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Chapter 6Linear Regression and the LMSalgorithmIn the following 
hapters we dis
uss elementary building blo
ks for graphi
al models. We beginwith the simple 
ase of a single 
ontinuous-valued node whose mean is a linear fun
tion of thevalues of its parents. The parents 
an be dis
rete or 
ontinuous.In spe
ifying the linear regression model in Chapter 5, we made several assumptions in additionto the linearity assumption, in parti
ular the assumption of IID sampling and the assumption ofa Gaussian distribution for the variation around the 
onditional mean. These latter assumptionsyielded a fully spe
i�ed probabilisti
 model, enabling us to de�ne a likelihood and thereby invokefrequentist or Bayesian statisti
al methods to estimate parameters. It might be useful, however,to step momentarily outside of the probabilisti
 framework and ask why we 
onsider a parameterestimation problem to be well posed on
e we have de�ned a \fully spe
i�ed probabilisti
 model." Inthe 
urrent 
hapter, we address this foundational issue in a rather 
on
rete way, taking advantageof the simpli
ity of the linear model to bring to the fore a di�erent set of intuitions about parame-ter estimation. We begin by making the linearity assumption, but then let geometri
 rather thanprobabilisti
 intuitions be our guide. In parti
ular, we view ea
h data point as imposing a linear
onstraint on the parameters and treat parameter estimation as a (deterministi
) 
onstraint satis-fa
tion problem. We fo
us on obtaining algorithms that solve this 
onstraint satisfa
tion problem,exploiting the geometri
 framework to analyze the 
onvergen
e of these algorithms.The emphasis on 
onstraint satisfa
tion algorithms in the 
urrent 
hapter has the advantage offo
using attention on some 
omputational issues that are important in pra
ti
e and were glossedover in our purely statisti
al dis
ussion in Chapter 5. In parti
ular, we will introdu
e the distin
-tion between \bat
h" and \on-line" algorithms, a distin
tion whi
h is of importan
e in real-timeappli
ations of statisti
al modeling and in situations involving large data sets.At the end of the 
hapter, we return to the probabilisti
 perspe
tive, showing that there is anatural 
orresponden
e between the (Eu
lidean) geometry underlying the 
onstraint satisfa
tionformulation and the statisti
al assumptions alluded to above. Thus, we 
an view the ex
ursion intogeometry as providing support for the statisti
al perspe
tive in Chapter 5; thus en
ouraged, we willbe less bashful about bringing probabilisti
 ma
hinery to bear at the outset in future 
hapters. At3



4 CHAPTER 6. LINEAR REGRESSION AND THE LMS ALGORITHMthe same time, we will 
ontinue to seek external support for probabilisti
 assumptions, parti
ularlywhen they shed light on 
omputational 
on
erns.6.1 Bat
h and on-line algorithmsLet us 
onsider in some more detail how data points may be presented to the learner. We wish todistinguish two basi
 situations|the setting of \bat
h" presentation, in whi
h data are available asa blo
k, and the \on-line" setting in whi
h data arrive sequentially. Both settings arise naturallyin pra
ti
e: In many problems it is ne
essary to respond in real time, and on-line methods aredi
tated; in other situations our only interest is in a �nal answer|the best answer that we 
anobtain given a 
ertain data-gathering budget|and in su
h 
ases bat
h methods are natural.On the other hand, we are often free to take either the bat
h or the on-line point of view on alearning problem|a sequential data stream 
an be stored for subsequent analysis as a blo
k, anda blo
k of data 
an be a

essed sequentially. Moreover, a theoreti
al understanding of algorithmsfor parameter estimation is enhan
ed by approa
hing the problem from both points of view. Wewill see that the on-line point of view yields simple, intuitive algorithms, but a full analyti
alunderstand of on-line algorithms 
an be diÆ
ult, and we therefore turn to a related bat
h analysisto enhan
e understanding. On the other hand, bat
h methods are often usefully understood bytaking an on-line point of view|in parti
ular, large-s
ale bat
h problems generally require iterativealgorithms that sweep repeatedly through the data. These sweeps 
an often be usefully analyzedas on-line algorithms.A great deal of insight 
an be obtained by 
onsidering the elemental problem of updating theparameters of a linear model based on the presentation of a single data point. Let us begin witha dis
ussion of the geometry underlying this problem, and show how simple geometri
 intuitionleads us to an on-line algorithm known as the LMS algorithm. The a
ronym \LMS" refers to \leastmean squares," whi
h, as we shall see, re
e
ts the fa
t that the algorithm 
an be viewed as anoptimization or 
onstraint satisfa
tion pro
edure.6.2 The LMS algorithmLet us begin with a minimum of probabilisti
 pretension and 
onsider the 
ore of the linear model|the linear dependen
e of one variable on another. We 
onsider the following question: Suppose thatwe have a pair of observed variables xn and yn that we assume are related linearly. What should alearning algorithm do when presented with a data point 
onsisting of the pair (xn; yn)? We shall bevery naive and see if we 
an get any 
lues as to how to design a learning algorithm by 
onsideringthe ve
tor spa
e geometry that 
hara
terizes the model.We wish to express yn as a linear fun
tion of xn:yn = �Txn + �n; (6.1)where � is a parameter ve
tor. Let us view �n as a deterministi
 \error term" whose presen
e inEq. (6.1) is an admission that we don't ne
essarily expe
t to be able to express yn perfe
tly as a
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θFigure 6.1: The geometry asso
iated with the LMS algorithm. The �gure shows the proje
tion �nof the parameter ve
tor � on the input ve
tor xn. Also shown is the output value yn as a distan
ealong the xn ve
tor. The dashed line is the set of all ve
tors � that have a proje
tion of yn andthus are solutions. The error asso
iated with � is the distan
e (yn��n). Changing � by the ve
tor(yn � �n)xn thus yields a solution ve
tor.linear fun
tion of xn. In parti
ular, let us forgo endowing �n or any of the other terms in Eq. (6.1)with probability distributions.Figure 6.1 displays the ve
tors xn and � as well as the proje
tion of � on xn, whose value wedenote by �n. The proje
tion �n is the inner produ
t �Txn divided by the norm of xn.1 Let ussuppose for simpli
ity (temporarily) that xn has norm one, so that the inner produ
t �Txn is thesame as the proje
tion �n. Now 
onsider the problem of �nding a ve
tor � that maps xn to ynexa
tly; that is, a ve
tor su
h that �n is zero. Clearly we require a ve
tor � whose proje
tion ontoxn is equal to yn, and as the �gure shows, there is a line of possible solutions that is orthogonal toxn. Any ve
tor along this line proje
ts to the desired value yn. We 
an view the data point (xn; yn)as imposing a 
onstraint upon the ve
tor � that it lie along this line.How might we design a learning algorithm to update the 
urrent value of the parameter ve
tor1Re
all the fundamental relationship: 
os� = �Txnk�kkxnk ; (6.2)where � is the angle between � and xn. From this relationship we obtain�n = �Txnkxnk : (6.3)for the proje
tion �n = k�k 
os�.



6 CHAPTER 6. LINEAR REGRESSION AND THE LMS ALGORITHM� su
h that the new value of � meets the 
onstraint and lies on the solution line? Although thereare an in�nity of possible dire
tions that we 
ould move, note that there are two natural dire
tionsavailable to us: the dire
tion asso
iated with xn and that asso
iated with �. Let us be very naiveand de
ide that we should 
hoose one of these two dire
tions as the dire
tion in whi
h to update �.Although it is possible to �gure out how far to move along the � dire
tion so as to interse
tthe solution line, it is rather easier to �gure out how far to move along the xn dire
tion, given theorthogonality of xn and the solution line. Let us opt for simpli
ity and 
hoose to follow xn.Given that xn is a unit ve
tor, and given that the error we in
ur using the 
urrent parameterve
tor is the di�eren
e (yn� �Txn), it is 
lear that we should move the parameter ve
tor a distan
e(yn � �Txn) in the xn dire
tion. Thus:�(t+1) = �(t) + (yn � �(t)Txn)xn; (6.4)where �(t) is the estimated value of � at the tth step of the algorithm. This algorithm jumps to thesolution line.If the ve
tor xn is not a unit ve
tor, then we need to s
ale all of our distan
es by the norm of xn.The proje
tion is now �Txn=kxnk and thus we need to 
hoose a parameter ve
tor whose proje
tiononto xn is yn=kxnk. This implies that the error we in
ur using � is given by (yn � �Txn)=kxnk,whi
h is the amount we need to move in the dire
tion of xn. The unit ve
tor in this dire
tion isgiven by xn=kxnk; thus we obtain the following learning algorithm:�(t+1) = �(t) + 1kxnk2 (yn � �(t)Txn)xn; (6.5)whi
h again hops to the solution line in a single step.More generally, we express our learning algorithm in the following form:�(t+1) = �(t) + �(yn � �(t)Txn)xn; (6.6)where � is a free parameter known as the \step size." Our analysis has shown that the 
hoi
e� = 1=kxnk2 yields an algorithm that hops to the solution line in a single step. It is also easy tosee that if 0 < � < 2=kxnk2, then on repeated presentations of xn the algorithm will 
onverge tothe solution line asymptoti
ally.The algorithm in Equation 6.6 is the LMS algorithm.6.2.1 Multiple data pointsLet us now 
onsider the 
ase in whi
h multiple data points are available. In parti
ular we supposethat we have a \training set" X = f(xn; yn)gNn=1, where N , the number of data points, is at leastas large as k, the dimensionality of the parameter ve
tor.Let us begin by 
onsidering the simplest 
ase, in whi
h N = k; let us also assume for sim-pli
ity that the ve
tors xn are linearly independent. Under these 
onditions, the model given byEquation 6.1 imposes a set of k linearly independent equations on k unknowns. This implies theexisten
e of a unique parameter ve
tor � that a
hieves �n = 0 for ea
h n. Will the LMS algorithm�nd this solution?
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Figure 6.2: The geometry asso
iated with the LMS algorithm in the 
ase of two input ve
tors x1and x2. Asso
iated with ea
h ve
tor is a line of solutions and the interse
tion of these lines is theve
tor �� that solves the problem for both ve
tors. We show the path taken by the LMS algorithmupon repeated presentations of x1 and x2.Figure 6.2 presents an example for the 
ase of N = 2. As shown in the �gure, ea
h of thedire
tions determined by the ve
tors x1 and x2 is asso
iated with a solution line of ve
tors � thatmap the given xi to the 
orresponding yi. The value �� that maps both ve
tors xn to their desiredvalues lies at the interse
tion of these two lines. Assuming that the training regime alternatesbetween the two data points, we see that the LMS algorithm takes a zigzag path, following �rst thex1 dire
tion and then the x2 dire
tion. It seems 
lear, and it is in fa
t true (as we will show), thatthere exists a maximum value of the step size for whi
h the algorithm 
onverges to the solution.If we turn to the 
ase of N > k, we expe
t to see a qualititatively similar behavior in whi
h LMStakes a zigzag path through the parameter spa
e. In this 
ase, however, we have an overdeterminedset of equations and the lines that a
hieve �n for the various data points do not meet at a single point(see Figure 6.3). Given that LMS always moves from the 
urrent � towards the line of solutions
orresponding to the 
urrent data point, we see that we 
annot expe
t the algorithm to move toa single point and stay put. We do expe
t, however, that the LMS algorithm should \
onverge"towards a small region of the parameter spa
e, given an appropriate 
hoi
e of the step size. Makingfurther progress on these issues requires us to 
hara
terize more formally the 
onstraint satisfa
tion
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x1

x2

x3Figure 6.3: The geometry asso
iated with the LMS algorithm in the 
ase of three input ve
tors x1,x2 and x3. Asso
iated with ea
h ve
tor is a line of solutions. In general these lines do not interse
t.problem underlying the algorithm.6.3 The sum of squares 
ost fun
tion and the normal equationsThe approa
h that we pursue|whi
h dates ba
k to Gauss if not before|is to sear
h for parameterve
tors � that yield \small" values of �n. We need to 
hara
terize what we mean by \small," andde
ide how to 
ombine the errors for di�erent values of n. To make these de
isions we again reasongeometri
ally. We now work in a di�erent geometry, however, namely an N -dimensional ve
torspa
e, where N is the number of data points.Let y denote a 
olumn ve
tor with 
omponents yn and let ŷ denote a 
olumn ve
tor with
omponents ŷn = �Txn. These are ve
tors in an N -dimensional ve
tor spa
e. We want to expressthe relationship between these ve
tors in a way that reveals more of the geometry behind the linearmodel. To do so, let X represent the matrix whose nth row is the row ve
tor xTn . We write:ŷ = X�; (6.7)showing that ŷ lies in the 
olumn spa
e of the matrix X. Ea
h 
olumn of X 
orresponds to aparti
ular 
omponent of the ve
tor xn, and the set of 
olumns of X 
an be viewed as spanning ave
tor subspa
e (see Figure 6.4). The ve
tor ŷ lies in this ve
tor subspa
e. The ve
tor y, on the
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col (    )XFigure 6.4: A geometri
 perspe
tive on the linear regression problem for the 
ase of the matrix Xhaving two 
olumns. Let X(1) represent the �rst 
olumn of X and let X(2) represent the se
ond
olumn. Denote the 
olumn spa
e of X as 
ol(X). The approximating ve
tor ŷ lies in this ve
torsubspa
e, while the data ve
tor y generally lies outside of this subspa
e. We wish to �nd a ve
torŷ that is the orthogonal proje
tion of y on 
ol(X).



10 CHAPTER 6. LINEAR REGRESSION AND THE LMS ALGORITHMother hand, generally lies outside of this ve
tor subspa
e, re
e
ting the fa
t that in general theerrors �n 
annot simultaneously be zero.Our problem redu
es to 
hoosing a ve
tor ŷ in a ve
tor subspa
e that best represents a ve
tory outside of the subspa
e. A natural solution, from a geometri
 point of view, is to 
hoose theorthogonal proje
tion of y onto the subspa
e. We will solve the problem of �nding a ve
tor �� thatyields this proje
tion in three di�erent ways.Our �rst solution appeals dire
tly to the geometry in Figure 6.4. In parti
ular, for ŷ to bethe orthogonal proje
tion of y on the 
olumn spa
e of X, the di�eren
e ve
tor � = y � ŷ must beorthogonal to this ve
tor subspa
e. Thus y � ŷ = y �X�� must be orthogonal to the 
olumns ofX, or, equivalently, orthogonal to the rows of XT . This yields:XT (y �X��) = 0 (6.8)whi
h implies XTX�� = XT y: (6.9)These equations, whi
h 
hara
terize an optimizing ve
tor ��, are referred to as the normal equations.There is an equivalent 
hara
terization of the orthogonal proje
tion in terms of minimal Eu-
lidean length; this 
hara
terization leads us to a 
al
ulus-based derivation of the normal equations.In parti
ular, let us 
hoose ŷ su
h that the error ve
tor � = y � ŷ has minimal Eu
lidean length.Thus, working (equivalently) with the squared length, we wish to minimize the least squares 
ostfun
tion J(�): J(�) , 12 NXn=1 �2n = 12 NXn=1(yn � �Txn)2; (6.10)with respe
t to �.2Di�erentiating J with respe
t to the ith 
omponent, �i, of the ve
tor �, we obtain:�J��i = � NXn=1(yn � �Txn)xin; (6.11)where xin is the ith 
omponent of the ve
tor xn. Colle
ting these partial derivatives into a ve
torwe obtain the following gradient: r�J = � NXn=1(yn � �Txn)xn; (6.12)whi
h we must set to zero to obtain 
onditions on the optimizing solution ��.To obtain an expli
it solution it is useful to make use of the matrix X and write the gradient asa single matrix equation. Re
alling that X has the ve
tors xn on its rows, we 
an view Eq. (6.12)as a sum of the rows of X, weighted by the values (yn � �Txn). Equivalently this sum is the sum2The fa
tor of 1=2 is in
luded for 
onvenien
e; it 
an
els the fa
tor arising from the exponent of 2 when we takederivatives.



6.3. THE SUM OF SQUARES COST FUNCTION AND THE NORMAL EQUATIONS 11of the 
olumns of XT . Re
alling that the values �Txn are the 
omponents of the ve
tor ŷ = X�,we have: r�J = �XT (y �X�): (6.13)Finally, setting to zero we obtain: XT (y �X��) = 0; (6.14)or equivalently: XTX�� = XT y; (6.15)whi
h are the normal equations.In Appendix XXX, we provide a short review of matrix and ve
tor derivatives, whi
h allowsthe reader to go dire
tly from the 
ost fun
tion expressed in ve
tor notation as:J(�) = 12(y �X�)T (y �X�) (6.16)= 12(yT y � 2yTX� + �TXTX�); (6.17)dire
tly to the gradient: r�J = �XT (y �X�); (6.18)from whi
h we again obtain obtain the normal equations by setting to zero.In most situations of pra
ti
al interest, the number of data points N is larger than the dimen-sionality k of the input spa
e and the matrix X has full 
olumn rank. If this 
ondition holds, then itis easy to verify that XTX is ne
essarily invertible and thus we 
an express �� expli
itly as follows:�� = (XTX)�1XT y: (6.19)Moreover, if we take a se
ond derivatives of J with respe
t to � we �nd that the Hessian matrix of Jis given by XTX (see Appendix XXX). The assumption that XTX is invertible implies that XTXis positive de�nite, and thus the 
riti
al point that we have found is a minimum. The solution tothe normal equations provides the unique solution to the 
onstraint satisfa
tion problem.In Se
tion ?? we dis
uss the 
ase in whi
h X has less than full 
olumn rank, and develop aregularization method to handle this 
ase.In the setting of \bat
h" presentation of data, in whi
h data are available as a blo
k, we 
anform the matrix X and the ve
tor y and solve the normal equations. There are two major 
lassesof methods for solving these equations: dire
t methods and iterative methods. The former 
lass ofmethods, of whi
h Gaussian elimination and QR de
omposition are 
lassi
al examples, 
onverge ina �nite number of steps. Iterative methods, whi
h 
onverge in a limiting sense, are of interest in thesetting of parti
ularly large problems, where dire
t approa
hes 
an be infeasible 
omputationally.Our next task is to try to understand the link between the two geometries that we have studied|the k-dimensional geometry of Figure 6.1 and the N -dimensional geometry of Figure 6.4. We alsowant to understand the relationship between the normal equations and the LMS algorithm. In thefollowing se
tion, we forge these links via the derivation of a steepest des
ent algorithm for solvingthe normal equations. This algorithm 
an be viewed as an example|one of many|of an iterative



12 CHAPTER 6. LINEAR REGRESSION AND THE LMS ALGORITHMmethod for the bat
h 
ase. Our goal, however, is not to explore iterative solution methods forthe bat
h 
ase (indeed there are more sophisti
ated methods than steepest des
ent). Rather, wewish to use the normal equations and their solution via steepest des
ent as a point of departure forunderstanding the on-line 
ase.6.4 Steepest des
ent and the LMS algorithmFollowing the negative of the gradient in Eq. (6.12) we obtain the following steepest des
ent algo-rithm: �(t+1) = �(t) + � NXn=1(yn � �(t)Txn)xn; (6.20)where �(t) is the parameter ve
tor at the tth step of the iteration and where � is the step size. Thealgorithm is initialized at an arbitrary ve
tor �(0) and iterates until a 
onvergen
e 
riterion is met.The steepest des
ent algorithm involves a sum over all N input ve
tors, thus the algorithm isa bat
h algorithm. Note that this aspe
t of the algorithm 
an render it rather ineÆ
ient, and thisineÆ
ien
y motivates us to 
onsider on-line approa
hes. In parti
ular, if N is large, say in themillions, then the algorithm 
an spend an inordinate amount of time passing through the trainingset in order to 
ompute the gradient, at whi
h point it takes a step in the parameter spa
e. Giventhat one of the motivations for studying iterative algorithms is to be able to handle very largeproblems, this feature of steepest des
ent is dis
on
erting. Note moreover that if the data set isredundant|a 
ommon o

urren
e with large data sets|then it might not be ne
essary to sumall of the N terms in Eq. (6.20) to obtain an a

urate estimate of the dire
tion of the gradient(the magnitude of the gradient is irrelevant be
ause it is being s
aled by a 
onstant � that isunder our 
ontrol). In su
h situations, algorithms that take a sum over a subset of the data|a\mini-bat
h"|
an often be signi�
antly more eÆ
ient than the full bat
h algorithm. Indeed, inthe limiting 
ase we 
an view a single term, �(yn � �Txn)xn, as providing a rough estimate of thedire
tion of the gradient. It may be advantageous to go ahead and follow this rough estimate andmake progress in the parameter spa
e rather than waiting to obtain a better estimate. This logi
leads to the following algorithm, whi
h adjusts the parameter ve
tor a

ording to the estimatedgradient based on a single data point:�(t+1) = �(t) + �(yn � �(t)Txn)xn: (6.21)This is of 
ourse the LMS algorithm. We see that the LMS algorithm 
an be viewed as an approx-imation to the steepest des
ent algorithm, where the approximation involves repla
ing the sumobtained in the bat
h algorithm with a single term. Su
h an approximation is referred to as a\sto
hasti
 gradient" algorithm, where \sto
hasti
" refers to an assumption that the 
hoi
e of datapoint (xn; yn) is made a

ording to a sto
hasti
 pro
ess.Let us emphasize that although LMS 
an be viewed as an approximation to steepest des
ent,it is often a mu
h superior algorithm. Be
ause it requires signi�
antly less work per parameterupdate, it 
an 
onverge signi�
antly faster than steepest des
ent.



6.4. STEEPEST DESCENT AND THE LMS ALGORITHM 13We are now in a position to learn something more about the 
onvergen
e of the LMS algorithm.From the normal equations we have a 
hara
terization of the ve
tor toward whi
h we expe
t the LMSalgorithm to tend, and from the steepest des
ent equations we have the possibility of 
hara
terizingthe path that LMS will be expe
ted to follow on average (under an appropriate sto
hasti
 analysis).In parti
ular we may hope to learn something about the maximum possible value of �.We present two analyses|one algebrai
 and one geometri
|that yield the sought-after results.Both analyses involve analyzing the shape of the quadrati
 
ost fun
tion J in the neigborhood ofits minimum.6.4.1 An algebrai
 
onvergen
e analysis3One way to understand the 
onvergen
e of the steepest des
ent algorithm in Eq. (6.20) is to unfoldthe re
ursion and solve the resulting equation.In parti
ular, letting �(t) represent the parameter ve
tor at the tth iteration of the algorithm,we have: �(t+1) = �(t) + � NXn=1(yn � �(t)Txn)xn (6.22)= �(t) + � NXn=1xnyn � � NXn=1(xnxTn )�(t) (6.23)= �(t) + �XT y � �XTX�(t) (6.24)= (I � �XTX)�(t) + �XT y: (6.25)Expanding the re
ursion, we have:�(t+1) = (I � �XTX)�(t) + �XT y (6.26)= (I � �XTX) h(I � �XTX)�(t�1) + �XT yi+ �XT y (6.27)= (I � �XTX)t+1�(0) + � tXi=0(I � �XTX)iXT y: (6.28)We now let t go to in�nity. Let us assume for now that the �rst term goes to zero as t goes toin�nity|we will then return to this term and derive a 
ondition that ensures that it goes to zero.Thus we have: �(1) = � 1Xi=0(I � �XTX)iXT y (6.29)= �(�XTX)�1XT y (6.30)= (XTX)�1XT y; (6.31)3The material in this se
tion is optional; it will not be needed in later 
hapters.
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h are the normal equations. We have thus shown that the steepest des
ent algorithm 
onvergesto the minimum of the 
ost fun
tion, under the assumption that the �rst term in Eq. (6.28) 
onvergesto zero.Let us now 
onsider the matrix power (I � �XTX)t+1 as t ! 1. In general, to show thata matrix power 
onverges to zero we need to show that its largest eigenvalue is less than one inabsolute value. Now it is easy to verify that if � is an eigenvalue of (I � B) for a matrix B, then1 � � is an eigenvalue of B. Thus the absolute values of the eigenvalues of (I � B) are less thanone if any only if the absolute values of the eigenvalues of B are between zero and two. Thus wehave the 
ondition: 0 < �max[�XTX℄ < 2; (6.32)where �max represents the maximum eigenvalue of a matrix, or equivalently:0 < � < 2=�max[XTX℄: (6.33)This is the 
ondition for 
onvergen
e; the step size � 
an be no larger than two divided by themaximum eigenvalue of XTX.6.4.2 A geometri
 
onvergen
e analysis4To get a better understanding of the 
onvergen
e 
ondition that we have just derived, let us rederiveit from a geometri
 point of view.Our 
ost fun
tion is a quadrati
 fun
tion in the 
omponents �i and 
an be plotted as a set ofellipti
al 
ontours in the parameter spa
e. In parti
ular, for the example shown earlier in Figure 6.2,the 
orresponding 
ontours are shown in Figure 6.5. Let us take a moment to understand how toobtain these 
ontours.We know that the minimum of the 
ost fun
tion is a
hieved by the ve
tor �� that solves thenormal equations. Our analysis will be simpli�ed if we 
hoose this optimizing point as the originof our 
oordinate system. We 
hoose new 
oordinates � = � � �� and express the 
ost fun
tion inthese new 
oordinates: J(�) = 12 NXn=1(yn � �Txn)2= 12(y �X�)T (y �X�)= 12(y �X(�+ ��))T (y �X(�+ ��))= 12(yT y � ��TXT y + �TXTX�);where in passing from the third line to the fourth line we have expanded the quadrati
 expressionand used the fa
t that �� solves the normal equations. In the new 
oordinates we see that the 
ostfun
tion is expressed simply as: J(�) = C + 12�TXTX�; (6.34)4The material in this se
tion is optional; it will not be needed in later 
hapters.
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Figure 6.5: The 
ontours of the 
ost fun
tion J(�) for the example in Figure 6.2.where C = yTy � ��TXT y is a 
onstant.We now rotate the 
oordinate system so that the axes point along the major and minor axes ofthe ellipse. This is a
hieved by making use of the eigenve
tors of XTX. In parti
ular, let A be thematrix whose 
olumn ve
tors are the eigenve
tors of XTX. We have:XTX = A�AT ; (6.35)where � is a diagonal matrix whose elements are the eigenvalues �i of XTX. Note also that thefa
t that XTX is a symmetri
 matrix implies that A is orthogonal. Thus we have:ATXTXA = �: (6.36)Now 
hoose new 
oordinates  = AT�. We obtain:J( ) = C + 12(A )TXTX(A ) (6.37)= C + 12 TATXTXA (6.38)= C + 12 T� : (6.39)This �nal equation is simply the weighted sum of squares of the 
omponents of  , with weightsgiven by the eigenvalues �i. Setting J( ) equal to a 
onstant yields the equation of an ellipsoid.Let us now express the steepest des
ent equation in the new 
oordinates. We write the equationin matrix notation (
f. Eq. (6.24)) as:�(t+1) = �(t) + �(XT y �XTX�(t)) (6.40)



16 CHAPTER 6. LINEAR REGRESSION AND THE LMS ALGORITHMGiven that the � 
oordinates and the  
oordinates are related via � = A + ��, we obtain:A (t+1) = A (t) � �(XTXA (t)); (6.41)where we have used the fa
t that �� solves the normal equations. Premultiplying both sides of thisequation by AT (re
alling that A is orthogonal), we obtain: (t+1) =  (t) � �(ATXTXA (t)) (6.42)=  (t) � �� (t): (6.43)This equation represents a de
oupled set of equations in the 
omponents of the  ve
tor: i(t+1) = (1� ��i) i(t); (6.44)whi
h 
onverges if (1� ��i) is less than one in absolute value. That is, we require:k1� ��ik < 1; (6.45)whi
h is equivalent to: 0 < � < 2=�i: (6.46)Given that this must be true for all �i we have re
overed the same 
ondition for 
onvergen
e asobtained in the previous se
tion (Eq. (6.33)).In the de
oupled 
oordinate system, we see that 
onvergen
e 
ondition amounts to the 
onditionthat if the algorithm hops from one side of an axis of the ellipsoid to the other, it must end up nofurther away from the axis than when it started. The axis asso
iated with the maximum eigenvalueputs the strongest 
onstraint on the step size.6.4.3 LMS and sto
hasti
 approximationIt is beyond the s
ope of the book to provide a detailed 
onsideration of the sense in whi
h theLMS algorithm (and related \on-line" algorithms) 
onverges to a solution, and we will 
ontentourselves with providing pointers to the literature on sto
hasti
 approximation where su
h issuesare addressed.5 To get some sense of the issues involved, however, note that the path taken by theLMS algorithm in the parameter spa
e depends on the parti
ular way in whi
h the training set isordered. There are many kinds of ordering that may arise pra
ti
e; typi
al examples in
lude: (1)the algorithm passes through the training set in a �xed order, (2) varying orderings are used forea
h pass through the training set, and (3) data points are sele
ted randomly with repla
ementfrom the training set. Moreover, (4) in other 
ases there is no \training set"; rather, the datapoints arrive as a potentially in�nite stream. Another set of issues arises when one 
onsiders themeaning of \
onvergen
e." If the step size � remains �xed then the algorithm \
onverges" only ina sto
hasti
 sense, and there are several kinds of sto
hasti
 
onvergen
e that one 
an 
onsider. Itis also possible to 
onsider variants of LMS in whi
h the step size de
reases to zero; under 
ertain
onditions (
ertain rates of de
rease of the step size) the algorithm 
an be shown to 
onverge toa point. As should be 
lear, a full analysis of LMS is a subtle business, and fairly sophisti
atedmathemati
al tools are required to do justi
e to the problem.5See the se
tion on \Histori
al remarks and bibliography" at the end of the 
hapter.



6.5. WEIGHTED LEAST SQUARES 176.5 Weighted least squaresIn later 
hapters we will need to solve a generalization of least squares, in whi
h ea
h data pointis a

ompanied by a \weight" wn. Intuitively, large weights 
orrespond to data points that are\important," and small weights 
orrespond to data points that are \unimportant." Let us set upthis weighted least squares problem and display the 
orresponding normal equations.Consider a set of weights wn for ea
h n = 1; : : : ; N . Let us in
orporate these weights into the
ost fun
tion as follows: J(�) = 12 NXn=1wn(yn � �Txn)2; (6.47)We 
an write this 
ost fun
tion in matrix form by de�ning a diagonal matrixW , diag(w1; w2; : : : ; wN )and writing: J(�) = 12(y �X�)TW (y �X�); (6.48)where we see that the weight matrix W 
an be viewed as de�ning a new metri
 with whi
h tomeasure errors.To obtain a solution ��, we take the gradient of Eq. (6.48):r�J = �XTWy �XTWX�: (6.49)and set to zero: XTWX�� = XTWy; (6.50)These equations are the normal equations for weighted least squares.6.6 Probabilisti
 interpretationThus far we have avoided making any probabilisti
 interpretation of the linear model and theleast squares 
ost fun
tion. Let us now return to the statisti
al framework of linear regression inChapter 5 and endow the terms in the linear model with probability distributions.In Chapter 5 we augmented the linearity assumption with the assumption that the errors �nare Gaussian random variables having zero mean and varian
e �2. This assumption implies thatthe 
onditional probability of yn given xn is Gaussian with mean �Txn:p(ynjxn; �) = 1p2��2 exp�� 12�2 (yn � �Txn)2� : (6.51)We assumed moreover that the yn are independent and identi
ally distributed, 
onditional on xn.Thus the joint 
onditional distribution of the data y is obtained by taking the produ
t of theindividual 
onditional probabilities:p(yjx; �) = 1(2��2)N=2 exp(� 12�2 NXn=1(yn � �Txn)2) : (6.52)



18 CHAPTER 6. LINEAR REGRESSION AND THE LMS ALGORITHMTaking the logarithm and dropping the terms that do not depend on the parameter �, we obtainthe following expression for the log likelihood:l(�;x; y) = � 12�2 NXn=1(yn � �Txn)2: (6.53)This log likelihood is equivalent to the least-squares 
ost fun
tion J(�) in Eq. (6.10). In parti
ular,maximizing the log likelihood with respe
t to � is equivalent to minimizing the least-squares 
ostfun
tion.What we have shown is that the assumptions of a Gaussian distribution and IID samplingimply|within a maximum likelihood framework|the minimization of the least-squares 
ost fun
-tion. Moreover, the normal equations 
hara
terize the maximum likelihood solution to the linearregression problem.We 
an view this result as providing support for the likelihood-based approa
h to parameterestimation. In parti
ular, in imposing probabilisti
 assumptions on the linear model so as to obtaina likelihood fun
tion, we have imposed neither more nor less 
onstraint on the problem than isrequired to obtain a well-posed deterministi
 problem in the 
onstraint satisfa
tion formulation.In parti
ular, in the latter formulation, we need to de
ide how to measure the magnitudes ofthe errors and how to 
ombine these magnitudes. These de
isions have 
orresponden
es in theprobabilisti
 formulation, in parti
ular the Gaussian assumption e�e
tively determines the metri
by whi
h we measure the errors, and the IID assumption determines the way in whi
h the errorsare 
ombined. Both formulations are useful. In parti
ular the 
onstraint satisfa
tion perspe
tivehas helped us to understand that the linear, IID, and Gaussian assumptions 
omprise a naturalfamily, essentially re
e
ting a Eu
lidean geometry. The probabilisti
 perspe
tive provides additionalinsight; in parti
ular, a Gaussian distribution for the errors 
an be justi�ed via the 
entral limittheorem if it is the 
ase that the error terms �n are de
omposable into sums of many small randomterms.It is also worth noting that in the frequentist approa
h to estimation we are not restri
ted tolikelihood-based methods. In parti
ular, we 
an view the least-squares 
ost fun
tion as providingan \estimator" that 
an be evaluated with the usual frequentist 
riteria. That is, we 
an de�ne theleast-squares estimator of a parameter as a value that minimizes the least-squares 
ost fun
tion,whether or not the underlying probability model involves a Gaussian assumption. If the underlyingmodel is Gaussian then the least-squares approa
h and maximum likelihood 
oin
ide, but in generalthey 
an be viewed as 
ompetitors. The fa
t that least-squares estimates involve the solutions ofsystems of linear equations is a 
omputational argument in their favor.Although the geometri
 perspe
tive provides signi�
ant insight in the 
ase of the linear model,the probabilisti
, likelihood-based perspe
tive be
omes in
reasingly powerful when we 
onsidervarious generalizations of the linear model. For example, dis
rete variables are naturally handled bylikelihood-basedmethods, as are hybrid models that involve 
ombinations of dis
rete and 
ontinuousvariables. Moreover, latent variables allow us to build more 
omplex error models and Markov
hains allow us to move beyond the IID assumption. Likelihood-based methods will be our fo
usthroughout the remainder of the book.
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Figure 6.6: The geometry asso
iated with the LMS algorithm in the 
ase of two redundant inputve
tors x1 and x2. The dashed lines represent lines of solutions 
orresponding to ea
h of the inputve
tors. There is a line of least-squares solutions that lies halfway between these two lines. The
omponent of the initial parameter ve
tor �(0) that is orthogonal to these lines does not vanish asthe algorithm iterates.6.7 Ridge regression6.8 Sequential Bayesian methods6.9 Histori
al remarks and bibliography


