomial vetors xj vertially. Thus, the omponents of x are the values xkj , wherethe supersript k varies more rapidly than the subsript j. We also augment the resulting vetorto have a �rst omponent of one. Similarly, we de�ne �i as a vetor in whih the doubly-indexedomponents log �ijk are arranged, with i �xed and k varying faster than j. We let the the �rstomponent of �i be equal to log �i. Given these de�nitions we obtain Eq. (7.35) as the posteriorprobability for the naive Bayes model.Although the feature spae is a disrete hyperube in the naive Bayes setting, it is interestingthat the lassi�er is formally the same as the linear disriminant lassi�er, with log odds playingthe role that di�erene vetors played in the Gaussian ase.In the ase of binary lassi�ation, we an divide numerator and denominator by the numeratorin Eq. (7.34) and obtain the logisti funtion of a linear funtion of the features:p(Y = 1 jx; �) = 11 + expf��Txg (7.36)for appropriate de�nitions of � and x.Maximum likelihood estimatesFinally, let us alulate the maximum likelihood estimates of the parameters for the naive Bayeslassi�er. We again assume that we have a training set D omposed of N observations: D =f(xn; yn);n = 1; : : : ; Ng.From Eq. (7.30) we obtain the log likelihood:l(� j D) = NXn=1 log p(yn j�) + NXn=1 mXj=1 log p(xj;n j yn; �); (7.37)where for the purposes of this setion we de�ne x and y to be the vetors of all observations xj;n andyn, respetively. The �rst term again deouples to yield separate maximum likelihood estimates of�. Fousing on the seond term, and realling that the sum over k of the parameters �ijk mustequal one, we introdue Lagrange multipliers �ij and maximize:~l(� j D) , NXn=1Xi Xj Xk xkj;nyin log �ijk +Xi Xj �ij(1�Xk �ijk): (7.38)This yields: �~l��ijk = Pn xkj;nyin�ijk � �ij: (7.39)Setting to zero and summing both sides with respet to k, we have:�ij = Xk Xn xkj;nyin (7.40)



18 CHAPTER 7. LINEAR CLASSIFICATION= Xn Xk xkj;nyin (7.41)= Xn yin: (7.42)Finally, substituting bak into Eq. (7.39), we obtain:�̂ijk;ML = Pn xkj;nyinPn yin ; (7.43)in whih the numerator is the number of observations in the ith lass for whih the the jth featuretakes on its kth value. The denominator normalizes this ount by dividing by the number ofobservations in the ith lass.7.2.3 The exponential familyFor all of the generative lassi�ation models studied thus far, the posterior probability takes asimple funtional form|a logisti funtion for the binary problem and a softmax funtion in themultiway problem. Moreover, for multinomial and Gaussian lass-onditional densities (in thelatter ase with equal, but otherwise arbitrary, lass ovariane matries), the ontours of equalposterior probability are hyperplanes in the feature spae. In fat, as we see in this setion, theseresults are not restrited to multinomial and Gaussian probabilities; but hold for a wide range oflass-onditional densities.The exponential family of probability distributions is a large family that inludes the multino-mial and Gaussian distributions, as well as a number of other lassial distributions suh as thebinomial, the Poisson, the gamma and the Dirihlet. In Chapter 8 we provide a detailed disussionof the exponential family; here we simply present the funtional form of this family, and onsiderusing exponential family distributions as lass-onditional densities for lassi�ation.The exponential family is de�ned as follows:p(x j �) = expf�Tx� a(�)gh(x); (7.44)where � is a parameter vetor. It is a useful exerise to verify that the distributions listed abovean all be put in this standard form, for appropriate de�nitions of the funtions a(�) and h(x).(We will arry out this exerise in Chapter 8).Let us now onsider a binary lassi�ation problem for a generi lass-onditional density fromthe exponential family. We assume that the densities for the two lasses are the same, up to theparameter vetor �. That is, we let the density for lass Y = 1 be parameterized by �1 and let thedensity for lass Y = 0 be parameterized by �0. Let the prior probabilities be equal for simpliity.We obtain the posterior probability from Bayes rule:p(Y = 1 jx; �) = p(x jY = 1; �)p(Y = 1 j�)p(x jY = 1; �)p(Y = 1 j�) + p(x jY = 0; �)p(Y = 0 j�) (7.45)= expf�T1 x� a(�1)gh(x)expf�T1 x� a(�1)gh(x) + expf�T0 x� a(�0)gh(x) (7.46)



7.3. DISCRIMINATIVE MODELS 19= 11 + expf�(�0 � �1)Tx� a(�0) + a(�1)g : (7.47)Thus we �nd that the posterior probability is the logisti funtion of a linear funtion of x.Similarly, for the multiway lassi�ation problem we have:p(Y k = 1 jx; �) = p(x jY k = 1; �k)p(Y k = 1 j�)Pl p(x jY l = 1; �l)p(Y l = 1 j�) (7.48)= expf�Tk x� a(�k)gh(x)Pl expf�Tl x� a(�l)gh(x) (7.49)= expf�Tk x� a(�k)gPl expf�Tl x� a(�l)g ; (7.50)where again we have assumed equal lass priors for simpliity. The result is the softmax funtionof a linear funtion of x.7.3 Disriminative modelsIn Setion 7.2.3 we have seen that a wide range of lass-onditional densities all yield the samelogisti-linear or softmax-linear form for the posterior probability. This invariane of the funtionalform of the posterior probability to the spei� hoie of lass-onditional density is good news,beause in pratie it an be diÆult to hoose the lass-onditional density. This problem ispartiularly diÆult in the ase of a high-dimensional feature vetor. Consider the Gaussian ase.The assumption of a diagonal ovariane matrix|orresponding to onditional independene ofthe features|is often unrealisti. We an allow arbitrary ovariane matries, but this requiresus to estimate O(m2) parameters, whih may be prohibitive for large m. Often we would likeinstead to onsider families of ovariane matries that depend on more than m but fewer thanm2 parameters. In some ases there is a natural ordering or grouping of the features (e.g., in thease of time series data or spatial data) that yield natural de�nitions of suh strutured ovarianematries. In many other ases, however, there is no obvious way to justify a partiular form ofstrutured ovariane matrix, and we are left with a hoie between the (highly-biased) ase of adiagonal ovariane matrix and the (highly-variable) ase of a full ovariane matrix. The fat,however, that all of these hoies yield the same linear form for the posterior probability suggeststhat it may not be neessary to make suh a hoie. Moreover, the fat that densities other thanthe Gaussian density yield the same linear lassi�er suggests that we may not even need to speifythe density.In this setion we disuss disriminative models. In disriminative modeling the posterior prob-ability is modeled diretly, quite apart from any onsiderations regarding lass-onditional proba-bilities. Instead of assuming Gaussian or multinomial lass-onditional densities and deriving thelinearity of the lassi�er as a onsequene, we instead assume linearity at the outset, by assum-ing that x enters into the model via a linear ombination �Tx. To omplete the model, we makean additional assumption regarding the (nonlinear) funtion that maps from �Tx to the posterior
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Figure 7.10: The graphial representation of a disriminative lassi�ation model.probability. Taking a hint from the generative setting, we assume a logisti or softmax funtion atthe outset, but we will also explore other possibilities.The main problem will be that of estimating the parameters of the resulting lassi�er. Giventhat we no longer have underlying lass-onditional densities, we annot de�ne the parameters ofthe lassi�er in terms of underlying means, ovarianes, log probabilities or the like. Instead wewill have to �nd a way to estimate the parameters \diretly."The graphial model that we study in this setion is shown in Figure 7.10. Note that in this�gure we have treated the omponents of the feature vetor X as separate nodes: X1;X2; : : : ;Xm.We have done this to emphasize the relationship|as well as the ontrast|with the disussion ofthe generative approah in the previous setion. Note in partiular that we are not assuming norimplying onditional independene of the features. Indeed, in this setion we make no assumptionsregarding the marginal probability p(x); our goal is only to model the onditional probabilityp(y jx). This is of ourse the same setting as that of regression, and indeed the methods that wedisuss in this setion are losely related to regression.7.3.1 Logisti regressionWe begin by onsidering the ase of binary lassi�ation. The �rst model that we onsider is logistiregression, in whih the onditional probability p(y jx) is modeled as a funtion �(�Tx), where �is the logisti funtion. This funtional form is of ourse suggested by the generative models inSetion 7.2.The lass label Y is a Bernoulli random variable, and the modeling problem is that of deter-mining the probability that Y takes the value one for eah input X. Note that this probability,p(Y = 1 jx), is the same as the onditional expetation:E(y jx) = 1 � p(Y = 1 jx) + 0 � p(Y = 0 jx) (7.51)



7.3. DISCRIMINATIVE MODELS 21= p(Y = 1 jx): (7.52)Thus, as in the ase of regression, the goal is that of modeling the onditional expetation of Ygiven X. In the regression ase, we added a Gaussian error term � to the onditional expetation.This approah, however, is learly inappropriate here given that Y an only take on the disretevalues zero and one. Instead, we de�ne �(x) , p(Y = 1 jx) and write the Bernoulli distribution inthe following way: p(y jx) = �(x)y(1� �(x))1�y: (7.53)This is the usual de�nition of the Bernoulli distribution; however, we still need to speify thedependene of the Bernoulli parameter �(x) on x.To omplete the spei�ation of the model, we assume that (1) the onditional expetationdepends on x via the inner produt �(x) , �Tx, where � is a parameter vetor, and (2) the innerprodut �(x) is onverted to a probability sale via the logisti funtion. Thus we have:�(x) = 11 + e��(x) : (7.54)as the probability model for the onditional expetation �(x) , p(Y = 1 jx; �).Reall that in the urrent setion we simply treat these assumptions as axiomati|as an attemptto model posterior probabilities in a simple parametri way independently of assumptions regardinglass-onditional densities. Figure 7.11 shows an example that helps to suggest the reasonablenessof this approah. In this �gure it appears to be diÆult to hoose a model for the lass-onditionaldensities; in partiular, a Gaussian assumption does not seem reasonable. It seems signi�antlyless problemati to hoose a disriminative model in this ase, and indeed the linear boundaryimplied by the logisti regression model appears to be reasonable. Suh examples are by no meansunommon.Some properties of the logisti funtionIn this setion we ollet together several results regarding the logisti funtion that will be of usein the following setion and in several later hapters.Let us write the logisti funtion as a map from a variable � to a variable �:� = 11 + e�� (7.55)The logisti funtion is invertible; thus we an also obtain a map from � to �:� = log� �1� �� ; (7.56)whih has the form of a log odds.This inverse form simpli�es the alulation of derivatives. In partiular, we have:d�d� = dd� log� �1� �� (7.57)= 1�(1� �) ; (7.58)
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Figure 7.11: An example in whih it is diÆult to speify the lass-onditional densities requiredfor a generative model, but where a linear disriminative boundary between the lasses seemsreasonable.from whih we obtain: d�d� = �(1� �): (7.59)This expresses the derivative of the logisti funtion as a funtion of �. We an also use Eq. (7.55)to obtain the derivative as a funtion of �, but the form in Eq. (7.59) will prove to be more useful.The likelihoodIn this setion we begin our disussion of maximum likelihood estimation of the parameters � basedon a training set D = f(xn; yn);n = 1; : : : ; Ng. As in our disussion of regression in Chapter 6, weonsider bath and on-line methods for parameter estimation.Let �n = �Txn and let �n = 1=(1+e��n ) denote the orresponding value of the logisti funtion,in aordane with our de�nitions in the previous setion. Note that we have omitted the expliitdependene of �n on xn to simplify our notation. Moreover, let � and � denote the vetors of thesevalues as we range aross n; thus: � = (�1; �2; : : : ; �N ) and � = (�1; �2; : : : ; �N ).To obtain the likelihood we take the produt of N Bernoulli probabilities using Eq. (7.53):p(y1; : : : ; yN jx1; : : : ; xN ; �) =Yn �ynn (1� �n)1�yn : (7.60)



7.3. DISCRIMINATIVE MODELS 23Taking logarithms yields:l(� j D) =Xn fyn log�n + (1� yn) log(1� �n)g ; (7.61)and it is this expression that we must maximize with respet to �.2 Reall that �n is a funtion of� whereas yn is not.We alulate the gradient of the log likelihood:r�l = Xn � yn�n � 1� yn1� �n� d�nd�n xn (7.62)= Xn yn � �n�n(1� �n)�n(1� �n)xn (7.63)= Xn (yn � �n)xn: (7.64)It is interesting to note that this gradient has the same form as the gradient of the log likelihoodfor linear regression (f. Eq. (6.12)). In both ases we obtain a di�erene between yn and theonditional expetation �n, multiplied by the input xn.An on-line estimation algorithmAn on-line estimation algorithm an be obtained by dropping the summation sign and followingthe stohasti gradient of the log likelihood. Let �(t) denote the value of the parameter vetor atthe tth step of the algorithm. If (xn; yn) denotes the data point presented to the algorithm at thetth step, we write: �(t+1) = �(t) + �(yn � �(t)n )xn; (7.65)where �(t)n , �(�(t)T xn) and where � is a step size.Note that this on-line algorithm is idential in form to the LMS algorithm di�ering only inthe de�nition of the onditional expetation. To understand the (important) impliations of thedi�erene, let us return to an issue that motivated our development of lassi�ation methods.Reall in partiular Figure ??, where we onsidered the e�et on linear regression of adding thepoint (1:5; 1) to the training set. The linear �t is altered signi�antly by the addition of this point.One way to see this is to note that the error, (yn � �(t)n ), in the LMS algorithm is large; thusthe algorithm will make a large adjustment to the parameter vetor �(t). For the on-line logistiregression algorithm in Eq. (7.65), however, �(t)n is near one, given that the logisti funtion isevaluated in its rightmost tail. As suggested in Figure 7.12, the error, (yn � �(t)n ), is thereforeessentially zero. Thus, as we see from Eq. (7.65), there is little hange in the parameters. Ingeneral, points that are already lassi�ed orretly do not a�et the �t.2The funtion in Eq. (7.61) is the ross-entropy funtion. See Appendix XXX for further disussion of the ross-entropy in the ontext of information theory.
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xFigure 7.12: (a) The �t of a logisti regression model to the data in Figure 7.1. (b) Adding thepoint (1.5,1) to the data set does not hange the �t (f. Figure 7.2).The iteratively reweighted least squares (IRLS) algorithmTo obtain a bath algorithm we ould restore the summation sign in Eq. (7.64) and follow thesteepest desent diretion, but as in the linear regression ase this algorithm has little to reommendit. We instead desribe an algorithm, known as the iteratively reweighted least squares (IRLS)algorithm, that is loser in spirit to the diret solution of the normal equations.The IRLS algorithm is a Newton-Raphson algorithm.3 In preparation for deriving the algorithm,let us note that the normal equations an also be viewed, somewhat perversely, from the point ofview of the Newton-Raphson algorithm.Consider a funtion J(�) whih is to be minimized with respet to �. Reall (see Appendix XXX)that the Newton-Raphson algorithm is an iterative algorithm that takes the following general form:�(t+1) = �(t) �H�1r�J; (7.66)where r�J and H are the gradient vetor and Hessian matrix of J(�) respetively (and both areevaluated at �(t)).In the ase of linear regression, the ost funtion, J = 12(y � X�)T (y � X�), is a quadratifuntion of �. We alulated the gradient of J in Chapter 6, �nding:r�J = �XT (y �X�): (7.67)Taking another derivative we obtain the Hessian:H = �XTX: (7.68)3This statement is not entirely aurate, but it is aurate enough for urrent purposes. See Chapter 8 for furtherdetails.



7.3. DISCRIMINATIVE MODELS 25Thus we an apply the Newton-Raphson algorithm to the problem of minimizing J , obtaining:�(t+1) = �(t) + (XTX)�1XT (y �X�(t)) (7.69)= (XTX)�1XT y; (7.70)where we see that the right-hand-side is the solution to the normal equations. Thus Newton-Raphson hops to the solution in a single step, not a surprise given that J is a quadrati funtion.In the logisti regression problem, the funtion to be optimized is the log likelihood, and thisfuntion is not quadrati. Nonetheless it is \nearly" quadrati, and we should not be surprised tosee that Newton-Raphson for logisti regression has similarities to the linear regression solution.Indeed, as we will see, the similarity is strong.The funtion that we wish to optimize is the log likelihood shown in Eq. (7.61). We have alreadyalulated the gradient of the log likelihood in Eq. (7.64). Writing this result in vetor notation,we have: r�l =Xn (yn � �n)xn = XT (y � �); (7.71)where we have de�ned � , (�1; �2; : : : ; �N )T . Taking a seond derivative, we have:H = �Xn d�nd�n xnxTn (7.72)= �Xn �n(1� �n)xnxTn (7.73)= �XTWX; (7.74)where we have de�ned the diagonal weight matrix:W , diagf�1(1� �1); �2(1� �2); : : : ; �N (1� �N )g; (7.75)Note that the �n values depend on the parameter vetor �, thus the weight matrix W dependson �. We thus will use the notation W (t) to denote the weight matrix at the tth iteration of thealgorithm.Substituting into Eq. (7.66), we obtain:�(t+1) = �(t) + (XTW (t)X)�1XT (y � �(t)) (7.76)= (XTW (t)X)�1 hXTW (t)X�(t) +XT (y � �(t))i (7.77)= (XTW (t)X)�1XTW (t)z(t); (7.78)where we de�ne: z(t) = � + [W (t)℄�1(y � �(t)): (7.79)The algorithm in Eq. (7.78) is the IRLS algorithm.Inspeting Eq. (7.78) makes it lear why the algorithm is known as the \iteratively reweightedleast squares" algorithm. Eah iteration of the algorithm involves solving a weighted least-squares



26 CHAPTER 7. LINEAR CLASSIFICATIONproblem (reall Eq. (??)). Moreover, given that the weight matrix W hanges at eah iteration,the least-squares problem is \iteratively reweighted."We an obtain some more insight into the IRLS algorithm, and in partiular understand therole played by z(t), if we view the Newton-Raphson algorithm as solving a sequene of linearizedproblems.Consider the following (heuristi) argument. For a partiular value �, and a partiular vetor xn,let us linearize the logisti funtion around the \operating point," �n = �Txn. This linearizationallows us to onvert the value yn, whih is on a nonlinear sale, \bakwards" to a value zn onthe linear sale de�ned by �n. In pariular, reall that the logisti funtion an be inverted (f.Eq. (7.56)) to yield a map from �n to �n. Expanding this inverse funtion in a �rst-order Taylorseries, we de�ne: zn , �n + d�nd�n (yn � �n); (7.80)where the derivative is evaluated at �n, and thus depends impliitly on the parameter vetor �.This argument suggests using zn as a surrogate for yn, in a linearized version of our logistiregression problem. We have another issue to deal with, however, if we wish to use linear regressionmethods to �nd parameter estimates: the Bernoulli random variables yn do not have equal variane.In partiular, yn has variane �n(1 � �n). To deal with this issue, we use weighted least squares.In partiular, note that the elements of the weighting matrix W de�ned in Eq. (7.75) are exatlythe Bernoulli varianes. Thus we use W as our weight matrix.We now solve a weighted least squares problem, with data zn and weight matrix W . Writingthe normal equations for this weighted least squares problem, and making the dependene on theiteration number t expliit, we obtain the IRLS iteration in Eq. (7.78).The Newton-Raphson algorithm is a seond-order algorithm and it generally onverges rapidly.A small number of iterations of Eq. (7.78) are usually suÆient to obtain onvergene of theparameter vetor.7.3.2 Multiway lassi�ationIn this setion we disuss a generalization of logisti regression to the setting of multiway lassi�-ation. Reall that in this ase the lass label Y an take on one of K values.In Setion 7.2.1 we derived the softmax-linear model:p(Y k = 1 jx; �) = e�Tk xPl e�Tl x (7.81)as the multiway generalization of the logisti-linear model. In that setion, the softmax-linear formfor the posterior probability was a onsequene of our assumption of Gaussian (or more generally,exponential family) lass-onditional probabilities. In the urrent setion, however, we adopt adisriminative perspetive in whih the softmax-linear form is treated as an assumption, and wemake no attempt to speify lass-onditional probabilities. In this ontext, we refer to the modelin Eq. (7.81) as a softmax regression model. As in the ase of logisti regression, the main problemthat we fae is estimating the parameters �k \diretly," without making use of an underlyinglass-onditional model.



7.3. DISCRIMINATIVE MODELS 27We use the notation �kn to denote the posterior probability in Eq. (7.81). We also use �kn = �Tk xnto denote the linear omponent of the softmax-linear model.Some properties of the softmax funtionThe softmax funtion has several properties that are analogs of those of the logisti funtion thatwe disussed in Setion 7.3.1.The softmax funtion an be written as a map from a vetor variable � to a vetor variable �.Letting �i represent the ith omponent of � and letting �i represent the ith omponent of �, wewrite: �i = e�iPk e�k : (7.82)This funtion is invertible up to an additive onstant. That is, if we add the onstant C to eahof the omponents �i, then the fator eC anels in the numerator and denominator of Eq. (7.82),yielding the same value of �i. Note in partiular that if we take the logarithm of both sides ofEq. (7.82), we obtain the inverse: �i = log �i +D; (7.83)where D = logPk e�k is a onstant. Any other onstant (inluding zero) will yield an equivalentinverse of the softmax funtion.We turn to the alulation of the softmax derivatives. A subtlety in this ase is that thederivative of �i with respet to �j is non-zero for i 6= j, due to the denominator in Eq. (7.82). Thealulation proeeds as follows: ��i��j = (Pk e�k)e�iÆij � e�ie�j(Pk e�k)2 (7.84)= e�iPk e�k �Æij � e�jPk e�k� (7.85)= �i(Æij � �j); (7.86)where Æij is equal to one if i = j and zero otherwise.Maximum likelihood estimationIn the multiway lassi�ation problem the output Y is a multinomial random variable. Reallingthat in softmax regression �kn denotes the posterior probability of the kth lass for the nth datapoint, we an write the multinomial probability distribution in the following form:p(yn jxn; �) =Yk ��kn�ykn (7.87)where � , (�1n; �2n; : : : ; �Kn )T is the multinomial parameter vetor. The likelihood is the produt ofN suh probabilities. Taking the logarithm, we obtain:l(� j D) =Xn Xk ykn log�kn (7.88)



28 CHAPTER 7. LINEAR CLASSIFICATIONas the log likelihood for the multiway lassi�ation problem. As in the binary ase, this log likelihoodhas the form of a ross-entropy.To alulate the gradient of the log likelihood with respet to the parameter vetor �i, we makeuse of the intermediate variable �in = �Ti xn. Realling that the derivative of �kn with respet to �inis nonzero beause of the shared denominator in the softmax funtion, we have:r�il = Xn Xk �l��kn ��kn��in d�ind�i (7.89)= Xn Xk ykn�kn�kn(Æik � �in)xn (7.90)= Xn Xk ykn(Æik � �in)xn (7.91)= Xn (yin � �in)xn; (7.92)where we have used the fat that Pk ykn = 1.The gradient that we have obtained has the same form as the gradient for logisti regressionand linear regression! (Reall Eq. (7.64) and Eq. (6.21)). We will see in Chapter 8 that this resultis not a oinidene, but reets a general property of probability distributions in the exponentialfamily.As in the ase of logisti regression and linear regression, we obtain an on-line parameterestimation algorithm by dropping the sum over n in Eq. (7.92). This algorithm is the analog of theLMS algorithm for multiway lassi�ation.It is straightforward to generalize the IRLS algorithm and thereby obtain a bath algorithmfor softmax regression. Rather than pursuing that generalization here, we return to the IRLSalgorithm in Chapter 8, where we develop a generi IRLS algorithm for the family of generalizedlinear models, of whih softmax regression and logisti regression are examples.7.3.3 Probit regressionIn this setion and the remainder of the hapter, we return to binary lassi�ation and onsidersome alternatives to logisti regression.Although the logisti regression model arises naturally from a generative perspetive|as theposterior probability obtained from a wide lass of lass-onditional probabilities|there are otherhoies of lass-onditional probabilities that do not yield the logisti-linear form for the posteriorprobability. Thus, even from a generative point of view there is some motivation for exploringalternative representations for the posterior probability. In this setion we engage in suh anexploration within the disriminative framework, motivating alternative models \diretly," withoutreferene to lass-onditional distributions. For simpliity we retain the linearity assumption, andmotivate funtions other than the logisti funtion for onverting the linear ombination �Tx to aprobability sale.



7.3. DISCRIMINATIVE MODELS 29One natural way to obtain a disriminative lassi�ation model is to onsider \noisy threshold"models. In partiular, we might suppose that a data pair (x; y) is obtained by a proess in whihsome external agent onverts the vetor x to a salar value �, de�ned as a linear ombination�Tx, and ompares the resulting value to a threshold. If the value exeeds the threshold, then thelabel 1 is assigned, otherwise the label 0 is assigned. A probabilisti version of this model an beobtained by assuming that the threshold is stohasti. Thus, let Z be a salar random variablewith a umulative distribution funtion F (z). We de�ne:p(Y = 1 jx) = p(Z � �) = F (�): (7.93)Making the further assumption that � is parameterized linearly, as � , �Tx, we obtain a disrimi-native lassi�ation model: p(Y = 1 jx; �) = F (�Tx); (7.94)for a given distribution funtion F .The logisti regression model an be interpreted as a speial ase of this model, given that thelogisti funtion, 1=(1 + exp(�x)), is a distribution funtion. There is no partiular reason to usea logisti random variable as the noisy threshold model, however. Indeed, given that many naturalsoures of \noise" have a Gaussian distribution, a ommon hoie is to take Z to be a Gaussianrandom variable. This hoie yields the probit regression model. Thus, in the probit model we have:p(Y = 1 jx; �) = �(�Tx); (7.95)where �(w) = Z w�1 1(2�)1=2 e� 12 �2d� (7.96)is the umulative distribution funtion of a Gaussian random variable with zero mean and unitvariane.4Figure 7.13 shows a graphial model representation of the probit regression model. In thisrepresentation, the threshold variable Z is represented as an expliit latent variable. The graphialmodel requires a marginal distribution for Z, whih in the probit model we take as N (0; 1), and aonditional distribution for Y , given X and Z. This onditional is a degenerate distribution: Y isequal to zero if �Tx is less than Z, and one otherwise.Figure 7.14 shows a plot of the logisti funtion and the Gaussian umulative distributionfuntion. As this plot makes lear, there is not a large di�erene between the two funtions, andindeed probit regression and logisti regression generally give rather similar results.Probit regression is an instane of the family of generalized linear models that we desribe inChapter 8. Maximum likelihood estimates an be obtained via stohasti gradient desent or thegeneral version of the IRLS algorithm that we present in that hapter.4The assumption of zero mean and unit variane is without loss of generality, beause any linear transformationof the features an be absorbed in the parameter vetor �.
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Figure 7.13: A graphial model representation of the probit regression model.
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Figure 7.14: Link funtions for binary lassi�ation. The solid urve is the logisti funtion(Eq. 7.55), the long-dashed urve is the umulative Gaussian funtion (Eq. 7.96), and the small-dashed urve is the omplementary log-log funtion (the inverse of Eq. 7.105).
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YFigure 7.15: A graphial model representation of the noisy-OR model.7.3.4 The noisy-OR modelA wide range of models an be obtained as \noisy" versions of formulas from propositional logi,in the setting in whih the features Xi are binary. In this setion we desribe an example of thislass of models known as the noisy-OR model. As with the other models disussed in this hapterthe noisy-OR model is a linear lassi�er.Let us begin with the Boolean formula:Y = X1 _X2 _ � � � _Xm; (7.97)where Xi 2 f0; 1g, for all i. To obtain a \noisy" version of the formula, let us view eah variable Xias enoding a binary \trigger" that an \ause" Y to our. Eq. (7.97) states that the presene ofany single trigger suÆes to ause Y to our. Suppose now that eah trigger an \fail" with someprobability �i, in that the trigger an be present, but an fail to ause the ourrene of Y . Supposemoreover that the failure probabilities assoiated with the di�erent triggers are independent. Thus,introduing independent binary random variables Zi to represent the failure events, we have:Y = � 1 (X1 ^ :Z1) _ (X2 ^ :Z2) � � � _ (Xm ^ :Zm)0 otherwise: (7.98)The graphial model representing this noisy version of the logial OR formula is shown in Fig-ure 7.15.If we let �i , p(zi = 1) denote the Bernoulli parameters assoiated with the Zi, we obtain fromEq. (7.98): p(Y = 0 jx; �) = mYi=1 fp(zi = 1)gxi = mYi=1 �xii : (7.99)



32 CHAPTER 7. LINEAR CLASSIFICATIONThis formula an be interpreted as stating that the probability of Y not ourring is the produtof the (independent) failure probabilities assoiated with those features xi that are present in theinput. That is, if all triggers fail, then Y doesn't our.To express the noisy-OR model in a linear form, let us rewrite Eq. (7.99):p(Y = 0 jx; �) = exp( mXi=1 xi log �i) : (7.100)Letting �i , � log �i, we obtain our �nal result:p(Y = 1 jx; �) = 1� e��T x (7.101)for the posterior probability for the noisy-OR model.7.3.5 Other exponential modelsA number of useful lassi�ation models are based on the Poisson distribution. Reall that Z is aPoisson random variable with parameter � if:p(z j�) = �ze��z! ; (7.102)where z ranges over the nonnegative integers. Poisson variables arise in many ontexts, in partiularas models of ounts of rarely ourring, independent events. For example, in a well-stirred solutionthat ontains a small amount of a virus, the amount of virus in any sample might be a Poissonvariable with parameter proportional to the volume of the sample. In suh situations, it is often ofinterest to distinguish between the ase in whih Z takes on the value zero and the ase in whihZ takes on a non-zero value. (For example, a model of transmission of viral disease would wantto distinguish the ase that a sample of the solution ontained no viral ells). De�ning a binaryvariable Y that is equal to one in the latter ase, we have:p(Y = 1) = 1� p(Z = 0) = 1� e��; (7.103)from Eq. (7.102). If we treat the parameter � as a linear funtion of a set of input variables x, weobtain a lassi�ation model: p(Y = 1 jx; �) = 1� e��T x: (7.104)This model is idential in form to the noisy-OR model, although the vetor x is no longer restritedto be a binary vetor.An awkward aspet of the model in Eq. (7.104) is that the linear ombination �Tx must berestrited to lie between zero and in�nity if we are to obtain a posterior probability that liesbetween zero and one. To remove this restrition, it is onvenient to reparameterize the model sothat the argument � is the exponential funtion of some underlying variable �. We obtain a linearlassi�ation model if we assume that the underlying variable � is linear in x:p(Y = 1 jx; �) = 1� e�e�T x : (7.105)



7.4. SUMMARY 33An appealing feature of this model is that there are no longer any restritions on �. In fat, insituations involving Poisson variables it is often natural to measure the e�et of the variables x on alogarithmi sale. In partiular, in the example of the viral solution, x might measure the frationof some diluting agent in the solution.The model in Eq. (7.105) is referred to as the omplementary log-log model. (The terminologyrefers to the inverse of the nonlinear funtion in Eq. (7.105)). Figure 7.14 inludes a plot of thenonlinearity in this model. Note again the similarity to the logisti funtion.7.4 SummaryWe have presented a number of simple probabilisti models for disrete variables within the frame-work of binary and multiway lassi�ation problems. We disussed generative models, in whihthe disrete variable is a parent of the feature variables. We also disussed disriminative models,in whih the disrete variable is a hild of the feature variables. We also foused on some of therelationships between generative and disriminative models.Maximum likelihood estimates are readily obtained in both ases. In the ase of a generativemodel, maximum likelihood estimation essentially redues to density estimation. That is, we �ndestimates of the lass-onditional densities separately for eah of the lasses. In the disriminativesetting, we model the lass label as a Bernoulli or multinomial variable, whih yields a ross entropyfor the log likelihood. The IRLS algorithm an be used to maximize this log likelihood in the bathsetting. We also presented a stohasti gradient algorithm for the on-line setting, noting the loserelationship to the LMS algorithm.All of the models that we have presented in this hapter are linear lassi�ers. That is, in allases the input variable x enters into the model via a linear ombination � = �Tx. In the generativesetting this linear form was a onsequene of the partiular kinds of lass-onditional densities thatwe assumed. In the disriminative setting we assumed the linear form at the outset.Generative and disriminative models have omplementary strengths and weaknesses. Thegenerative approah allows knowledge about lass-onditional densities to be exploited. If thisknowledge is indeed reetive of the true data-generation proess, then the generative approahan be more eÆient than a orresponding disriminative model, in the sense that it will tend torequire fewer data points. On the other hand, disriminative approahes tend to be more robustthan generative approahes, making use of weaker assumptions regarding lass-onditional densities.Note also that the disriminative framework presents a straightforward \upgrade path" toward thedevelopment of nonlinear lassi�ers|we an retain the logisti and softmax funtions, but replaethe linear ombination � = �Tx with a nonlinear funtion (see Chapter 25).7.5 Historial remarks and bibliography


