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Chapter 5Statisti
al Con
eptsIt is useful to attempt to distinguish the a
tivities of the probability theorist and the statisti
ian.Our perspe
tive in the previous 
hapters has been mainly that of the former|we have built graphi-
al models involving sets of random variables and shown how to 
ompute the probabilities of 
ertainevents asso
iated with these random variables. Given a parti
ular 
hoi
e of graphi
al model, 
on-sisting of a graph and a set of lo
al 
onditional probabilities or potentials, we have seen how toinfer the probabilities of various events of interest, su
h as the marginal or 
onditional probabilitythat a parti
ular random variable takes on a parti
ular value.Statisti
s is in a 
ertain sense the inverse of probability theory. In a statisti
al setting therandom variables in our domain have been observed and are therefore no longer unknown, ratherit is the model that is unknown. We wish to infer the model from the data rather than the datafrom the model.The problem of \inferring the model from the data" is a deep one, raising fundamental questionsregarding the nature of knowledge, reasoning, learning, and s
ienti�
 inquiry. In statisti
s, thestudy of these fundamental questions has often 
ome down to a distin
tion between two majors
hools of thought|the Bayesian and the frequentist. In the following se
tion we brie
y outlinethe key distin
tions between these two s
hools. It is worth noting that our dis
ussion here will bein
omplete and that we will be returning to these distin
tions at various jun
tures in the book asour development of graphi
al models begins to bring the distin
tions into 
learer relief. But anequally important point to make is that many of the problems|parti
ularly the 
omputationalproblems|fa
ed in these frameworks are 
losely related, even identi
al. A great deal of importantwork 
an be done within the graphi
al models formalism that is equally useful to Bayesian andfrequentist statisti
s.Beyond our dis
ussion of foundational issues, we will also introdu
e several 
lasses of statisti
alproblems in this 
hapter, in parti
ular the 
ore problems of density estimation, regression and
lassi�
ation. As in earlier 
hapters our goal is to present enough in the way of 
on
rete details tomake the dis
ussion understandable, but to emphasize broad themes that will serve as landmarksfor our more detailed presentation in later 
hapters.3



4 CHAPTER 5. STATISTICAL CONCEPTS5.1 Bayesian and frequentist statisti
sBayesian statisti
s is in essen
e an attempt to deny any fundamental distin
tion between probabilitytheory and statisti
s. Probability theory itself provides the 
apability for inverting relationshipsbetween un
ertain quantities|this is the essen
e of Bayes rule|and Bayesian statisti
s representsan attempt to treat all statisti
al inferen
e as probabilisti
 inferen
e.Let us 
onsider a problem in whi
h we have already de
ided upon the model stru
ture fora given problem domain|for example, we have 
hosen a parti
ular graphi
al model in
luding aparti
ular pattern of 
onne
tivity|but we have not yet 
hosen the values of the model parameters|the numeri
al values of the lo
al 
onditional probabilities or potentials. We wish to 
hoose theseparameter values on the basis of observed data. (In general we might also want to 
hoose the modelstru
ture on the basis of observed data, but let us postpone that problem|see Se
tion 5.3).For every 
hoi
e of parameter values we obtain a di�erent numeri
al spe
i�
ation for the jointdistribution of the random variables X. We will hen
eforth write this probability distributionas p(x j �) to re
e
t this dependen
e. Putting on our hats as probability theorists, we view themodel p(x j �) as a 
onditional probability distribution; intuitively it is an assignment of probabilitymass to unknown values of X, given a �xed value of �. Thus, � is known and X is unknown. Asstatisti
ians, however, we view X as known|we have observed its realization x|and � as unknown.We thus in some sense need to invert the relationship between x and �. The Bayesian point of viewimplements this notion of \inversion" using Bayes rule:p(� jx) = p(x j �)p(�)p(x) : (5.1)The assumptions allowing us to write this equation are noteworthy. First, in order to interpretthe left-hand side of the equation we must view � as a random variable. This is 
hara
teristi
 ofthe Bayesian approa
h|all unknown quantities are treated as random variables. Se
ond, we viewthe data x as a quantity to be 
onditioned on|our inferen
e is 
onditional on the event fX = xg.Third, in order to 
al
ulate p(� jx) we see (from the right-hand side of Eq. (5.1)) that we must havein hand the probability distribution p(�)|the prior probability of the parameters. Given that weare viewing � as a random variable, it is formally reasonable to assign a (marginal) probability toit, but one needs to think about what su
h a prior probability means in terms of the problem weare studying. Finally, note that Bayes rule yields a distribution over �|the posterior probabilityof � given x, not a single estimate of �. If we wish to obtain a single value, we must (and will)invoke additional prin
iples, but it is worth noting at the outset that the Bayesian approa
h tendsto resist 
ollapsing distributions to points.The frequentist approa
h wishes to avoid the use of prior probabilities in statisti
s, and thusavoids the use of Bayes rule for the purpose of assigning probabilities to parameters. The goal offrequentist methodology is to develop an \obje
tive" statisti
al theory, in whi
h two statisti
iansemploying the methodology must ne
essarily draw the same 
on
lusions from a parti
ular set ofdata.Consider in parti
ular a 
oin-tossing experiment, whereX 2 f0; 1g is a binary variable represent-ing the out
ome of the 
oin toss, and � 2 (0; 1) is a real-valued parameter denoting the probabilityof heads. Thus the model is the Bernoulli distribution, p(x j �) = �x(1 � �)1�x. Approa
hing the



5.1. BAYESIAN AND FREQUENTIST STATISTICS 5problem from a Bayesian perspe
tive requires us to assign a prior probability to � before observingthe out
ome of the 
oin toss. Two di�erent Bayesian statisti
ians may assign di�erent priors to� and thus obtain di�erent 
on
lusions from the experiment. The frequentist statisti
ian wishesto avoid su
h \subje
tivity." From another point of view, a frequentist may 
laim that � is a�xed property of the 
oin, and that it makes no sense to assign probability to it. A Bayesian mayagree with the former statement, but would argue that p(�) need not represent anything aboutthe physi
s of the situation, but rather represents the statisti
ian's un
ertainty about the value of�. Tossing the 
oin redu
es the statisti
ian's un
ertainty, and 
hanges the prior probability intothe posterior probability p(� jx). Bayesian statisti
s views the posterior probability and the priorprobability alike as (possibly) subje
tive.There are situations in whi
h frequentist statisti
s and Bayesian statisti
s agree that parameters
an be endowed with probability distributions. Suppose that we 
onsider a fa
tory that makes
oins in bat
hes, where ea
h bat
h is 
hara
terized by a smelting pro
ess that a�e
ts the fairnessof the resulting 
oins. A 
oin from a given bat
h has a di�erent probability of heads than a 
oinfrom a di�erent bat
h, and ranging over bat
hes we obtain a distribution on the probability ofheads �. A frequentist is in general happy to assign prior probabilities to parameters, as long asthose probabilities refer to obje
tive frequen
ies of observing values of the parameters in repeatedexperiments.From the point of view of frequentist statisti
s, there is no single preferred methodology forinverting the relationship between parameters and data. Rather, the basi
 idea is to 
onsidervarious estimators of �, where an estimator is some fun
tion of the observed data x (we will dis
ussa parti
ular example below). One establishes various general 
riteria for evaluating the quality ofvarious estimators, and 
hooses the estimator that is \best" a

ording to these 
riteria. (Examplesof su
h 
riteria in
lude the bias and varian
e of estimators; these 
riteria will be dis
ussed inChapter 26). An important feature of this evaluation pro
ess is that it generally requires thatthe data x be viewed as the result of a random experiment that 
an be repeated and in whi
hother possible values of x 
ould have been obtained. This is of 
ourse 
onsistent with the generalfrequentist philosophy, in whi
h probabilities 
orrespond to obje
tive frequen
ies.There is one parti
ular estimator that is widely used in frequentist statisti
s, namely the maxi-mum likelihood estimator. This estimator is popular for a number of reasons, in parti
ular be
auseit often yields \natural estimators" (e.g., sample proportions and sample means) in simple settingsand also be
ause of its favorable asymptoti
 properties.To understand the maximum likelihood estimator, we must understand the notion of \likeli-hood" from whi
h it derives. Re
all that the probability model p(x j �) has the intuitive inter-pretation of assigning probability to X for ea
h �xed value of �. In the Bayesian approa
h thisintuition is formalized by treating p(x j �) as a 
onditional probability distribution. In the frequen-tist approa
h, however, su
h a formal interpretation is suspe
t, be
ause it suggests that � is arandom variable that 
an be 
onditioned on. The frequentist instead treats the model p(x j �) as afamily of probability distributions indexed by �, with no impli
ation that we are 
onditioning on�.1 Moreover, to implement a notion of \inversion" between x and �, we simply 
hange our point1To a
knowledge this interpretation, frequentist treatments often adopt the notation p�(x) in pla
e of p(x j �).We will sti
k with p(x j �), hoping that the frequentist-minded reader will forgive us this abuse of notation. It will
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A

B

xFigure 5.1: A univariate density estimation problem. (See Se
tion 5.2.1 for a dis
ussion of densityestimation). The data fx1; x2; : : : ; xNg are given as X's along the abs
issa. The parameter ve
tor� is the mean � and varian
e �2 of a Gaussian density. Two 
andidate densities, involving di�erentvalues of �, are shown in the �gure. Density A assigns higher probability to the observed data thandensity B, and thus would be preferred a

ording to the prin
iple of maximum likelihood.of view|we treat p(x j �) as a fun
tion of � for �xed x. When interpreted in this way, p(x j �) isreferred to as the likelihood fun
tion and it provides the basis for maximum likelihood estimation.As suggested in Figure 5.1, the likelihood fun
tion 
an be used to evaluate parti
ular 
hoi
esof �. In parti
ular, if for a given value of � we �nd that the observed value of x is assigned lowprobability, then this is perhaps a poor 
hoi
e of �. A value of � that assigns higher probability tox is preferred. Ranging over all possible 
hoi
es of �, we pi
k that value of � that assigns maximalprobability to x, and treat this value as an estimate of the true �:�̂ML = argmax� p(x j �): (5.2)Thus the maximum likelihood estimate is that value of � that maximizes the likelihood fun
tion.Regardless of whether one agrees that this justi�
ation of the maximum likelihood estimate isa natural one, it is 
ertainly true that we have an estimator|a fun
tion of x|and we 
an evaluatethe properties of this estimator under various frequentist 
riteria. It turns out that maximumlikelihood is a good estimator under a variety of measures of quality, parti
ularly in settings of largesample sizes when asymptoti
 analyses are meaningful (indeed, maximum likelihood estimates 
anbe shown to be \optimal" in su
h settings). In other settings, parti
ularly in 
ases of small samplesizes, maximum likelihood plays an important role as the starting point for the development ofmore 
omplex estimators.simplify our presentation throughout the rest of the book, liberating us from having to make distin
tions betweenBayesian and frequentist interpretations where none are needed or implied.



5.1. BAYESIAN AND FREQUENTIST STATISTICS 7Another appealing feature of likelihood-based estimation is that it provides a link betweenBayesian methods and frequentist methods. In parti
ular, note that the distribution p(x j �) ap-pears in our basi
 Bayesian equation Eq. (5.1). Note moreover that Bayesian statisti
ians refer tothis probability as a \likelihood" as do frequentist statisti
ians, even though the interpretation isdi�erent. Symboli
ally, we 
an interpret Eq. (5.1) as follows:posterior / likelihood � prior; (5.3)where we see that in the Bayesian approa
h the likelihood 
an be viewed as a data-dependentoperator that transforms between the prior probability and the posterior probability. At a bareminimum, Bayesian approa
hes and likelihood-based frequentist approa
hes have in 
ommon theneed to 
al
ulate the likelihood for various values of �. This is not a trivial fa
t|indeed a majorfo
us of this book is the set of 
omplex statisti
al models in whi
h the 
omputation of the likelihoodis itself a daunting 
omputational task. In working out e�e
tive 
omputational pro
edures to dealwith su
h models we are 
ontributing to both Bayesian and frequentist statisti
s.Let us explore this 
onne
tion between Bayesian and frequentist approa
hes a bit further. Sup-pose in parti
ular that we for
e the Bayesian to 
hoose a parti
ular value of �; that is, to 
ollapsethe posterior distribution p(� jx) to a point estimate. Various possibilities present themselves; inparti
ular one 
ould 
hoose the mean of the posterior distribution or perhaps the mode. The meanof the posterior is often referred to as a Bayes estimate:�̂Bayes = Z � p(� jx)d�; (5.4)and it is possible and worthwhile to study the frequentist properties of Bayes estimates. The modeof the posterior is often referred to as the maximum a posteriori (MAP) estimate:�̂MAP = argmax� p(� jx) (5.5)= argmax� p(x j �)p(�); (5.6)where in the se
ond equation we have utilized the fa
t that the fa
tor p(x) in the denominator ofBayes rule is independent of �. In a setting in whi
h the prior probability is taken to be uniform on�, the MAP estimate redu
es to the maximum likelihood estimate. When the prior is not taken tobe uniform, one 
an still view Eq. (5.6) as the maximization of a penalized likelihood. To see this,note that one generally works with logarithms when maximizing over probability distributions (thefa
t that the logarithm is a monotoni
 fun
tion implies that it does not alter the optimizing value).Thus one has: �̂MAP = argmax� flog p(x j �) + log p(�)g ; (5.7)as an alternative expression for the MAP estimate. Here the \penalty" is the additive term log p(�).Penalized log likelihoods are widely used in frequentist statisti
s to improve on maximum likelihoodestimates in small sample settings (as we will see in Chapter 26).It is important to emphasize, however, that MAP estimation involves a rather un-Bayesian use ofthe Bayesian formalism, and it would be wrong to understand the distin
tion between Bayesian andfrequentist statisti
s as merely a matter of how to interpret a penalized log likelihood. To 
larify,
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X

θ

XnewFigure 5.2: A graphi
al representation of the problem of predi
tion from a Bayesian point of view.let us 
onsider a somewhat broader problem in whi
h the di�eren
e between MAP estimation anda fuller Bayesian approa
h is more salient. Let us 
onsider the problem of predi
tion, where we arenot interested in the value of � per se, but are interested in using a model based on � to predi
tfuture values of the random variable X. Let us suppose in parti
ular that we have two randomvariables, X and Xnew, whi
h are 
hara
terized by the same distribution, and that we wish to usean observation of X to make a predi
tion regarding likely values of Xnew. For simpli
ity, let usassume that X and Xnew are independent; more pre
isely, we assume that they are 
onditionallyindependent given �. We write:p(xnew jx) = Z p(xnew; � jx)d� (5.8)= Z p(xnew j �; x)p(� jx)d� (5.9)= Z p(xnew j �)p(� jx)d�: (5.10)From the latter equation we see that the Bayesian predi
tion is based on 
ombining the predi
tionsa
ross all values of �, with the posterior distribution serving as a \weighting fun
tion." That is,interpreting the 
onditional probability p(xnew j �) as the predi
tion of Xnew given �, we weight thispredi
tion by the posterior probability p(� jx), and integrate over all su
h weighted predi
tions.Note in parti
ular that this 
al
ulation requires the entire posterior probability, not merely its valueat a single point.Within a frequentist approa
h, we are not allowed to treat � as a random variable, and thuswe do not attribute meaning to the integral in Eq. (5.10). Rather, we would 
onsider various\estimates" of xnew; a natural 
hoi
e might be the \plug-in estimate" p(xnew j �̂ML). Here we seethat the di�eren
e between the frequentist approa
h and the Bayesian approa
h has be
ome moresigni�
ant; in the latter 
ase we have to perform an integral in order to obtain a predi
tion. We
an relate the two approa
hes if we approximate the posterior distribution by 
ollapsing it to adelta fun
tion at �̂MAP , in whi
h 
ase the integral in Eq. (5.10) redu
es to the plug-in estimate



5.2. STATISTICAL PROBLEMS 9p(xnew j �̂MAP ). But in general this 
ollapse would not satisfy the Bayesian (who views the integralas providing a better predi
tor than any predi
tor based on a point estimate) nor the frequentist(who wants to be free to 
onsider a wider 
lass of estimates than the plug-in estimate).As a �nal note, 
onsider the graphi
al model shown in Figure 5.2. This model 
aptures theBayesian point of view on the predi
tion problem that we have just dis
ussed. The parameter� is depi
ted as a node in the model; this is of 
ourse 
onsistent with the Bayesian approa
h oftreating parameters as random variables. Moreover, the 
onditional independen
e of X and Xnewgiven � is re
e
ted as a Markov property in the graph. Finally, as we invite the reader to verifyin Exer
ise ??, applying the elimination algorithm to the graph yields exa
tly the 
al
ulation inEq. (5.10). This is a re
e
tion of a general fa
t|graphi
al models provide a ni
e way to visualizeand organize Bayesian 
al
ulations. We will return to this point in later 
hapters. But let usemphasize here that this linkage, appealing as it is, does not re
e
t any spe
ial aÆnity betweengraphi
al models and Bayesian methods, but rather is a re
e
tion of the more general link betweenBayesian methods and probabilisti
 inferen
e.5.2 Statisti
al problemsLet us now des
end from the somewhat ethereal 
onsiderations of statisti
al foundations to a rathermore 
on
rete 
onsideration of problems in statisti
al estimation. In this se
tion we will dis
ussthree major 
lasses of statisti
al problems|density estimation, regression, and 
lassi�
ation. Notall statisti
al problems fall into one of these three 
lasses, nor is it always possible to unambiguously
hara
terize a given problem in terms of these 
lasses, but there are 
ertain 
ore aspe
ts of thesethree problem 
ategories that are worth isolating and studying in a puri�ed form.We have two main goals in this se
tion. The �rst is to introdu
e the graphi
al approa
h torepresenting statisti
al modeling problems, in parti
ular emphasizing how the graphi
al represen-tation helps makes modeling assumptions expli
it. Se
ond, we wish to begin to work with spe
i�
probability distributions, in parti
ular the Gaussian and multinomial distributions. We will use thisintrodu
tory se
tion to illustrate some of the 
al
ulations that arise when using these distributions.5.2.1 Density estimationSuppose that we have in hand a set of observations on a random variable X|in general a ve
tor-valued random variable|and we wish to use these observations to indu
e a probability density(probability mass fun
tion for dis
rete variables) forX. This problem|whi
h we refer to generi
allyas the problem of density estimation|is a very general statisti
al problem. Obtaining a modelof the density of X allows us to assess whether a parti
ular observation of X is \typi
al," anassessment that is required in many pra
ti
al problems in
luding fault dete
tion, outlier dete
tionand 
lustering. Density estimation also underlies many dimensionality redu
tion algorithms, wherea joint density is proje
ted onto a subspa
e or manifold, hopefully redu
ing the dimensionality of adata set while retaining its salient features. A related appli
ation is 
ompression, where Shannon'sfundamental relationship between 
ode length and the negative logarithm of the density 
an be usedto design a sour
e 
ode. Finally, noting that a joint density on X 
an be used to infer 
onditional



10 CHAPTER 5. STATISTICAL CONCEPTSdensities among 
omponents of X, we 
an also use density estimates to solve problems in predi
tion.To delimit the s
ope of the problem somewhat, note that in regression and 
lassi�
ation the fo
usis on the relationship between a pair of variables, X and Y . That is, regression and 
lassi�
ationproblems di�er from density estimation in that their fo
us is on a 
onditional density, p(y jx), withthe marginal p(x) and the 
orresponding joint density of less interest, and perhaps not modeled atall. We develop methods that are spe
i�
 to 
onditional densities in Se
tions 5.2.2 and 5.2.3.Density estimation arises in many ways in the setting of graphi
al models. In parti
ular wemay be interested in inferring the density of a parentless node in a dire
ted graphi
al model, orthe density of a set of nodes in a larger model (in whi
h 
ase the density of interest is a marginaldensity), or the joint density of all of the nodes of our model.Let us begin with an example. Our example will be one of the most 
lassi
al of all statisti
alproblems|that of estimating the mean and varian
e of a univariate Gaussian distribution.Univariate Gaussian density estimationLet us assume that X is a univariate random variable with a Gaussian distribution, that is:p(x j �) = 1(2��2)1=2 exp�� 12�2 (x� �)2� ; (5.11)where � and �2 are the mean and varian
e, respe
tively, and � , (�; �2).2 We wish to estimate �based on observations of X. Here we are assuming that we know the parametri
 form of the densityof X, and what is unknown are the numeri
al values of the parameters (
f. Figure 5.1). Pluggingestimates of the parameters ba
k into Eq. (5.11) provides an estimate of the density fun
tion.Clearly a single observation of X provides no information about the varian
e and relatively poorinformation about the mean. Thus we need to 
onsider multiple observations. What do we meanby \multiple observations"? Let us interpret this to mean that we have a set of random variables,fX1;X2; : : : ;XNg, and that these random variables are identi
ally distributed. Thus ea
h of thevariables Xn is 
hara
terized by a Gaussian distribution p(xn j �), with the same � for ea
h Xn.In graphi
al model terms, we have a model with N nodes, one for ea
h random variable. Whi
hgraphi
al model should we use? What 
onne
tivity pattern should we use? Let us suppose thatthe variables are not only identi
ally distributed but that they are also independent. Thus we havethe graphi
al model shown in Figure 5.3. It should be emphasized that these assumptions are byno means ne
essary; they are simply one possible set of assumptions, 
orresponding to a parti
ular
hoi
e of graphi
al model. (We will be seeing signi�
antly more 
omplex graphi
al models on NGaussian nodes; see, e.g., the Kalman �lter in Chapter 15).The nodes in Figure 5.3 are shaded, re
e
ting the fa
t that they are observed data. In general,\data" are designated by the shading of nodes in our models. In the 
ontext of the Bayesianapproa
h to estimation, this use of shading is the same 
onvention as we used in Chapter 2|in theBayesian approa
h we 
ondition on the data in order to 
ompute probabilities for the parameters.In the 
ontext of frequentist approa
hes, where we no longer view ourselves as 
onditioning on the2We will often denote this density as N (�; �2).
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1X 2X 3X NXFigure 5.3: A graphi
al model representing the density estimation problem under an IID samplingmodel. The assumption that the data are sampled independently is re
e
ted by the absen
e oflinks between the nodes. Ea
h node is 
hara
terized by the same density.data, we simply treat shading as a diagrammati
 
onvention to indi
ate whi
h nodes 
orrespond tothe observed data.Letting X refer to the set of random variables (X1;X2; : : : ;XN ), and letting x refer to the obser-vations (x1; x2; : : : ; xN ), we write the joint probability p(x j �) as the produ
t of lo
al probabilities,one for ea
h node in Figure 5.3:p(x j �) = NYn=1 1(2��2)1=2 exp�� 12�2 (xn � �)2� (5.12)= 1(2��2)N=2 exp(� 12�2 NXn=1(xn � �)2) ; (5.13)or alternatively, given that this parti
ular graph 
an be interpreted as either a dire
ted graph oran undire
ted graph, we 
an view this joint probability as a produ
t of potential fun
tions on the
liques of the graph (whi
h are singleton nodes in this 
ase).Let us pro
eed to 
al
ulating parameter estimates. In parti
ular let us 
al
ulate the maximumlikelihood estimates of � and �2. To do so we must maximize the likelihood p(x j �) with respe
t to�. We �nd it more 
onvenient to maximize the logarithm of the likelihood, whi
h, given that thelogarithm is a monotoni
 fun
tion, will not 
hange the results. Thus, let us de�ne the log likelihood,denoted l(�;x), as: l(�;x) = log p(x j �); (5.14)where we have reordered the variables on the left-hand side to emphasize that � is to be viewedas the variable and x is to be viewed as a �xed 
onstant. We now take the derivative of the loglikelihood with respe
t to �:�l(�;x)�� = ���  �N2 log(2�)� N2 log �2 � 12�2 NXn=1(xn � �)2! (5.15)= 1�2 NXn=1(xn � �): (5.16)



12 CHAPTER 5. STATISTICAL CONCEPTSSetting equal to zero and solving, we obtain:�̂ML = 1N NXn=1xn: (5.17)Thus we see that the maximum likelihood estimate of the mean of a Gaussian distribution is thesample mean.Similarly let us take the derivative of the log likelihood with respe
t to �2:�l(�;x)��2 = ���2  �N2 log(2�)� N2 log �2 � 12�2 NXn=1(xn � �)2! (5.18)= � N2�2 + 12�4 NXn=1(xn � �)2: (5.19)Setting equal to zero and solving, we obtain:�̂2ML = 1N NXn=1(xn � �̂ML)2; (5.20)and we see that the maximum likelihood estimate of the varian
e is the sample varian
e. (Notethat we are �nding the joint estimates of � and �2 by setting both partial derivatives equal to zeroand solving simultaneously; this explains the presen
e of �̂ML in the equation for �̂2ML).Bayesian univariate Gaussian density estimationIn the Bayesian approa
h to density estimation the goal is to form a posterior density p(� jx).Let us 
onsider a simple version of this problem in whi
h we take the varian
e �2 to be a known
onstant and restri
t our attention to the mean �. Thus we wish to obtain the posterior densityp(� jx), based on the prior density p(�) and the Gaussian likelihood p(x j�).What prior distribution should we take for �? This is a modeling de
ision, as was the de
isionto utilize a Gaussian for the probability of the data x in the �rst pla
e. As we will see, it ismathemati
ally 
onvenient to take p(�) to also be a Gaussian distribution. We will make thisassumption in this se
tion, but let us emphasize at the outset that mathemati
al 
onvenien
eshould not, and need not, di
tate all of our modeling de
isions. Indeed, a major thrust of this bookis the development of methods for treating 
omplex models, pushing ba
k the frontier of what is\mathemati
ally 
onvenient" and, in the Bayesian setting, permitting a wide and expressive rangeof prior distributions.If we take p(�) to be a Gaussian distribution, then we fa
e another problem: what should wetake as the mean and varian
e of this distribution? To be 
onsistent with the general Bayesianphilosophy, we should treat these parameters as random variables and endow them with a priordistribution. This is indeed the approa
h of hierar
hi
al Bayesian modeling, where we endowparameters with distributions 
hara
terized by \hyperparameters," whi
h themselves 
an in turn
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1X 2X 3X NX

µ

Figure 5.4: The graphi
al model for the Bayesian density estimation problem.be endowed with distributions. While an in�nite regress looms, in pra
ti
e it is rare to take thehierar
hi
al Bayesian approa
h to more than two or three levels, largely be
ause there of diminishingreturns|additional levels make little di�eren
e to the marginal probability of the data and thus tothe expressiveness of our model.Let us take the mean of p(�) to be a �xed 
onstant �0 and take the varian
e to be a �xed
onstant �2, while re
ognizing that in general we might endow these parameters with distributions.The graphi
al model 
hara
terizing our problem is shown in Figure 5.4. The graph has beenaugmented with a node for the unknown mean �. Note that there is a single su
h node and thatits 
hildren are the data fXng. Thus this graph provides more information than the graph ofFigure 5.3; in parti
ular the independen
e assumption is elaborated|the data are assumed to be
onditionally independent given the parameters.The likelihood is identi
al in form to the frequentist likelihood in Eq. (5.13). To obtain theposterior we therefore need only multiply by the prior:p(�) = 1(2��2)1=2 exp�� 12�2 (�� �0)2� (5.21)to obtain the joint probability:p(x; �) = 1(2��2)N=2 exp(� 12�2 NXn=1(xn � �)2) 1(2��2)1=2 exp�� 12�2 (�� �0)2� ; (5.22)whi
h when normalized yields the posterior p(� jx). Multiplying the two exponentials togetheryields an exponent whi
h is quadrati
 in the variable �; thus, normalization involves \
ompletingthe square." Appendix A presents the algebra (and in Chapter 13 we present a general matrix-based approa
h to 
ompleting the square|an operation that 
rops up often when working withGaussian random variables). The result takes the following form:p(� jx) = 1(2�~�2)1=2 exp�� 12~�2 (�� ~�)2� ; (5.23)



14 CHAPTER 5. STATISTICAL CONCEPTSwhere ~� = N=�2N=�2 + 1=�2 �x+ 1=�2N=�2 + 1=�2 �0; (5.24)where �x is the sample mean, and where~�2 = �N�2 + 1�2��1 : (5.25)We see that the posterior probability is a Gaussian, with mean ~� and varian
e ~�2.Both the posterior varian
e and the posterior mean have an intuitive interpretation. Note �rstthat �2=N is the varian
e of a sum of N independent random variables with varian
e �2, thus �2=Nis the varian
e asso
iated with the data. Eq. (5.25) says that we add the inverse of this varian
eto the inverse of the prior varian
e to obtain the inverse of the posterior varian
e. Thus, inversevarian
es add. From Eq. (5.24) we see that the posterior mean is obtained as a linear 
ombinationof the sample mean and the prior mean. The weights in this 
ombination 
an be interpreted as thefra
tion of the posterior varian
e a

ounted for by the varian
e from the data term and the priorvarian
e respe
tively. These weights sum to one; thus, the 
ombination in Eq. (5.24) is a 
onvex
ombination.As the number of data points N be
omes large, the weight asso
iated with �x goes to one andthe weight asso
iated with �0 approa
hes zero. Thus in the limit of large data sets, the Bayesestimate of � approa
hes the maximum likelihood estimate of �.PlatesLet us take a qui
k detour to dis
uss a notational devi
e that we will �nd useful. Graphi
al modelsrepresenting independent, identi
ally distributed (IID) sampling have a repetitive stru
ture that 
anbe 
aptured with a formal devi
e known as a plate. Plates allow repeated motifs to be representedin a simple way. In parti
ular, the simple IID model shown in Figure 5.5(a) 
an be representedmore su

in
tly using the plate shown in Figure 5.5(b).For the Bayesian model in Figure 5.6(a) we obtain the representation in Figure 5.6(b). Note thatthe parameter � appears outside the plate; this 
aptures the fa
t that there is a single parametervalue that is shared among the distributions for ea
h of the Xn.Formally, a plate is simply a graphi
al model \ma
ro." That is, to interpret Figure 5.5(b) orFigure 5.6(b) we 
opy the graphi
al obje
t in the plate N times, where the number N is re
ordedin the lower right-hand 
orner of the box, and apply the usual graphi
al model semanti
s to theresult.Density estimation for dis
rete dataLet us now 
onsider the 
ase in whi
h the variables Xn are dis
rete variables, ea
h taking on one ofa �nite number of possible values. We wish to study the density estimation problem in this setting,re
alling that \probability density" means \probability mass fun
tion" in the dis
rete 
ase.As before, we will make the assumption that the data are IID, thus the modeling problem isrepresented by the plate shown in Figure 5.5(b). Ea
h of the variables Xn 
an take on one of M
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(a) (b)Figure 5.5: Repeated graphi
al motifs 
an be represented using plates. The IID sampling modelfor density estimation shown in (a) is represented using a plate in (b). The plate is interpreted by
opying the graphi
al obje
t within the box N times; thus the graph in (b) is a shorthand for thegraph in (a).
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(a) (b)Figure 5.6: The Bayesian density estimation model shown in (a) is represented using a plate in (b).Again, the graph in (b) is to be interpreted as a shorthand for the graph in (a).



16 CHAPTER 5. STATISTICAL CONCEPTSvalues. To represent this set of M values we will �nd it 
onvenient to use a ve
tor representation.In parti
ular, let the range of Xn be the set of binary M -
omponent ve
tors with one 
omponentequal to one and the other 
omponents equal to zero. Thus for a variableXn taking on three values,we have: Xn 2 8<:24 100 35 ;24 010 35 ;24 001 359=; : (5.26)We use supers
ripts to refer to the 
omponents of these ve
tors, thusXkn refers to the kth 
omponentof the variable Xn. We have Xkn = 1 if and only if the variable Xn takes on its kth value. Notethat PkXkn = 1 by de�nition.Using this representation, we 
an write the probability distribution for Xn in a 
onvenientgeneral form. In parti
ular, letting �k represent the probability that Xn takes on its kth value, i.e.,�k , p(xkn = 1), we have: p(xn j �) = �x1n1 �x2n2 � � � �xMnM : (5.27)This is themultinomial probability distribution, Mult(1; �), with parameter ve
tor � = (�1; �2; : : : �M).To 
al
ulate the probability of the observation x, we take the produ
t over the individual multino-mial probabilities: p(x j �) = NYn=1 �x1n1 �x2n2 � � � �xMnM (5.28)= �PNn=1 x1n1 �PNn=1 x2n2 � � � �PNn=1 xMnM ; (5.29)where the exponent PNn=1 xkn is the 
ount of the number of times the kth value of the multinomialvariable is observed a
ross the N observations.To 
al
ulate the maximum likelihood estimates of the multinomial parameters we take thelogarithm of Eq. (5.29) to obtain the log likelihood:l(�;x) = NXn=1 MXk=1 xkn log �k; (5.30)and it is this expression that we must maximize with respe
t to �.This is a 
onstrained optimization problem for whi
h we use Lagrange multipliers. Thus weform the Lagrangian: ~l(�;x) = NXn=1 MXk=1 xkn log �k + �(1� MXk=1 �k); (5.31)take derivatives with respe
t to �k: �~l(�;x)��k = PNn=1 xkn�k � � (5.32)



5.2. STATISTICAL PROBLEMS 17and set equal to zero: PNn=1 xkn�̂k;ML = �: (5.33)Multiplying through by �̂k;ML and summing over k yields:� = MXk=1 NXn=1xkn (5.34)= NXn=1 MXk=1 xkn (5.35)= N: (5.36)Finally, substituting Eq. (5.36) ba
k into Eq. (5.33) we obtain:�̂k;ML = 1N NXn=1xkn: (5.37)Noting again that PNn=1 xkn is the 
ount of the number of times that the kth value is observed, wesee that the maximum likelihood estimate of �k is a sample proportion.Bayesian density estimation for dis
rete dataIn this se
tion we dis
uss a Bayesian approa
h to density estimation for dis
rete data. As in theGaussian setting, we spe
ify a prior using a parameterized distribution and show how to 
omputethe 
orresponding posterior.An appealing feature of the solution to the Gaussian problem was that the prior and the posteriorhave the same distribution|both are Gaussian distributions. Among other virtues, this impliesthat Eq. (5.24) and Eq. (5.25) 
an be used re
ursively|the posterior based on earlier observations
an serve as the prior for additional observations. At ea
h step the posterior distribution remainsin the Gaussian family.To a
hieve a similar 
losure property in the dis
rete problem we must �nd a prior distributionwhi
h when multiplied by the multinomial distribution yields a posterior distribution in the samefamily. Clearly, this 
an be a
hieved by a prior distribution of the form:p(�) = C(�)��1�11 ��2�12 � � � ��M�1M ; (5.38)for Pi �i = 1, where � = (�1; : : : ; �M ) are hyperparameters and C(�) is a normalizing 
onstant.3This distribution, known as the Diri
hlet distribution, has the same fun
tional form as the multino-mial, but the �i are random variables in the Diri
hlet distribution and parameters in the multinomialdistribution. The 
onstant C(�) is obtained via a bit of 
al
ulus (see Appendix B):C(�) = �(PMi=1 �i)QMi=1 �(�i) ; (5.39)3The negative one in the exponent is a 
onvention; we 
ould rede�ne the �i to remove it.



18 CHAPTER 5. STATISTICAL CONCEPTSwhere �(�) is the gamma fun
tion. In the rest of this se
tion we will not bother with 
al
ulating thenormalization; on
e we have a distribution in the Diri
hlet form we 
an substitute into Eq. (5.39)to �nd the normalization fa
tor.We now 
al
ulate the posterior probability:p(� jx) / �PNn=1 x1n1 �PNn=1 x2n2 � � � �PNn=1 xMnM ��1�11 ��2�12 � � � ��M�1M (5.40)= �PNn=1 x1n+�1�11 �PNn=1 x2n+�2�12 � � � �PNn=1 xMn +�M�1M : (5.41)This is a Diri
hlet density, with parameters PNn=1 xkn + �k. We see that to update the prior into aposterior we simply add the 
ount PNn=1 xkn to the prior parameter �k.It is worthwhile to 
onsider the spe
ial 
ase of the multinomial distribution when M = 2. Inthis setting, Xn is best treated as a binary variable rather than a ve
tor; thus: xn 2 f0; 1g. Themultinomial distribution redu
es to:p(xn j �) = �xn(1� �)1�xn ; (5.42)the Bernoulli distribution. The parameter � en
odes the probability that Xn takes the value one.In the 
ase M = 2, the Diri
hlet distribution spe
ializes to the beta distribution:p(�) = C(�)��1�1(1� �)�2�1; (5.43)where � = (�1; �2) is the hyperparameter. The beta distribution has its support on the interval[0; 1℄. Plots of the beta distribution are shown in Figure 5.7 for various values of �1 and �2. Notethat the uniform distribution is the spe
ial 
ase of the beta distribution when �1 = 1 and �2 = 1.As the number of data points N be
omes large, the sumsPNn=1 xkn dominate the prior terms �kin the posterior probability. In this limit, the posterior approa
hes the log likelihood in Eq. (5.30)and the Bayes estimate of � approa
hes the maximum likelihood estimate of �.Mixture modelsIt is important to re
ognize that the Gaussian and multinomial densities are by no means theuniversally best 
hoi
es of density model. Suppose, for example, if the data are 
ontinuous datarestri
ted to the half-in�nite interval [0;1). The Gaussian, whi
h assigns density to the entire realline, is unnatural here, and densities su
h as the gamma or lognormal, whose support is [0;1), maybe preferred. Similarly, the multinomial distribution treats dis
rete data as an unordered, �niteset of values. In problems involving ordered sets, and/or in�nite ranges, probability distributionssu
h as the Poisson or geometri
 may be more appropriate. Maximum likelihood and Bayesianestimates are available for these distributions, and indeed there is a general family known as theexponential family|whi
h in
ludes all of the distributions listed above and many more|in whi
hexpli
it formulas 
an be obtained. (We will dis
uss the exponential family in Chapter 8).This larger family of distributions is still, however, restri
tive. Consider the probability densityshown in Figure 5.8. This density is bimodal and we are unable to represent it within the familyof Gaussian, gamma or lognormal densities. Given a data set fxng sampled from this density, we
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Figure 5.7: The beta(�1; �2) distribution for various values of the parameters �1 and �2.
an naively �t a Gaussian density, but the likelihood that we a
hieve will in general be signi�
antlysmaller than the likelihood of the data under the true density, and the resulting density estimatewill bear little relationship to the truth.Multimodal densities often re
e
t the presen
e of subpopulations or 
lusters in the populationfrom whi
h we are sampling. Thus, for example, we would expe
t the density of heights of treesin a forest to be multimodal, re
e
ting the di�erent distributions of heights of di�erent spe
ies.It may be that for a parti
ular spe
ies the heights are unimodal and reasonably well modeled bya simple density, su
h as a density in the exponential family. If so, this suggests a \divide-and-
onquer" strategy in whi
h the overall density estimation is broken down into a set of smaller densityestimation problems that we know how to handle. Let us pro
eed to develop su
h a strategy.Let fk(x j �k) be the density for the kth subpopulation, where �k is a parameter ve
tor. Wede�ne a mixture density for a random variable X by taking the 
onvex sum over the 
omponentdensities fk(x j �k): p(x j �) = KXk=1�kfk(x j �k); (5.44)where the �k are nonnegative 
onstants that sum to one:KXk=1�k = 1: (5.45)The densities fk(x j �k) are referred to in this setting as mixture 
omponents and the parameters �k
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Figure 5.8: A bimodal probability density.are referred to as mixing proportions. The parameter ve
tor � is the 
olle
tion of all of the param-eters, in
luding the mixing proportions: � , (�1; : : : ; �K ; �1; : : : ; �K). That the fun
tion p(x j �)that we have de�ned is in fa
t a density follows from the 
onstraint that the mixing proportionssum to one.The example shown in Figure 5.8 is a mixture density with K = 2:p(x j �) = �1N (x j�1; �21) + �2N (x j�2; �22); (5.46)where the mixture 
omponents are Gaussian distributions with means �k and varian
es �2k. Gaus-sian mixtures are a popular form of mixture model, parti
ular in multivariate settings (see Chap-ter 10).It is illuminating to express the mixture density in Eq. (5.44) in a way that makes expli
it itsinterpretation in terms of subpopulations. Let us do this using the ma
hinery of graphi
al models.As shown in Figure 5.9, we introdu
e a multinomial random variable Z into our model. We alsointrodu
e an edge from Z to X. Following the re
ipe from Chapter 2 we endow this graph with ajoint probability distribution by assigning a marginal probability to Z and a 
onditional probabilityto X. Let �k be the probability that Z takes on its kth value; thus, �k , p(zk = 1). Moreover,
onditional on Z taking on its kth value, let the 
onditional probability of X, p(x j zk = 1), begiven by fk(x j �k). The joint probability is therefore given by:p(x; zk = 1 j �) = p(x j zk = 1; �)p(zk = 1 j �) (5.47)= �kfk(x j �k); (5.48)
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X

Z

Figure 5.9: A mixture model represented as a graphi
al model. The latent variable Z is a multi-nomial node taking on one of K values.where � , (�1; : : : ; �K ; �1; : : : ; �K). To obtain the marginal probability of X we sum over k:p(x j �) = KXk=1 p(x; zk = 1 j �) (5.49)= KXk=1�kfk(x j �k); (5.50)whi
h is the mixture model in Eq. (5.44).This model gives us our �rst opportunity to invoke our dis
ussion of probabilisti
 inferen
efrom Chapter 3. In parti
ular, given an observation x, we 
an use Bayes rule to invert the arrowin Figure 5.9 and 
al
ulate the 
onditional probability of Z:p(zk = 1 jx; �) = p(x j zk = 1; �k)p(zk = 1)Pj p(x j zj = 1; �j)p(zj = 1) (5.51)= �kfk(x j �k)Pj �jfj(x j �j) : (5.52)This 
al
ulation allows us to use the mixture model to 
lassify or 
ategorize the observation x intoone of the subpopulations or 
lusters that we assume to underly the model. In parti
ular we might
lassify x into the 
lass k that maximizes p(zk = 1 jx; �).Let us turn to the problem of estimating the parameters of the mixture model from data.We again assume for simpli
ity a sampling model in whi
h we have N IID observations fxn;n =1; : : : ; Ng, while again noting that we will move beyond the IID setting in later 
hapters. TheIID assumption 
orresponds to repli
ating our basi
 graphi
al model N times, yielding the plateshown in Figure 5.10. Note again that the variables Zn are unshaded|they are unobserved orlatent variables. We have introdu
ed them into our model in order to make expli
it the stru
turalassumptions that lie behind the mixture density that we are using, but we need not assume thatthese variables are observed.
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nX

nZ

NFigure 5.10: The mixture model under an IID sampling assumption.The log likelihood is given by taking the logarithm of the joint probability asso
iated with themodel, whi
h in the IID 
ase be
omes a sum of log probabilities. Again letting x = (x1; : : : ; xN ),we have: l(�;x) = NXn=1 log KXk=1�kfk(xn j �k): (5.53)To obtain maximum likelihood estimates we take derivatives with respe
t to � and set to zero. Theresulting equations are, however, nonlinear and do not admit a 
losed-form solution; solving theseequations requires iterative methods. While any of a variety of numeri
al methods 
an be used, thereis a parti
ular iterative method|the Expe
tation-Maximization (EM) algorithm|that is naturalnot only for mixture models but also for more general graphi
al models. The EM algorithm involvesan alternating pair of steps, the E step and the M step. The E step involves running an inferen
ealgorithm|for example the elimination algorithm that we dis
ussed in Chapter 3|to essentially\�ll in" the values of the unobserved nodes given the observed nodes. In the 
ase of mixture models,this redu
es to the invo
ation of Bayes rule in Eq. (5.52). The M step treats the \�lled-in" graphas if all of the �lled-in values had been observed, and updates the parameters to obtain improvedvalues. In the mixture model setting this essentially redu
es to �nding separate density estimatesfor the separate subpopulations. We will present the EM algorithm formally in Chapter 11, andpresent its appli
ation to mixture models in Chapter 10.Nonparametri
 density estimationIn many 
ases data may 
ome from a 
omplex me
hanism about whi
h we have little or no priorknowledge. The density underlying the data may not fall into one of the \standard" forms. Thedensity may be multimodal, but we may have no reason to suspe
t underlying subpopulations andmay have no reason to attribute any parti
ular meaning to the modes. When we �nd ourselves in
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xFigure 5.11: An example of kernel density estimation. The kernel fun
tions are Gaussians 
enteredat the data points xn (shown as 
rosses on the abs
issa). Ea
h Gaussian has a standard deviation� = 0:35. The Gaussians have been s
aled by dividing by the number of data points (N = 8). Thedensity estimate (shown as a dotted 
urve) is the sum of these s
aled kernels.su
h a situation|by no means un
ommon|what do we do?Nonparametri
 density estimation provides a general 
lass of methods for dealing with su
hknowledge-poor 
ases. In this se
tion we introdu
e this approa
h via a simple, intuitive nonpara-metri
 method known as a kernel density estimator. We return to a fuller dis
ussion of nonpara-metri
 methods in Chapter 25.The basi
 intuition behind kernel density estimation is that ea
h data point xn provides eviden
efor non-zero probability density at that point. A simple way to harness this intuition is to pla
ean \atom" of mass at that point (see Figure 5.11). Moreover, making the assumption that theunderlying probability density is smooth, we let the atoms have a non-zero \width." SuperimposingN su
h atoms, one per data point, we obtain a density estimate.More formally, let k(x; xn; �) be a kernel fun
tion|a nonnegative fun
tion integrating to one(with respe
t to x). The argument xn determines the lo
ation of the kernel fun
tion; kernelsare generally symmetri
 about xn. The parameter � is a general \smoothing" parameter thatdetermines the width of the kernel fun
tions and thus the smoothness of the resulting densityestimate. Superimposing N su
h kernel fun
tions, and dividing by N , we obtain a probabilitydensity: p̂(x) = 1N NXn=1 k(x; xn; �): (5.54)This density is the kernel density estimate of the underlying density p(x).A variety of di�erent kernel fun
tions are used in pra
ti
e. Simple (e.g., pie
ewise polynomial)
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tions are often preferred, partly for 
omputational reasons (
al
ulating the density at a givenpoint x requires N fun
tion evaluations). Gaussian fun
tions are sometimes used, in whi
h 
ase xnplays the role of the mean and � plays the role of the standard deviation.While the kernel fun
tion is often 
hosen a priori, the value of � is generally 
hosen based on thedata. This is a nontrivial estimation problem for whi
h 
lassi
al estimation methods are often oflittle help. In parti
ular, it is important to understand that maximum likelihood is not appropriatefor solving this problem. Suppose that we interpret the density in Eq. (5.54) as a likelihood fun
tion,with � as the parameter. For most reasonable kernels, this \likelihood" in
reases monotoni
allyas � goes to zero, be
ause the kernel assigns more probability density to the points xn for smallervalues of �. Indeed, in the limit of � = 0, the kernel generally approa
hes a delta fun
tion, givingin�nite likelihood to the data. A sum of delta fun
tions is obviously a poor density estimate.We will dis
uss methods for 
hoosing smoothing parameters in Chapter 25. As we will see, mostpra
ti
al methods involve some form of 
ross-validation, in whi
h a fra
tion of the data are heldout and used to evaluate various 
hoi
es of �. Both overly small and overly large values of � willtend to assign small probability density to the held-out data, and this provides a rational approa
hto 
hoosing �.The problem here is a general one, motivating a distin
tion between parametri
 models andnonparametri
 models and suggesting the need for distin
t methods for their estimation. Under-standing the distin
tion requires us to 
onsider how a given model would 
hange if the number ofdata points N were to in
rease. For parametri
 models the basi
 stru
ture of the model remains�xed as N in
reases. In parti
ular, for the Gaussian estimation problem treated in Se
tion 5.2.1,the 
lass of densities that are possible �ts to the data remains the same whatever the value ofN ; for ea
h N we obtain a Gaussian density with estimated parameters �̂ and �̂2. In
reasing thenumber of data points in
reases the pre
ision of these estimates, but it does not in
rease the 
lassof densities that we are 
onsidering. In the nonparametri
 
ase, on the other hand, the 
lass ofdensities in
reases as N in
reases. In parti
ular, with N + 1 data points it is possible to obtaindensities with N + 1 modes; this is not possible with N data points.An alternative perspe
tive is to view the lo
ations of the kernels as \parameters"; the number ofsu
h \parameters" in
reases with the number of data points. In e�e
t, we 
an view nonparametri
models as parametri
, but with an unbounded, data-dependent, number of parameters. Indeed, inan alternative language that is often used, parametri
 models are referred to as \�nite-dimensionalmodels," and nonparametri
 models are referred to as \in�nite-dimensional models."It is worthwhile to 
ompare the kernel density estimator in Eq. (5.54) to the mixture modelin Eq. (5.44). Consider in parti
ular the 
ase in whi
h Gaussian mixture 
omponents are used inEq. (5.44) and Gaussian kernel fun
tions are used in Eq. (5.54). In this 
ase the kernel estimator
an be viewed as a mixture model in whi
h the means are �xed to the data point lo
ations, thevarian
es are set to �2, and the mixing proportions are set to 1=N . In what sense are the twodi�erent approa
hes to density estimation really di�erent?Again, the key di�eren
e between the two approa
hes is revealed when we let the number ofdata points N grow. The mixture model is generally viewed as a parametri
 model, in whi
h 
asethe number of mixture 
omponents, K, does not in
rease as the number of data points grows.This is 
onsistent with our interpretation of a mixture model in terms of a set of K underly-



5.2. STATISTICAL PROBLEMS 25ing subpopulations|if we believe that these subpopulations exist, then we do not vary K as Nin
reases. In the kernel estimation approa
h, on the other hand, we have no 
ommitment to under-lying subpopulations, and we a

ord no spe
ial treatment to the number of kernels. As the numberof data points grows, we allow the number of kernels to grow. Moreover we generally expe
t that� will shrink as N grows to allow an in
reasingly 
lose �t to the details of the true density.There are several 
aveats to this dis
ussion. First, in the mixture model setting, we may notknow the number K of mixture 
omponents in pra
ti
e and we may wish to estimate K from thedata. This is a model sele
tion problem (see Se
tion 5.3). Solutions to model sele
tion problemsgenerally involve allowing K to in
rease as the number of data points in
reases, based on thefa
t that more data points are generally needed to provide more 
ompelling eviden
e for multiplemodes. Se
ond, mixture models 
an also be used nonparametri
ally. In parti
ular, a mixture sieveis a mixture model in whi
h the number of 
omponents is allowed to grow with the number of datapoints. This di�ers from kernel density estimation in that the lo
ation of the mixture 
omponentsare treated as free parameters rather than being �xed at the data points; moreover, ea
h mixture
omponent generally has its own (free) s
ale parameter. Also, the growth rate of the number of\parameters" in mixture sieves is slower than that of kernel density estimation (e.g., logN vs.N). As this dis
ussion begins to suggest, however, it be
omes diÆ
ult to enfor
e a 
lear boundarybetween parametri
 and nonparametri
 methods. A given approa
h 
an be treated in one way orthe other, depending on a modeler's goals and assumptions.There is a general tradeo� between 
exibility and statisti
al eÆ
ien
y that is relevant to thisdis
ussion. If the underlying \true" density is a Gaussian, then we probably want to estimate thisdensity using a parametri
 approa
h, we 
an also use a kernel density estimate. The latter estimatewill eventually 
onverge to the true density, but it may require very many data points. A parametri
estimator will 
onverge more rapidly. Of 
ourse, if the true density is not a Gaussian, then theparametri
 estimate would still 
onverge, but to the wrong density, whereas the nonparametri
estimate would eventually 
onverge to the true density. In sum, if we are willing to make moreassumptions then we get faster 
onvergen
e, but with the possibility of poor performan
e if realitydoes not mat
h our assumptions. Nonparametri
 estimators allow us to get away with fewerassumptions, while requiring more data points for 
omparable levels of performan
e.There is also a general point to be made with respe
t to the representation of densities ingraphi
al models. As suggested in Figure 5.12, there are two ways to represent a multi-modaldensity as a graphi
al model. As shown in Figure 5.12(a), we 
an allow the 
lass of densitiesp(x) at node X to in
lude multi-modal densities, su
h as mixtures or kernel density estimates.Alternatively, we 
an use the \stru
tured" model depi
ted in Figure 5.12(b), where we obtain amixture distribution for Xn by marginalizing over the latent variable Zn. Although it may seemnatural to reserve the latter representation for parametri
 modeling, in parti
ular for the settingin whi
h we attribute a \meaning" to the latent variable, su
h a step is in general unwarranted.The mixture sieve exempli�es a situation in whi
h we may wish to use graphi
al ma
hinery torepresent the stru
ture of a nonparametri
 model expli
itly. In general, the 
hoi
es of how touse and how to interpret graphi
al stru
ture are modeling de
isions. While we may wish to usegraphi
al representations to express domain-spe
i�
 stru
tural knowledge, we may also be guidedby other fa
tors, in
luding mathemati
al 
onvenien
e and the availability of 
omputational tools.
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Figure 5.12: Two ways to represent a multi-modal density within the graphi
al model formalism.(a) The lo
al probability model at ea
h node is a mixture or a kernel density estimate. (b) A latentvariable is used to represent mixture 
omponents expli
itly; marginalizing over the latent variableyields a mixture model for the observable Xn.There is nothing inappropriate about letting su
h fa
tors be a guide, but in doing so we must be
autious about any interpretation or meaning that we atta
h to the model.Summary of density estimationOur goal in this se
tion has not been to provide a full treatment of density estimation; indeedwe have only s
rat
hed the surfa
e of what is an extensive literature in statisti
s. We do hope,however, to have introdu
ed a few key ideas|the 
al
ulation of maximum likelihood and Bayesianparameter estimates for Gaussian and multinomial densities, the use of mixture models to obtain ari
her 
lass of density models, and the distin
tion between parametri
 and nonparametri
 densityestimation. Ea
h of these ideas will be pi
ked up and pursued in numerous 
ontexts throughoutthe book.5.2.2 RegressionIn a regression model the goal is to model the dependen
e of a response or output variable Yon a 
ovariate or input variable X. We 
apture this dependen
e via a 
onditional probabilitydistribution p(y jx). In graphi
al model terms, we have a two-node model in whi
h X is the parentand Y is the 
hild (see Figure 5.13).One way to treat regression problems is to estimate the joint density of X and Y and to 
al
ulate
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Figure 5.13: A regression model.

nY

nX

NFigure 5.14: The IID regression model represented graphi
ally.the 
onditional p(y jx) from the estimated joint. This approa
h for
es us to model X, however,whi
h may not be desired. Indeed, in many appli
ations of regression, X is high-dimensional andhard to model. Moreover, the observations of X are often �xed by experimental design or anotherform of non-random pro
ess, and it is problemati
 to treat them via a simple sampling model,su
h as the IID model. In summary, it is ne
essary to develop methods appropriate to 
onditionaldensities.Our dis
ussion here will be brief, with a fo
us on basi
 representational issues.We assume that we have a set of pairs of observed data, f(xn; yn);n = 1; : : : ; Ng, where xn isan observation of the input variable and yn is a 
orresponding observation of the output variable.We again assume an independent, identi
al distributed (IID) sampling model for simpli
ity. Thegraphi
al representation of the IID regression model is shown as a plate in Figure 5.14.Let us now 
onsider some of the possible 
hoi
es for the 
onditional probability model p(yn jxn).
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Figure 5.15: The linear regression model expresses the response variable Y in terms of the 
ondi-tional mean fun
tion|the line in the �gure|and input-independent random variation around the
onditional mean.As in the 
ase of density estimation, we have a wide spe
trum of possibilities, in
luding parametri
models, mixture models, and nonparametri
 models. We will dis
uss these models in detail inChapters 6, 10, and 25, respe
tively, but let us sket
h some of the possibilities here.A linear regression model expresses Yn as the sum of (1) a purely deterministi
 
omponent thatdepends parametri
ally on xn, and (2) a purely random 
omponent that is fun
tionally independentof xn: Yn = �Txn + �n; (5.55)where � is a parameter ve
tor and �n is a random variable having zero mean. Taking the 
onditionalexpe
tation of both sides of this equation yieldsE[Yn jxn℄ = �Txn. Thus the linear regression modelexpresses Yn in terms of input-independent random variation �n around the 
onditional mean �Txn(see Figure 5.15). The 
hoi
e of the distribution of �n, whi
h 
ompletes the spe
i�
ation of themodel, is analogous to the 
hoi
e of a density model in density estimation, and depends on thenature of Yn. \Linear regression" generally refers to the 
ase in whi
h Yn is real-valued and thedistribution is taken to beN (0; �2). (In Chapter 8 we will be dis
ussing \generalized linear models,"whi
h are regression models that are appropriate for other types of response variables). In the linearregression 
ase, we have:P (yn jxn; �) = 1(2��2)1=2 exp�� 12�2 (yn � �Txn)2� ; (5.56)where for simpli
ity we have taken yn to be univariate. The parameter ve
tor � in
ludes �, whi
hdetermines the 
onditional mean, and �2, whi
h is the varian
e of �n and determines the s
ale of
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onditional mean.Linear regression is in fa
t broader than it may appear at �rst sight, in that the fun
tion �Txnneed only be linear in � and in parti
ular may be nonlinear in xn. Thus the model:Yn = �T�(xn) + �n; (5.57)where �(�) is a ve
tor-valued fun
tion of xn, is a linear regression model. This model is a parametri
model in that �(�) is �xed and our freedom in modeling the data 
omes only from the �nite set ofparameters �.The problem of estimating the parameters of regression models is in prin
iple no di�erent fromthe 
orresponding estimation problem for density estimation. In the maximum likelihood approa
h,we form the log likelihood: l(�;x) = NXn=1 log p(yn jxn; �); (5.58)take derivatives with respe
t to �, set to zero and (attempt to) solve. We will dis
uss the issuesthat arise in 
arrying out this 
al
ulation in later 
hapters.Conditional mixture modelsMixture models provide a way to move beyond the stri
tures of linear regression modeling. We 
an
onsider both a broader 
lass of 
onditional mean fun
tions as well as a broader 
lass of densitymodels for �n. Consider in parti
ular the graphi
al model shown in Figure 5.16(a). We haveintrodu
ed a multinomial latent variable Zn that depends on the input Xn; moreover, the responseYn depends on both Xn and Zn. This graph 
orresponds to the following probabilisti
 model:p(yn jxn; �) = KXk=1 p(zkn = 1 jxn; �)p(yn j zkn = 1; xn; �); (5.59)a 
onditional mixture model. Ea
h mixture 
omponent p(yn j zkn = 1; xn) 
orresponds to a di�erentregression model, one for ea
h value of k. The mixing proportions p(zkn = 1 jxn) \swit
h" among theregression models as a fun
tion of xn. Thus, as suggested in Figure 5.16(a), the mixing proportions
an be used to pi
k out regions of the input spa
e where di�erent regression fun
tions are used. We
an parameterize both the mixing proportions and the regression models and estimate both sets ofparameters from data. This is a \divide-and-
onquer" methodology in the regression domain. (Weprovide a fuller des
ription of this model in Chapter 10).The example in Figure 5.16(a) utilizes mixing proportions that are sharp, nearly binary fun
-tions of Xn, but it is also of interest to 
onsider models in whi
h these fun
tions are smoother,allowing overlap in the 
omponent regression fun
tions. Indeed, in the limiting 
ase we obtain themodel shown in Figure 5.16(b) in whi
h the latent variable Zn is independent of Xn. Here thepresen
e of the latent variable serves only to indu
e multimodality in the 
onditional distributionp(yn jxn). Mu
h as in the 
ase of density estimation, su
h a regression model may arise from a setof subpopulations, ea
h 
hara
terized by a di�erent \
onditional mean."
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Figure 5.16: Two variants of 
onditional regression model. In (a), the latent variable Zn is depen-dent on Xn. This 
orresponds to breaking up the input spa
e into (partially overlapping) regionslabeled by the values of Zn. An example with binary Zn is shown in the �gure on the right, wherethe dashed line labeled by zn = 1 is the probability p(zn = 1 jxn), and the dashed line labeled byzn = 0 is the probability p(zn = 0 jxn). The two lines are the 
onditional means of the regres-sions, p(yn j zn; xn), for the two values of zn, with the leftmost line 
orresponding to zn = 0 andthe rightmost line 
orresponding to zn = 1. In (b), the latent variable Zn is independent of Xn.This 
orresponds to total overlap of the regions 
orresponding to the values of Zn and yields aninput-independent mixture density for ea
h value of xn.
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Figure 5.17: A Bayesian linear regression model. The parameter ve
tor � is endowed with aGaussian prior, N (�; �2). The varian
e �2 is endowed with an inverse gamma prior, IG(�; �).The parameters of 
onditional mixture models 
an be estimated using the EM algorithm, asdis
ussed in Chapter 10. Indeed, EM 
an be used quite generi
ally for latent variable models su
has those in Figure 5.16.Nonparametri
 regressionLet us brie
y 
onsider the nonparametri
 approa
h to regression. While it is possible to usenonparametri
 methods to expand the repertoire of probability models for �n, a more 
ommonusage of nonparametri
 ideas involves allowing a wider 
lass of 
onditional mean fun
tions. Thebasi
 idea is to break up the input spa
e into (possibly overlapping) regions, with one su
h regionfor ea
h data point. Let us give an example from the 
lass of methods known as kernel regression.As in kernel density estimation, let k(x; xn; �) be a kernel fun
tion 
entered around the data pointxn. Denoting the 
onditional mean fun
tion as f(x), we form an estimate as follows:f̂(x) = PNn=1 k(x; xn; �)ynPNm=1 k(x; xm; �) (5.60)That is, we estimate the 
onditional mean at x as the 
onvex sum of the observed values yn, wherethe weights in the sum are given by the normalized values of the kernel fun
tions, one for ea
h xn,evaluated at x. Given that kernel fun
tions are generally 
hosen to be \lo
al," having most of theirsupport near xn, we see that the kernel regression estimate at x is a lo
al average of the values ynin the neighborhood of x.We 
an on
e again forge a link between the mixture model approa
h and the nonparametri
kernel regression approa
h. As we ask the reader to verify in Exer
ise ??, taking the 
onditional
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Figure 5.18: A graphi
al representation of the regression model in whi
h the 
omponents of theinput ve
tor are treated as expli
it nodes.mean of Eq. (5.59) yields a weighted sum of 
onditional mean fun
tions, one for ea
h 
omponentk, where the weights are the mixing proportions p(zkn = 1 jxn). The kernel regression estimatein Eq. (5.60) 
an be viewed as an instan
e of this model, if we treat the normalized kernelsk(x; xn; �)=PNm=1 k(x; xm; �) as mixing proportions, and the values yn as (
onstant) 
onditionalmeans. The same 
omments apply to this redu
tion as to the analogous redu
tion in the 
aseof density estimation. In parti
ular, as N in
reases, the number of 
omponents K in a para-metri
 
onditional mixture model generally remain �xed, whereas the number of kernels in thekernel regression model grow. We 
an, however, 
onsider 
onditional mixture sieves, and obtain anonparametri
 variant of a mixture model.Bayesian approa
hes to regressionAll of the models that we have 
onsidered in this se
tion 
an be treated via Bayesian methods,where we endow the parameters (or entire 
onditional mean fun
tions) with prior distributions.We then invoke Bayes rule to 
al
ulate posterior distributions. Figure 5.17 illustrates one su
hBayesian regression model.RemarksLet us make one �nal remark regarding the graphi
al representation of regression models. Notethat in this se
tion we have treated the input variables Xn as single nodes, not availing ourselvesof the opportunity to represent the 
omponents of these ve
tor-valued variables as separate nodes(see Figure 5.18). This is 
onsistent with our treatment of Xn as �xed variables to be 
onditionedon; representing the 
omponents as separate nodes would imply marginal independen
e betweenthe 
omponents, an assumption that we may or may not wish to make. It is important to note,
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(a) (b)Figure 5.19: (a) The generative approa
h to 
lassi�
ation represented as a graphi
al model. Fittingthe model requires estimating the marginal probability p(q) and the 
onditional probability p(x j q).(b) The dis
riminative approa
h to 
lassi�
ation represented as a graphi
al model. Fitting themodel requires estimating the 
onditional probability p(q jx).however, that regression methods are agnosti
 regarding modeling assumptions about the 
ondi-tioning variables. Regression methods form an estimate of p(y jx) and this 
onditional density 
anbe 
omposed with an estimate of p(x) to obtain an estimate of the joint. This allows us to useregression models as 
omponents of larger models. In parti
ular, in the 
ontext of a graphi
al modelin whi
h a node A has multiple parents B1; B2; : : : ; Bk, we are free to use regression methods torepresent p(A jB1; B2; : : : ; Bk), regardless of the modeling assumptions made regarding the nodesBi. Indeed ea
h of the Bi may themselves be modeled in terms of regressions on variables further\upstream."5.2.3 Classi�
ationClassi�
ation problems are related to regression problems in that they involve pairs of variables.The distinguishing feature of 
lassi�
ation problems is that the response variable ranges over a�nite set, a seemingly minor issue that has important impli
ations.In 
lassi�
ation we often refer to the 
ovariate X as a feature ve
tor, and the 
orrespondingdis
rete response, whi
h we denote by Q, as a 
lass label. We typi
ally view the feature ve
tors asdes
riptions of obje
ts, and the goal is to label the obje
ts, i.e., to 
lassify the obje
ts into one ofa �nite set of 
ategories.There are two basi
 approa
hes to 
lassi�
ation problems, whi
h 
an be interpreted graphi
allyin terms of the dire
tion of the edge between X and Q. The �rst approa
h, whi
h we will refer toas generative, is based on the graphi
al model shown in Figure 5.19(a), in whi
h there is an arrowfrom Q to X. This approa
h is 
losely related to density estimation|for ea
h value of the dis
rete
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(a) (b)Figure 5.20: The IID 
lassi�
ation models for the (a) generative approa
h and (b) dis
riminativeapproa
h.variable Q we have a density, p(x j q), whi
h we refer to as a 
lass-
onditional density. We alsorequire the marginal probability p(q), whi
h we refer to as the prior probability of the 
lass Q (itis the probability of the 
lass before a feature ve
tor X is observed). This marginal probabilityis required if we are going to be able to \invert the arrow" and 
ompute p(q jx)|the posteriorprobability of 
lass Q.The se
ond approa
h to 
lassi�
ation, whi
h we refer to as dis
riminative, is 
losely related toregression. Here we represent the relationship between the feature ve
tors and the labels in termsof an arrow from X to Q (see Figure 5.19(b)). That is, we represent the relationship in terms ofthe 
onditional probability p(q jx). When 
lassifying an obje
t we simply plug the 
orrespondingfeature ve
tor x into the 
onditional probability and 
al
ulate p(q jx). Performing this 
al
ulation,whi
h tells us whi
h 
lass label has the highest probability, makes no referen
e to the marginalprobability p(x) and, as in regression, we may wish to abstain from in
orporating su
h a marginalinto the model.As in regression, we have a set of data pairs f(xn; qn) : n = 1; : : : ; Ng, assumed IID for simpli
ity.The representations of the 
lassi�
ation problem as plates are shown in Figure 5.20.On
e again we postpone a general presentation of parti
ular representations for the 
onditionalprobabilities in 
lassi�
ation problems until later 
hapters. But let us brie
y dis
uss a 
anoni
alexample that will illustrate some typi
al representational 
hoi
es, as well as illustrate some ofthe relationships between the generative and the dis
riminative approa
hes to 
lassi�
ation. Thisexample and several others will be developed in 
onsiderably greater detail in later 
hapters.We spe
ialize to two 
lasses. Let us 
hoose Gaussian 
lass-
onditional densities with equal
ovarian
e matri
es for the two 
lasses. An example of these densities (where we have assumed equal
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Figure 5.21: (a) Contour plots and samples from two Gaussian 
lass-
onditional densities for two-dimensional feature ve
tors xn = (x1n; x2n). The Gaussians have means �0 and �1 for 
lass qn = 0and qn = 1, respe
tively, and equal 
ovarian
e matri
es. (b) The solid lines are the 
ontours ofthe posterior probability, p(qn = 1 jxn). In the dire
tion orthogonal to the linear 
ontours, theposterior probability is a monotoni
ally in
reasing fun
tion given by (Eq. (5.61)). This fun
tion issket
hed at the top of the �gure.
lass priors) is shown in Figure 5.21(a). We use Bayes rule to 
ompute the posterior probabilitythat a given feature ve
tor xn belongs to 
lass qn = 1. Intuitively, we expe
t to obtain a ramp-likefun
tion whi
h is zero in the vi
inity of the 
lass qn = 0, in
reases to one-half in the region betweenthe two 
lasses, and approa
hes one in the vi
inity of the 
lass qn = 1. This posterior probabilityfun
tion is shown in Figure 5.21(b), where indeed we see the ramp-like shape.Analyti
ally, as we show in Chapter 7, for Gaussian 
lass-
onditional densities the ramp-likeposterior probability turns out to be the logisti
 fun
tion:p(qn = 1 jxn) = 11 + e��T xn ; (5.61)where � is a parameter ve
tor that depends on the parti
ular 
hoi
es of means and 
ovarian
es forthe 
lass-
onditional densities, as well as the 
lass priors. The inner produ
t between � and xn isa proje
tion operation that is responsible for the linear 
ontours that we see in Figure 5.21(b).Given these parametri
 forms for the 
lass-
onditional densities (the Gaussian densities) andthe posterior probability (the logisti
 fun
tion), we must spe
ify how to estimate the parametersbased on the data. It is here that the generative and dis
riminative approa
hes begin to diverge.From the generative point of view, the problem is that of estimating the means and 
ovarian
es ofthe Gaussian 
lass-
onditional densities, as well as the 
lass priors. These are density estimation
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(a) (b)Figure 5.22: (a) A 
lassi�
ation problem with the 
lass qn = 0 labeled with a \0" and the 
lassqn = 1 labeled with a \x". (b) The same feature ve
tors xn as in (a), but with the labels erased.problems, and the ma
hinery of Se
tion 5.2.1 is invoked to solve them. With these density estimatesin hand, we derive an estimate of � and thereby 
al
ulate an estimate of the posterior probability.Essentially, the goal is to model the 
lasses, without any dire
t attempt to dis
riminate betweenthe 
lasses.In the dis
riminative approa
h, on the other hand, the logisti
 fun
tion is the 
entral obje
t ofanalysis. Indeed, in Chapter 7, we des
ribe a regression-like method for estimating � dire
tly fromdata, without making referen
e to the means and 
ovarian
es of an underlying generative model.Intuitively, this method 
an be viewed as an attempt to orient and position the ramp-like posteriorprobability in Figure 5.21(b) so as to assign a posterior probability that is near zero to the pointsxn having label qn = 0, and a posterior probability near one to the points xn having label qn = 1.Essentially, the goal is to dis
riminate between the 
lasses, without any dire
t attempt to modelthe 
lasses.More generally, in a dis
riminative approa
h to 
lassi�
ation we are not restri
ted to the lo-gisti
 fun
tion, or to any other fun
tion that is derived from a generative model. Rather we 
an
hoose fun
tions whose 
ontours appear to provide a natural 
hara
terization of boundaries between
lasses. On the other hand, it may not always be apparent how to 
hoose su
h fun
tions, and insu
h 
ases we may prefer to take advantage of the generative approa
h, in whi
h the boundariesarise impli
itly via Bayes rule. In general, both the dis
riminative and the generative approa
hesare important tools to have in a modeling toolbox.Mixture models revisitedSuppose we 
onsider a 
lassi�
ation problem in whi
h none of the 
lass labels are present. Is thisa sensible problem to pose? What 
an one possibly learn from unlabeled data, parti
ularly datathat are 
ompletely unlabeled?
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Figure 5.23: A model for partially labeled data in whi
h the feature ve
tors x2; x5 and x6 arelabeled and the other feature ve
tors are unlabeled.Consider Figure 5.22(a), where we have depi
ted a typi
al 
lassi�
ation problem with two
lasses. Now 
onsider Figure 5.22(b), where we have retained the feature ve
tors xn, but erased thelabels qn. As this latter plot makes 
lear, although the labels are missing, there is still substantialstatisti
al stru
ture in the problem. Rather than solving a 
lassi�
ation problem, we 
an solvea 
lustering problem, making expli
it the fa
t that the data appear to fall into two 
lusters andassigning feature ve
tors to 
lusters.In fa
t we have already solved this problem. The mixture model approa
h to density estimationdis
ussed in Se
tion 5.2.1 treats the density in terms of a set of underlying \subpopulations" labeledby a latent variable Z. The inferential 
al
ulation p(zn jxn) given in Eq. (5.52) expli
itly 
al
ulatesthe probability that the feature ve
tor xn belongs to ea
h of the subpopulations.The relationship between 
lassi�
ation and mixture models is also 
lari�ed by 
omparing the\generative" graphi
al model in Figure 5.19(b) and the mixture model in Figure 5.9(a). Theseare the same graphi
al model|the only di�eren
e is the shading, 
orresponding to the assumptionthat the labels Qn are observed in 
lassi�
ation whereas the latent variables Zn are unobservedin mixture modeling. In the setting of unlabeled data the generative 
lassi�
ation model be
omesidenti
al to a mixture model.In a more general setting we may have a \partially labeled" 
ase in whi
h the labels Qn areobserved for some data points and unobserved for other data points. This situation is representedgraphi
ally in Figure 5.23. We will be able to treat the problem of estimation in this 
ase using theEM algorithm; indeed this \partially labeled" 
ase requires no additional ma
hinery beyond thatalready required for the mixture model.It is 
ommon to refer to 
lassi�
ation and regression models as \supervised learning" models andto refer to density estimation models as \unsupervised learning" models. In the 
omparison betweenmixture models and 
lassi�
ation models just dis
ussed, the distin
tion refers to the observationof the labels Qn; one says that the labels in 
lassi�
ation are provided by a \supervisor." Whilethis terminology 
an be useful in making broad distin
tions between models, it is our view thatthe terminology does not re
e
t a fundamental underlying distin
tion and we will tend to avoid itsuse in this book. It is our feeling that many models are neither entirely \supervised" nor entirely



38 CHAPTER 5. STATISTICAL CONCEPTS\unsupervised," and invoking the distin
tion often for
es us to group together methods that havelittle in 
ommon as well as to separate methods that are 
losely related. We feel that a better wayto understand relationships between models is to make them expli
it as graphs. Models 
an thenbe 
ompared in terms of graphi
al features su
h as whi
h variables are 
onsidered latent and whi
hobserved, the dire
tionalities of ar
s that are used to represent 
onditional relationships, and thepresen
e or absen
e of parti
ular stru
tural motifs.RemarksWe have already indi
ated a relationship between mixture models and 
lassi�
ation, but there areother roles for mixture models in the 
lassi�
ation setting. In parti
ular, we 
an use mixturesas 
lass-
onditional densities in the generative approa
h to 
lassi�
ation, just as we used mixturemodels in the density estimation setting to extend the range of models that we 
onsidered. Also,in the 
ontext of the dis
riminative approa
h to 
lassi�
ation, we 
an use 
onditional mixtures torepresent the posterior probability p(q jx), breaking this fun
tion into overlapping pie
es, mu
h aswe did with the 
onditional mean in the 
ase of regression.Similarly, nonparametri
 methods have many roles to play in 
lassi�
ation models. We 
aneither extend the generative approa
h to allow nonparametri
 estimates of the 
lass-
onditionaldensities, or extend the dis
riminative approa
h to allow nonparametri
 estimates of the posteriorprobability.Finally, there are on
e again Bayesian approa
hes in all of these 
ases. From a graphi
al pointof view, these Bayesian approa
hes essentially involve making the parameters expli
it as nodes, andusing hyperparameters to express prior probability distributions on these nodes.5.3 Model sele
tion and model averagingThus far we have assumed that a spe
i�
 model has been 
hosen in advan
e and we have fo
used onrepresenting the model graphi
ally and estimating its parameters. In some 
ases this assumption isreasonable|the model is determined by the problem and there is no need to 
onsider data-drivenapproa
hes to 
hoosing the model. More 
ommonly, however, we wish to use the data to makeinformed 
hoi
es regarding the model. We present a brief dis
ussion of this problem|known as themodel sele
tion problem|in this se
tion, anti
ipating our more detailed presentation in Chapter 26.We 
onsider a 
lassM of possible models, letting m 2M denote a spe
i�
 model in this family.We also augment our earlier notation to in
lude expli
it referen
e to the model; thus, p(x j �;m)refers to the probability model for the random variable X, given a spe
i�
 model and a spe
i�

hoi
e of parameters for that model.4 Also, in the Bayesian approa
h, p(� jm) refers to the priorprobability that we atta
h to the parameters �, and p(� jx;m) refers to the 
orresponding posterior.We wish to develop methods for 
hoosing m based on the data x.Let us begin with the Bayesian approa
h. Re
all that unknowns are treated as random variablesin the Bayesian approa
h; thus we introdu
e a random variable M to denote the model. The range4For simpli
ity we use the same notation � to represent the parameters in ea
h of the models; in general we 
ouldallow the parameterization to vary with m.



5.3. MODEL SELECTION AND MODEL AVERAGING 39of M is M, and m denotes a realization of M . The goal of Bayesian analysis is to 
al
ulate theposterior probability of M , 
onditioning on the data x:p(m jx) = p(x jm)p(m)p(x) : (5.62)Note two important features of this equation. First, as in the 
ase of parameter estimation, werequire a prior probability; in parti
ular, we need to spe
ify the prior probability p(m) of the modelm. Se
ond, note the absen
e of expli
it mention of the parameter �. The probabilities needed forBayesian model sele
tion are marginal probabilities.Let us 
onsider this latter issue in more detail. The 
al
ulation of the posterior probabilityin Eq. (5.62) requires the probability p(x jm), a 
onditional probability that is referred to as themarginal likelihood. We 
ompute the marginal likelihood from the likelihood by integrating overthe parameters: p(x jm) = Z p(x; � jm)d� (5.63)= Z p(x j �;m)p(� jm)d�; (5.64)where the prior probability p(� jm) plays the role of a weighting fun
tion. Multiplying the marginallikelihood by the prior probability p(m) yields the desired posterior p(m jx), up to the normalizationfa
tor p(x).If we wish to use the posterior to sele
t a model, then we must 
ollapse the posterior to a point.As in the 
ase of parameter estimation, various possibilities present themselves; in parti
ular, apopular approa
h is to pi
k the model that maximizes the posterior probability. An advantage ofthis approa
h is that it obviates the need to 
al
ulate the normalization 
onstant p(x).More generally, however, the Bayesian approa
h aims to use the entire posterior. To illustratethe use of the model posterior, let us again 
onsider the problem of predi
tion. Taking Xnew to be
onditionally independent of X, given � and m, we have:p(xnew jx) = Z Z p(xnew; �;m jx)d�dm (5.65)= Z Z p(xnew j �;m)p(�;m jx)d�dm (5.66)= Z Z p(xnew j �;m)p(� jx;m)p(m jx)d�dm: (5.67)From this latter equation, we see that a full Bayesian approa
h to predi
tion requires two posteriorprobabilities: the model posterior p(m jx) from Eq. (5.62) and the parameter posterior p(� jx;m)from Eq. (5.1). These posteriors 
an be viewed as \weights" for the predi
tion p(xnew j �;m); thetotal predi
tion 
an be viewed as a \weighted predi
tion." This approa
h to predi
tion is referredto as model averaging.It should be a
knowledged that it is a rare 
ir
umstan
e in whi
h the integrals in Eq. (5.64)and Eq. (5.67) 
an be done exa
tly, and Bayesian model averaging and model sele
tion generallyinvolve making approximations. We will dis
uss some of these approximations in Chapter 26.
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hes to model sele
tion avoid the use of prior probabilities and Bayes rule.Rather, one 
onsiders various model sele
tion pro
edures, and evaluates these pro
edures in terms ofvarious frequentist 
riteria. For example, one 
ould 
onsider a s
enario in whi
h the true probabilitydensity is assumed to lie within the 
lass M, and ask that a model sele
tion pro
edure pi
k thetrue model with high frequen
y. Alternatively, one 
ould ask that the pro
edure sele
t the \best"model inM, where \best" is de�ned in terms of a measure su
h as the Kullba
k-Leibler divergen
ebetween a model and the true probability density.It is important to understand that maximum likelihood itself 
annot be used as a model sele
tionpro
edure. Augmenting a model with additional parameters 
annot de
rease the likelihood, andthus maximum likelihood will prefer more 
omplex models. More 
omplex models may of 
oursebe better than simpler models, if they provide a

ess to probability densities that are signi�
antly
loser to the true density, but at some point there are diminishing returns and more 
omplexmodels prin
ipally provide a

ess to additional poor models. The fa
t that we have to estimateparameters implies that with some probability we will sele
t one of the poor models. Thus the\varian
e" introdu
ed by the parameter estimation pro
ess 
an lead to poorer performan
e with amore 
omplex model. Maximum likelihood is unable to address this \over�tting" phenomenon.One approa
h to frequentist model sele
tion is to \
orre
t" maximum likelihood to a

ountfor the varian
e due to parameter estimation. The AIC method to be dis
ussed in Chapter 26exempli�es this approa
h. An alternative approa
h, also dis
ussed in Chapter 26, is the 
ross-validation idea, in whi
h the data are partitioned in subsets, with one subset used to �t parametersfor various models, and another subset used to evaluate the resulting models.5.4 Appendix AIn this se
tion we 
al
ulate the posterior density of � in the univariate Gaussian density estimationproblem. Re
all that the joint probability of x and � is given by:p(x; �) = 1(2��2)N=2 exp(� 12�2 NXn=1(xn � �)2) 1(2��2)1=2 expf� 12�2 (�� �0)2g; (5.68)and the problem is to normalize this joint probability.Let us fo
us on the terms involving �, treating all other terms as \
onstants" and droppingthem throughout. We have:p(x; �) / exp(� 12�2 NXn=1 �x2n � 2xn�+ �2�� 12�2 ��2 � 2�0�+ �20�) (5.69)= exp(�12 NXn=1 � 1�2 �x2n � 2xn�+ �2�+ 1�2 ��2N � 2�0�N + �20N ��) (5.70)= exp(�12 NXn=1 �� 1�2 + 1N�2��2 � 2�xn�2 + �0N�2��+ C�) (5.71)



5.5. HISTORICAL REMARKS AND BIBLIOGRAPHY 41/ exp��12 ��N�2 + 1�2��2 � 2�N �x�2 + �0�2���� (5.72)/ exp(�12 �N�2 + 1�2�"�2 � 2�N�2 + 1�2��1�N �x�2 + �0�2��#) (5.73)= exp�� 12~�2 ��2 � 2~���� ; (5.74)where ~�2 = �N�2 + 1�2��1 (5.75)and ~� = N=�2N=�2 + 1=�2 �x+ 1=�2N=�2 + 1=�2 �0; (5.76)This identi�es the posterior as a Gaussian distribution with mean ~� and varian
e ~�2.5.5 Histori
al remarks and bibliography


