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Chapter 5Statistial ConeptsIt is useful to attempt to distinguish the ativities of the probability theorist and the statistiian.Our perspetive in the previous hapters has been mainly that of the former|we have built graphi-al models involving sets of random variables and shown how to ompute the probabilities of ertainevents assoiated with these random variables. Given a partiular hoie of graphial model, on-sisting of a graph and a set of loal onditional probabilities or potentials, we have seen how toinfer the probabilities of various events of interest, suh as the marginal or onditional probabilitythat a partiular random variable takes on a partiular value.Statistis is in a ertain sense the inverse of probability theory. In a statistial setting therandom variables in our domain have been observed and are therefore no longer unknown, ratherit is the model that is unknown. We wish to infer the model from the data rather than the datafrom the model.The problem of \inferring the model from the data" is a deep one, raising fundamental questionsregarding the nature of knowledge, reasoning, learning, and sienti� inquiry. In statistis, thestudy of these fundamental questions has often ome down to a distintion between two majorshools of thought|the Bayesian and the frequentist. In the following setion we briey outlinethe key distintions between these two shools. It is worth noting that our disussion here will beinomplete and that we will be returning to these distintions at various juntures in the book asour development of graphial models begins to bring the distintions into learer relief. But anequally important point to make is that many of the problems|partiularly the omputationalproblems|faed in these frameworks are losely related, even idential. A great deal of importantwork an be done within the graphial models formalism that is equally useful to Bayesian andfrequentist statistis.Beyond our disussion of foundational issues, we will also introdue several lasses of statistialproblems in this hapter, in partiular the ore problems of density estimation, regression andlassi�ation. As in earlier hapters our goal is to present enough in the way of onrete details tomake the disussion understandable, but to emphasize broad themes that will serve as landmarksfor our more detailed presentation in later hapters.3



4 CHAPTER 5. STATISTICAL CONCEPTS5.1 Bayesian and frequentist statistisBayesian statistis is in essene an attempt to deny any fundamental distintion between probabilitytheory and statistis. Probability theory itself provides the apability for inverting relationshipsbetween unertain quantities|this is the essene of Bayes rule|and Bayesian statistis representsan attempt to treat all statistial inferene as probabilisti inferene.Let us onsider a problem in whih we have already deided upon the model struture fora given problem domain|for example, we have hosen a partiular graphial model inluding apartiular pattern of onnetivity|but we have not yet hosen the values of the model parameters|the numerial values of the loal onditional probabilities or potentials. We wish to hoose theseparameter values on the basis of observed data. (In general we might also want to hoose the modelstruture on the basis of observed data, but let us postpone that problem|see Setion 5.3).For every hoie of parameter values we obtain a di�erent numerial spei�ation for the jointdistribution of the random variables X. We will heneforth write this probability distributionas p(x j �) to reet this dependene. Putting on our hats as probability theorists, we view themodel p(x j �) as a onditional probability distribution; intuitively it is an assignment of probabilitymass to unknown values of X, given a �xed value of �. Thus, � is known and X is unknown. Asstatistiians, however, we view X as known|we have observed its realization x|and � as unknown.We thus in some sense need to invert the relationship between x and �. The Bayesian point of viewimplements this notion of \inversion" using Bayes rule:p(� jx) = p(x j �)p(�)p(x) : (5.1)The assumptions allowing us to write this equation are noteworthy. First, in order to interpretthe left-hand side of the equation we must view � as a random variable. This is harateristi ofthe Bayesian approah|all unknown quantities are treated as random variables. Seond, we viewthe data x as a quantity to be onditioned on|our inferene is onditional on the event fX = xg.Third, in order to alulate p(� jx) we see (from the right-hand side of Eq. (5.1)) that we must havein hand the probability distribution p(�)|the prior probability of the parameters. Given that weare viewing � as a random variable, it is formally reasonable to assign a (marginal) probability toit, but one needs to think about what suh a prior probability means in terms of the problem weare studying. Finally, note that Bayes rule yields a distribution over �|the posterior probabilityof � given x, not a single estimate of �. If we wish to obtain a single value, we must (and will)invoke additional priniples, but it is worth noting at the outset that the Bayesian approah tendsto resist ollapsing distributions to points.The frequentist approah wishes to avoid the use of prior probabilities in statistis, and thusavoids the use of Bayes rule for the purpose of assigning probabilities to parameters. The goal offrequentist methodology is to develop an \objetive" statistial theory, in whih two statistiiansemploying the methodology must neessarily draw the same onlusions from a partiular set ofdata.Consider in partiular a oin-tossing experiment, whereX 2 f0; 1g is a binary variable represent-ing the outome of the oin toss, and � 2 (0; 1) is a real-valued parameter denoting the probabilityof heads. Thus the model is the Bernoulli distribution, p(x j �) = �x(1 � �)1�x. Approahing the



5.1. BAYESIAN AND FREQUENTIST STATISTICS 5problem from a Bayesian perspetive requires us to assign a prior probability to � before observingthe outome of the oin toss. Two di�erent Bayesian statistiians may assign di�erent priors to� and thus obtain di�erent onlusions from the experiment. The frequentist statistiian wishesto avoid suh \subjetivity." From another point of view, a frequentist may laim that � is a�xed property of the oin, and that it makes no sense to assign probability to it. A Bayesian mayagree with the former statement, but would argue that p(�) need not represent anything aboutthe physis of the situation, but rather represents the statistiian's unertainty about the value of�. Tossing the oin redues the statistiian's unertainty, and hanges the prior probability intothe posterior probability p(� jx). Bayesian statistis views the posterior probability and the priorprobability alike as (possibly) subjetive.There are situations in whih frequentist statistis and Bayesian statistis agree that parametersan be endowed with probability distributions. Suppose that we onsider a fatory that makesoins in bathes, where eah bath is haraterized by a smelting proess that a�ets the fairnessof the resulting oins. A oin from a given bath has a di�erent probability of heads than a oinfrom a di�erent bath, and ranging over bathes we obtain a distribution on the probability ofheads �. A frequentist is in general happy to assign prior probabilities to parameters, as long asthose probabilities refer to objetive frequenies of observing values of the parameters in repeatedexperiments.From the point of view of frequentist statistis, there is no single preferred methodology forinverting the relationship between parameters and data. Rather, the basi idea is to onsidervarious estimators of �, where an estimator is some funtion of the observed data x (we will disussa partiular example below). One establishes various general riteria for evaluating the quality ofvarious estimators, and hooses the estimator that is \best" aording to these riteria. (Examplesof suh riteria inlude the bias and variane of estimators; these riteria will be disussed inChapter 26). An important feature of this evaluation proess is that it generally requires thatthe data x be viewed as the result of a random experiment that an be repeated and in whihother possible values of x ould have been obtained. This is of ourse onsistent with the generalfrequentist philosophy, in whih probabilities orrespond to objetive frequenies.There is one partiular estimator that is widely used in frequentist statistis, namely the maxi-mum likelihood estimator. This estimator is popular for a number of reasons, in partiular beauseit often yields \natural estimators" (e.g., sample proportions and sample means) in simple settingsand also beause of its favorable asymptoti properties.To understand the maximum likelihood estimator, we must understand the notion of \likeli-hood" from whih it derives. Reall that the probability model p(x j �) has the intuitive inter-pretation of assigning probability to X for eah �xed value of �. In the Bayesian approah thisintuition is formalized by treating p(x j �) as a onditional probability distribution. In the frequen-tist approah, however, suh a formal interpretation is suspet, beause it suggests that � is arandom variable that an be onditioned on. The frequentist instead treats the model p(x j �) as afamily of probability distributions indexed by �, with no impliation that we are onditioning on�.1 Moreover, to implement a notion of \inversion" between x and �, we simply hange our point1To aknowledge this interpretation, frequentist treatments often adopt the notation p�(x) in plae of p(x j �).We will stik with p(x j �), hoping that the frequentist-minded reader will forgive us this abuse of notation. It will



6 CHAPTER 5. STATISTICAL CONCEPTS
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xFigure 5.1: A univariate density estimation problem. (See Setion 5.2.1 for a disussion of densityestimation). The data fx1; x2; : : : ; xNg are given as X's along the absissa. The parameter vetor� is the mean � and variane �2 of a Gaussian density. Two andidate densities, involving di�erentvalues of �, are shown in the �gure. Density A assigns higher probability to the observed data thandensity B, and thus would be preferred aording to the priniple of maximum likelihood.of view|we treat p(x j �) as a funtion of � for �xed x. When interpreted in this way, p(x j �) isreferred to as the likelihood funtion and it provides the basis for maximum likelihood estimation.As suggested in Figure 5.1, the likelihood funtion an be used to evaluate partiular hoiesof �. In partiular, if for a given value of � we �nd that the observed value of x is assigned lowprobability, then this is perhaps a poor hoie of �. A value of � that assigns higher probability tox is preferred. Ranging over all possible hoies of �, we pik that value of � that assigns maximalprobability to x, and treat this value as an estimate of the true �:�̂ML = argmax� p(x j �): (5.2)Thus the maximum likelihood estimate is that value of � that maximizes the likelihood funtion.Regardless of whether one agrees that this justi�ation of the maximum likelihood estimate isa natural one, it is ertainly true that we have an estimator|a funtion of x|and we an evaluatethe properties of this estimator under various frequentist riteria. It turns out that maximumlikelihood is a good estimator under a variety of measures of quality, partiularly in settings of largesample sizes when asymptoti analyses are meaningful (indeed, maximum likelihood estimates anbe shown to be \optimal" in suh settings). In other settings, partiularly in ases of small samplesizes, maximum likelihood plays an important role as the starting point for the development ofmore omplex estimators.simplify our presentation throughout the rest of the book, liberating us from having to make distintions betweenBayesian and frequentist interpretations where none are needed or implied.



5.1. BAYESIAN AND FREQUENTIST STATISTICS 7Another appealing feature of likelihood-based estimation is that it provides a link betweenBayesian methods and frequentist methods. In partiular, note that the distribution p(x j �) ap-pears in our basi Bayesian equation Eq. (5.1). Note moreover that Bayesian statistiians refer tothis probability as a \likelihood" as do frequentist statistiians, even though the interpretation isdi�erent. Symbolially, we an interpret Eq. (5.1) as follows:posterior / likelihood � prior; (5.3)where we see that in the Bayesian approah the likelihood an be viewed as a data-dependentoperator that transforms between the prior probability and the posterior probability. At a bareminimum, Bayesian approahes and likelihood-based frequentist approahes have in ommon theneed to alulate the likelihood for various values of �. This is not a trivial fat|indeed a majorfous of this book is the set of omplex statistial models in whih the omputation of the likelihoodis itself a daunting omputational task. In working out e�etive omputational proedures to dealwith suh models we are ontributing to both Bayesian and frequentist statistis.Let us explore this onnetion between Bayesian and frequentist approahes a bit further. Sup-pose in partiular that we fore the Bayesian to hoose a partiular value of �; that is, to ollapsethe posterior distribution p(� jx) to a point estimate. Various possibilities present themselves; inpartiular one ould hoose the mean of the posterior distribution or perhaps the mode. The meanof the posterior is often referred to as a Bayes estimate:�̂Bayes = Z � p(� jx)d�; (5.4)and it is possible and worthwhile to study the frequentist properties of Bayes estimates. The modeof the posterior is often referred to as the maximum a posteriori (MAP) estimate:�̂MAP = argmax� p(� jx) (5.5)= argmax� p(x j �)p(�); (5.6)where in the seond equation we have utilized the fat that the fator p(x) in the denominator ofBayes rule is independent of �. In a setting in whih the prior probability is taken to be uniform on�, the MAP estimate redues to the maximum likelihood estimate. When the prior is not taken tobe uniform, one an still view Eq. (5.6) as the maximization of a penalized likelihood. To see this,note that one generally works with logarithms when maximizing over probability distributions (thefat that the logarithm is a monotoni funtion implies that it does not alter the optimizing value).Thus one has: �̂MAP = argmax� flog p(x j �) + log p(�)g ; (5.7)as an alternative expression for the MAP estimate. Here the \penalty" is the additive term log p(�).Penalized log likelihoods are widely used in frequentist statistis to improve on maximum likelihoodestimates in small sample settings (as we will see in Chapter 26).It is important to emphasize, however, that MAP estimation involves a rather un-Bayesian use ofthe Bayesian formalism, and it would be wrong to understand the distintion between Bayesian andfrequentist statistis as merely a matter of how to interpret a penalized log likelihood. To larify,



8 CHAPTER 5. STATISTICAL CONCEPTS

X

θ

XnewFigure 5.2: A graphial representation of the problem of predition from a Bayesian point of view.let us onsider a somewhat broader problem in whih the di�erene between MAP estimation anda fuller Bayesian approah is more salient. Let us onsider the problem of predition, where we arenot interested in the value of � per se, but are interested in using a model based on � to preditfuture values of the random variable X. Let us suppose in partiular that we have two randomvariables, X and Xnew, whih are haraterized by the same distribution, and that we wish to usean observation of X to make a predition regarding likely values of Xnew. For simpliity, let usassume that X and Xnew are independent; more preisely, we assume that they are onditionallyindependent given �. We write:p(xnew jx) = Z p(xnew; � jx)d� (5.8)= Z p(xnew j �; x)p(� jx)d� (5.9)= Z p(xnew j �)p(� jx)d�: (5.10)From the latter equation we see that the Bayesian predition is based on ombining the preditionsaross all values of �, with the posterior distribution serving as a \weighting funtion." That is,interpreting the onditional probability p(xnew j �) as the predition of Xnew given �, we weight thispredition by the posterior probability p(� jx), and integrate over all suh weighted preditions.Note in partiular that this alulation requires the entire posterior probability, not merely its valueat a single point.Within a frequentist approah, we are not allowed to treat � as a random variable, and thuswe do not attribute meaning to the integral in Eq. (5.10). Rather, we would onsider various\estimates" of xnew; a natural hoie might be the \plug-in estimate" p(xnew j �̂ML). Here we seethat the di�erene between the frequentist approah and the Bayesian approah has beome moresigni�ant; in the latter ase we have to perform an integral in order to obtain a predition. Wean relate the two approahes if we approximate the posterior distribution by ollapsing it to adelta funtion at �̂MAP , in whih ase the integral in Eq. (5.10) redues to the plug-in estimate



5.2. STATISTICAL PROBLEMS 9p(xnew j �̂MAP ). But in general this ollapse would not satisfy the Bayesian (who views the integralas providing a better preditor than any preditor based on a point estimate) nor the frequentist(who wants to be free to onsider a wider lass of estimates than the plug-in estimate).As a �nal note, onsider the graphial model shown in Figure 5.2. This model aptures theBayesian point of view on the predition problem that we have just disussed. The parameter� is depited as a node in the model; this is of ourse onsistent with the Bayesian approah oftreating parameters as random variables. Moreover, the onditional independene of X and Xnewgiven � is reeted as a Markov property in the graph. Finally, as we invite the reader to verifyin Exerise ??, applying the elimination algorithm to the graph yields exatly the alulation inEq. (5.10). This is a reetion of a general fat|graphial models provide a nie way to visualizeand organize Bayesian alulations. We will return to this point in later hapters. But let usemphasize here that this linkage, appealing as it is, does not reet any speial aÆnity betweengraphial models and Bayesian methods, but rather is a reetion of the more general link betweenBayesian methods and probabilisti inferene.5.2 Statistial problemsLet us now desend from the somewhat ethereal onsiderations of statistial foundations to a rathermore onrete onsideration of problems in statistial estimation. In this setion we will disussthree major lasses of statistial problems|density estimation, regression, and lassi�ation. Notall statistial problems fall into one of these three lasses, nor is it always possible to unambiguouslyharaterize a given problem in terms of these lasses, but there are ertain ore aspets of thesethree problem ategories that are worth isolating and studying in a puri�ed form.We have two main goals in this setion. The �rst is to introdue the graphial approah torepresenting statistial modeling problems, in partiular emphasizing how the graphial represen-tation helps makes modeling assumptions expliit. Seond, we wish to begin to work with spei�probability distributions, in partiular the Gaussian and multinomial distributions. We will use thisintrodutory setion to illustrate some of the alulations that arise when using these distributions.5.2.1 Density estimationSuppose that we have in hand a set of observations on a random variable X|in general a vetor-valued random variable|and we wish to use these observations to indue a probability density(probability mass funtion for disrete variables) forX. This problem|whih we refer to generiallyas the problem of density estimation|is a very general statistial problem. Obtaining a modelof the density of X allows us to assess whether a partiular observation of X is \typial," anassessment that is required in many pratial problems inluding fault detetion, outlier detetionand lustering. Density estimation also underlies many dimensionality redution algorithms, wherea joint density is projeted onto a subspae or manifold, hopefully reduing the dimensionality of adata set while retaining its salient features. A related appliation is ompression, where Shannon'sfundamental relationship between ode length and the negative logarithm of the density an be usedto design a soure ode. Finally, noting that a joint density on X an be used to infer onditional



10 CHAPTER 5. STATISTICAL CONCEPTSdensities among omponents of X, we an also use density estimates to solve problems in predition.To delimit the sope of the problem somewhat, note that in regression and lassi�ation the fousis on the relationship between a pair of variables, X and Y . That is, regression and lassi�ationproblems di�er from density estimation in that their fous is on a onditional density, p(y jx), withthe marginal p(x) and the orresponding joint density of less interest, and perhaps not modeled atall. We develop methods that are spei� to onditional densities in Setions 5.2.2 and 5.2.3.Density estimation arises in many ways in the setting of graphial models. In partiular wemay be interested in inferring the density of a parentless node in a direted graphial model, orthe density of a set of nodes in a larger model (in whih ase the density of interest is a marginaldensity), or the joint density of all of the nodes of our model.Let us begin with an example. Our example will be one of the most lassial of all statistialproblems|that of estimating the mean and variane of a univariate Gaussian distribution.Univariate Gaussian density estimationLet us assume that X is a univariate random variable with a Gaussian distribution, that is:p(x j �) = 1(2��2)1=2 exp�� 12�2 (x� �)2� ; (5.11)where � and �2 are the mean and variane, respetively, and � , (�; �2).2 We wish to estimate �based on observations of X. Here we are assuming that we know the parametri form of the densityof X, and what is unknown are the numerial values of the parameters (f. Figure 5.1). Pluggingestimates of the parameters bak into Eq. (5.11) provides an estimate of the density funtion.Clearly a single observation of X provides no information about the variane and relatively poorinformation about the mean. Thus we need to onsider multiple observations. What do we meanby \multiple observations"? Let us interpret this to mean that we have a set of random variables,fX1;X2; : : : ;XNg, and that these random variables are identially distributed. Thus eah of thevariables Xn is haraterized by a Gaussian distribution p(xn j �), with the same � for eah Xn.In graphial model terms, we have a model with N nodes, one for eah random variable. Whihgraphial model should we use? What onnetivity pattern should we use? Let us suppose thatthe variables are not only identially distributed but that they are also independent. Thus we havethe graphial model shown in Figure 5.3. It should be emphasized that these assumptions are byno means neessary; they are simply one possible set of assumptions, orresponding to a partiularhoie of graphial model. (We will be seeing signi�antly more omplex graphial models on NGaussian nodes; see, e.g., the Kalman �lter in Chapter 15).The nodes in Figure 5.3 are shaded, reeting the fat that they are observed data. In general,\data" are designated by the shading of nodes in our models. In the ontext of the Bayesianapproah to estimation, this use of shading is the same onvention as we used in Chapter 2|in theBayesian approah we ondition on the data in order to ompute probabilities for the parameters.In the ontext of frequentist approahes, where we no longer view ourselves as onditioning on the2We will often denote this density as N (�; �2).



5.2. STATISTICAL PROBLEMS 11
1X 2X 3X NXFigure 5.3: A graphial model representing the density estimation problem under an IID samplingmodel. The assumption that the data are sampled independently is reeted by the absene oflinks between the nodes. Eah node is haraterized by the same density.data, we simply treat shading as a diagrammati onvention to indiate whih nodes orrespond tothe observed data.Letting X refer to the set of random variables (X1;X2; : : : ;XN ), and letting x refer to the obser-vations (x1; x2; : : : ; xN ), we write the joint probability p(x j �) as the produt of loal probabilities,one for eah node in Figure 5.3:p(x j �) = NYn=1 1(2��2)1=2 exp�� 12�2 (xn � �)2� (5.12)= 1(2��2)N=2 exp(� 12�2 NXn=1(xn � �)2) ; (5.13)or alternatively, given that this partiular graph an be interpreted as either a direted graph oran undireted graph, we an view this joint probability as a produt of potential funtions on theliques of the graph (whih are singleton nodes in this ase).Let us proeed to alulating parameter estimates. In partiular let us alulate the maximumlikelihood estimates of � and �2. To do so we must maximize the likelihood p(x j �) with respet to�. We �nd it more onvenient to maximize the logarithm of the likelihood, whih, given that thelogarithm is a monotoni funtion, will not hange the results. Thus, let us de�ne the log likelihood,denoted l(�;x), as: l(�;x) = log p(x j �); (5.14)where we have reordered the variables on the left-hand side to emphasize that � is to be viewedas the variable and x is to be viewed as a �xed onstant. We now take the derivative of the loglikelihood with respet to �:�l(�;x)�� = ���  �N2 log(2�)� N2 log �2 � 12�2 NXn=1(xn � �)2! (5.15)= 1�2 NXn=1(xn � �): (5.16)



12 CHAPTER 5. STATISTICAL CONCEPTSSetting equal to zero and solving, we obtain:�̂ML = 1N NXn=1xn: (5.17)Thus we see that the maximum likelihood estimate of the mean of a Gaussian distribution is thesample mean.Similarly let us take the derivative of the log likelihood with respet to �2:�l(�;x)��2 = ���2  �N2 log(2�)� N2 log �2 � 12�2 NXn=1(xn � �)2! (5.18)= � N2�2 + 12�4 NXn=1(xn � �)2: (5.19)Setting equal to zero and solving, we obtain:�̂2ML = 1N NXn=1(xn � �̂ML)2; (5.20)and we see that the maximum likelihood estimate of the variane is the sample variane. (Notethat we are �nding the joint estimates of � and �2 by setting both partial derivatives equal to zeroand solving simultaneously; this explains the presene of �̂ML in the equation for �̂2ML).Bayesian univariate Gaussian density estimationIn the Bayesian approah to density estimation the goal is to form a posterior density p(� jx).Let us onsider a simple version of this problem in whih we take the variane �2 to be a knownonstant and restrit our attention to the mean �. Thus we wish to obtain the posterior densityp(� jx), based on the prior density p(�) and the Gaussian likelihood p(x j�).What prior distribution should we take for �? This is a modeling deision, as was the deisionto utilize a Gaussian for the probability of the data x in the �rst plae. As we will see, it ismathematially onvenient to take p(�) to also be a Gaussian distribution. We will make thisassumption in this setion, but let us emphasize at the outset that mathematial onvenieneshould not, and need not, ditate all of our modeling deisions. Indeed, a major thrust of this bookis the development of methods for treating omplex models, pushing bak the frontier of what is\mathematially onvenient" and, in the Bayesian setting, permitting a wide and expressive rangeof prior distributions.If we take p(�) to be a Gaussian distribution, then we fae another problem: what should wetake as the mean and variane of this distribution? To be onsistent with the general Bayesianphilosophy, we should treat these parameters as random variables and endow them with a priordistribution. This is indeed the approah of hierarhial Bayesian modeling, where we endowparameters with distributions haraterized by \hyperparameters," whih themselves an in turn
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1X 2X 3X NX

µ

Figure 5.4: The graphial model for the Bayesian density estimation problem.be endowed with distributions. While an in�nite regress looms, in pratie it is rare to take thehierarhial Bayesian approah to more than two or three levels, largely beause there of diminishingreturns|additional levels make little di�erene to the marginal probability of the data and thus tothe expressiveness of our model.Let us take the mean of p(�) to be a �xed onstant �0 and take the variane to be a �xedonstant �2, while reognizing that in general we might endow these parameters with distributions.The graphial model haraterizing our problem is shown in Figure 5.4. The graph has beenaugmented with a node for the unknown mean �. Note that there is a single suh node and thatits hildren are the data fXng. Thus this graph provides more information than the graph ofFigure 5.3; in partiular the independene assumption is elaborated|the data are assumed to beonditionally independent given the parameters.The likelihood is idential in form to the frequentist likelihood in Eq. (5.13). To obtain theposterior we therefore need only multiply by the prior:p(�) = 1(2��2)1=2 exp�� 12�2 (�� �0)2� (5.21)to obtain the joint probability:p(x; �) = 1(2��2)N=2 exp(� 12�2 NXn=1(xn � �)2) 1(2��2)1=2 exp�� 12�2 (�� �0)2� ; (5.22)whih when normalized yields the posterior p(� jx). Multiplying the two exponentials togetheryields an exponent whih is quadrati in the variable �; thus, normalization involves \ompletingthe square." Appendix A presents the algebra (and in Chapter 13 we present a general matrix-based approah to ompleting the square|an operation that rops up often when working withGaussian random variables). The result takes the following form:p(� jx) = 1(2�~�2)1=2 exp�� 12~�2 (�� ~�)2� ; (5.23)



14 CHAPTER 5. STATISTICAL CONCEPTSwhere ~� = N=�2N=�2 + 1=�2 �x+ 1=�2N=�2 + 1=�2 �0; (5.24)where �x is the sample mean, and where~�2 = �N�2 + 1�2��1 : (5.25)We see that the posterior probability is a Gaussian, with mean ~� and variane ~�2.Both the posterior variane and the posterior mean have an intuitive interpretation. Note �rstthat �2=N is the variane of a sum of N independent random variables with variane �2, thus �2=Nis the variane assoiated with the data. Eq. (5.25) says that we add the inverse of this varianeto the inverse of the prior variane to obtain the inverse of the posterior variane. Thus, inversevarianes add. From Eq. (5.24) we see that the posterior mean is obtained as a linear ombinationof the sample mean and the prior mean. The weights in this ombination an be interpreted as thefration of the posterior variane aounted for by the variane from the data term and the priorvariane respetively. These weights sum to one; thus, the ombination in Eq. (5.24) is a onvexombination.As the number of data points N beomes large, the weight assoiated with �x goes to one andthe weight assoiated with �0 approahes zero. Thus in the limit of large data sets, the Bayesestimate of � approahes the maximum likelihood estimate of �.PlatesLet us take a quik detour to disuss a notational devie that we will �nd useful. Graphial modelsrepresenting independent, identially distributed (IID) sampling have a repetitive struture that anbe aptured with a formal devie known as a plate. Plates allow repeated motifs to be representedin a simple way. In partiular, the simple IID model shown in Figure 5.5(a) an be representedmore suintly using the plate shown in Figure 5.5(b).For the Bayesian model in Figure 5.6(a) we obtain the representation in Figure 5.6(b). Note thatthe parameter � appears outside the plate; this aptures the fat that there is a single parametervalue that is shared among the distributions for eah of the Xn.Formally, a plate is simply a graphial model \maro." That is, to interpret Figure 5.5(b) orFigure 5.6(b) we opy the graphial objet in the plate N times, where the number N is reordedin the lower right-hand orner of the box, and apply the usual graphial model semantis to theresult.Density estimation for disrete dataLet us now onsider the ase in whih the variables Xn are disrete variables, eah taking on one ofa �nite number of possible values. We wish to study the density estimation problem in this setting,realling that \probability density" means \probability mass funtion" in the disrete ase.As before, we will make the assumption that the data are IID, thus the modeling problem isrepresented by the plate shown in Figure 5.5(b). Eah of the variables Xn an take on one of M
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(a) (b)Figure 5.5: Repeated graphial motifs an be represented using plates. The IID sampling modelfor density estimation shown in (a) is represented using a plate in (b). The plate is interpreted byopying the graphial objet within the box N times; thus the graph in (b) is a shorthand for thegraph in (a).
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(a) (b)Figure 5.6: The Bayesian density estimation model shown in (a) is represented using a plate in (b).Again, the graph in (b) is to be interpreted as a shorthand for the graph in (a).



16 CHAPTER 5. STATISTICAL CONCEPTSvalues. To represent this set of M values we will �nd it onvenient to use a vetor representation.In partiular, let the range of Xn be the set of binary M -omponent vetors with one omponentequal to one and the other omponents equal to zero. Thus for a variableXn taking on three values,we have: Xn 2 8<:24 100 35 ;24 010 35 ;24 001 359=; : (5.26)We use supersripts to refer to the omponents of these vetors, thusXkn refers to the kth omponentof the variable Xn. We have Xkn = 1 if and only if the variable Xn takes on its kth value. Notethat PkXkn = 1 by de�nition.Using this representation, we an write the probability distribution for Xn in a onvenientgeneral form. In partiular, letting �k represent the probability that Xn takes on its kth value, i.e.,�k , p(xkn = 1), we have: p(xn j �) = �x1n1 �x2n2 � � � �xMnM : (5.27)This is themultinomial probability distribution, Mult(1; �), with parameter vetor � = (�1; �2; : : : �M).To alulate the probability of the observation x, we take the produt over the individual multino-mial probabilities: p(x j �) = NYn=1 �x1n1 �x2n2 � � � �xMnM (5.28)= �PNn=1 x1n1 �PNn=1 x2n2 � � � �PNn=1 xMnM ; (5.29)where the exponent PNn=1 xkn is the ount of the number of times the kth value of the multinomialvariable is observed aross the N observations.To alulate the maximum likelihood estimates of the multinomial parameters we take thelogarithm of Eq. (5.29) to obtain the log likelihood:l(�;x) = NXn=1 MXk=1 xkn log �k; (5.30)and it is this expression that we must maximize with respet to �.This is a onstrained optimization problem for whih we use Lagrange multipliers. Thus weform the Lagrangian: ~l(�;x) = NXn=1 MXk=1 xkn log �k + �(1� MXk=1 �k); (5.31)take derivatives with respet to �k: �~l(�;x)��k = PNn=1 xkn�k � � (5.32)



5.2. STATISTICAL PROBLEMS 17and set equal to zero: PNn=1 xkn�̂k;ML = �: (5.33)Multiplying through by �̂k;ML and summing over k yields:� = MXk=1 NXn=1xkn (5.34)= NXn=1 MXk=1 xkn (5.35)= N: (5.36)Finally, substituting Eq. (5.36) bak into Eq. (5.33) we obtain:�̂k;ML = 1N NXn=1xkn: (5.37)Noting again that PNn=1 xkn is the ount of the number of times that the kth value is observed, wesee that the maximum likelihood estimate of �k is a sample proportion.Bayesian density estimation for disrete dataIn this setion we disuss a Bayesian approah to density estimation for disrete data. As in theGaussian setting, we speify a prior using a parameterized distribution and show how to omputethe orresponding posterior.An appealing feature of the solution to the Gaussian problem was that the prior and the posteriorhave the same distribution|both are Gaussian distributions. Among other virtues, this impliesthat Eq. (5.24) and Eq. (5.25) an be used reursively|the posterior based on earlier observationsan serve as the prior for additional observations. At eah step the posterior distribution remainsin the Gaussian family.To ahieve a similar losure property in the disrete problem we must �nd a prior distributionwhih when multiplied by the multinomial distribution yields a posterior distribution in the samefamily. Clearly, this an be ahieved by a prior distribution of the form:p(�) = C(�)��1�11 ��2�12 � � � ��M�1M ; (5.38)for Pi �i = 1, where � = (�1; : : : ; �M ) are hyperparameters and C(�) is a normalizing onstant.3This distribution, known as the Dirihlet distribution, has the same funtional form as the multino-mial, but the �i are random variables in the Dirihlet distribution and parameters in the multinomialdistribution. The onstant C(�) is obtained via a bit of alulus (see Appendix B):C(�) = �(PMi=1 �i)QMi=1 �(�i) ; (5.39)3The negative one in the exponent is a onvention; we ould rede�ne the �i to remove it.



18 CHAPTER 5. STATISTICAL CONCEPTSwhere �(�) is the gamma funtion. In the rest of this setion we will not bother with alulating thenormalization; one we have a distribution in the Dirihlet form we an substitute into Eq. (5.39)to �nd the normalization fator.We now alulate the posterior probability:p(� jx) / �PNn=1 x1n1 �PNn=1 x2n2 � � � �PNn=1 xMnM ��1�11 ��2�12 � � � ��M�1M (5.40)= �PNn=1 x1n+�1�11 �PNn=1 x2n+�2�12 � � � �PNn=1 xMn +�M�1M : (5.41)This is a Dirihlet density, with parameters PNn=1 xkn + �k. We see that to update the prior into aposterior we simply add the ount PNn=1 xkn to the prior parameter �k.It is worthwhile to onsider the speial ase of the multinomial distribution when M = 2. Inthis setting, Xn is best treated as a binary variable rather than a vetor; thus: xn 2 f0; 1g. Themultinomial distribution redues to:p(xn j �) = �xn(1� �)1�xn ; (5.42)the Bernoulli distribution. The parameter � enodes the probability that Xn takes the value one.In the ase M = 2, the Dirihlet distribution speializes to the beta distribution:p(�) = C(�)��1�1(1� �)�2�1; (5.43)where � = (�1; �2) is the hyperparameter. The beta distribution has its support on the interval[0; 1℄. Plots of the beta distribution are shown in Figure 5.7 for various values of �1 and �2. Notethat the uniform distribution is the speial ase of the beta distribution when �1 = 1 and �2 = 1.As the number of data points N beomes large, the sumsPNn=1 xkn dominate the prior terms �kin the posterior probability. In this limit, the posterior approahes the log likelihood in Eq. (5.30)and the Bayes estimate of � approahes the maximum likelihood estimate of �.Mixture modelsIt is important to reognize that the Gaussian and multinomial densities are by no means theuniversally best hoies of density model. Suppose, for example, if the data are ontinuous datarestrited to the half-in�nite interval [0;1). The Gaussian, whih assigns density to the entire realline, is unnatural here, and densities suh as the gamma or lognormal, whose support is [0;1), maybe preferred. Similarly, the multinomial distribution treats disrete data as an unordered, �niteset of values. In problems involving ordered sets, and/or in�nite ranges, probability distributionssuh as the Poisson or geometri may be more appropriate. Maximum likelihood and Bayesianestimates are available for these distributions, and indeed there is a general family known as theexponential family|whih inludes all of the distributions listed above and many more|in whihexpliit formulas an be obtained. (We will disuss the exponential family in Chapter 8).This larger family of distributions is still, however, restritive. Consider the probability densityshown in Figure 5.8. This density is bimodal and we are unable to represent it within the familyof Gaussian, gamma or lognormal densities. Given a data set fxng sampled from this density, we
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Figure 5.7: The beta(�1; �2) distribution for various values of the parameters �1 and �2.an naively �t a Gaussian density, but the likelihood that we ahieve will in general be signi�antlysmaller than the likelihood of the data under the true density, and the resulting density estimatewill bear little relationship to the truth.Multimodal densities often reet the presene of subpopulations or lusters in the populationfrom whih we are sampling. Thus, for example, we would expet the density of heights of treesin a forest to be multimodal, reeting the di�erent distributions of heights of di�erent speies.It may be that for a partiular speies the heights are unimodal and reasonably well modeled bya simple density, suh as a density in the exponential family. If so, this suggests a \divide-and-onquer" strategy in whih the overall density estimation is broken down into a set of smaller densityestimation problems that we know how to handle. Let us proeed to develop suh a strategy.Let fk(x j �k) be the density for the kth subpopulation, where �k is a parameter vetor. Wede�ne a mixture density for a random variable X by taking the onvex sum over the omponentdensities fk(x j �k): p(x j �) = KXk=1�kfk(x j �k); (5.44)where the �k are nonnegative onstants that sum to one:KXk=1�k = 1: (5.45)The densities fk(x j �k) are referred to in this setting as mixture omponents and the parameters �k
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Figure 5.8: A bimodal probability density.are referred to as mixing proportions. The parameter vetor � is the olletion of all of the param-eters, inluding the mixing proportions: � , (�1; : : : ; �K ; �1; : : : ; �K). That the funtion p(x j �)that we have de�ned is in fat a density follows from the onstraint that the mixing proportionssum to one.The example shown in Figure 5.8 is a mixture density with K = 2:p(x j �) = �1N (x j�1; �21) + �2N (x j�2; �22); (5.46)where the mixture omponents are Gaussian distributions with means �k and varianes �2k. Gaus-sian mixtures are a popular form of mixture model, partiular in multivariate settings (see Chap-ter 10).It is illuminating to express the mixture density in Eq. (5.44) in a way that makes expliit itsinterpretation in terms of subpopulations. Let us do this using the mahinery of graphial models.As shown in Figure 5.9, we introdue a multinomial random variable Z into our model. We alsointrodue an edge from Z to X. Following the reipe from Chapter 2 we endow this graph with ajoint probability distribution by assigning a marginal probability to Z and a onditional probabilityto X. Let �k be the probability that Z takes on its kth value; thus, �k , p(zk = 1). Moreover,onditional on Z taking on its kth value, let the onditional probability of X, p(x j zk = 1), begiven by fk(x j �k). The joint probability is therefore given by:p(x; zk = 1 j �) = p(x j zk = 1; �)p(zk = 1 j �) (5.47)= �kfk(x j �k); (5.48)
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Figure 5.9: A mixture model represented as a graphial model. The latent variable Z is a multi-nomial node taking on one of K values.where � , (�1; : : : ; �K ; �1; : : : ; �K). To obtain the marginal probability of X we sum over k:p(x j �) = KXk=1 p(x; zk = 1 j �) (5.49)= KXk=1�kfk(x j �k); (5.50)whih is the mixture model in Eq. (5.44).This model gives us our �rst opportunity to invoke our disussion of probabilisti inferenefrom Chapter 3. In partiular, given an observation x, we an use Bayes rule to invert the arrowin Figure 5.9 and alulate the onditional probability of Z:p(zk = 1 jx; �) = p(x j zk = 1; �k)p(zk = 1)Pj p(x j zj = 1; �j)p(zj = 1) (5.51)= �kfk(x j �k)Pj �jfj(x j �j) : (5.52)This alulation allows us to use the mixture model to lassify or ategorize the observation x intoone of the subpopulations or lusters that we assume to underly the model. In partiular we mightlassify x into the lass k that maximizes p(zk = 1 jx; �).Let us turn to the problem of estimating the parameters of the mixture model from data.We again assume for simpliity a sampling model in whih we have N IID observations fxn;n =1; : : : ; Ng, while again noting that we will move beyond the IID setting in later hapters. TheIID assumption orresponds to repliating our basi graphial model N times, yielding the plateshown in Figure 5.10. Note again that the variables Zn are unshaded|they are unobserved orlatent variables. We have introdued them into our model in order to make expliit the struturalassumptions that lie behind the mixture density that we are using, but we need not assume thatthese variables are observed.
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NFigure 5.10: The mixture model under an IID sampling assumption.The log likelihood is given by taking the logarithm of the joint probability assoiated with themodel, whih in the IID ase beomes a sum of log probabilities. Again letting x = (x1; : : : ; xN ),we have: l(�;x) = NXn=1 log KXk=1�kfk(xn j �k): (5.53)To obtain maximum likelihood estimates we take derivatives with respet to � and set to zero. Theresulting equations are, however, nonlinear and do not admit a losed-form solution; solving theseequations requires iterative methods. While any of a variety of numerial methods an be used, thereis a partiular iterative method|the Expetation-Maximization (EM) algorithm|that is naturalnot only for mixture models but also for more general graphial models. The EM algorithm involvesan alternating pair of steps, the E step and the M step. The E step involves running an inferenealgorithm|for example the elimination algorithm that we disussed in Chapter 3|to essentially\�ll in" the values of the unobserved nodes given the observed nodes. In the ase of mixture models,this redues to the invoation of Bayes rule in Eq. (5.52). The M step treats the \�lled-in" graphas if all of the �lled-in values had been observed, and updates the parameters to obtain improvedvalues. In the mixture model setting this essentially redues to �nding separate density estimatesfor the separate subpopulations. We will present the EM algorithm formally in Chapter 11, andpresent its appliation to mixture models in Chapter 10.Nonparametri density estimationIn many ases data may ome from a omplex mehanism about whih we have little or no priorknowledge. The density underlying the data may not fall into one of the \standard" forms. Thedensity may be multimodal, but we may have no reason to suspet underlying subpopulations andmay have no reason to attribute any partiular meaning to the modes. When we �nd ourselves in
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xFigure 5.11: An example of kernel density estimation. The kernel funtions are Gaussians enteredat the data points xn (shown as rosses on the absissa). Eah Gaussian has a standard deviation� = 0:35. The Gaussians have been saled by dividing by the number of data points (N = 8). Thedensity estimate (shown as a dotted urve) is the sum of these saled kernels.suh a situation|by no means unommon|what do we do?Nonparametri density estimation provides a general lass of methods for dealing with suhknowledge-poor ases. In this setion we introdue this approah via a simple, intuitive nonpara-metri method known as a kernel density estimator. We return to a fuller disussion of nonpara-metri methods in Chapter 25.The basi intuition behind kernel density estimation is that eah data point xn provides evidenefor non-zero probability density at that point. A simple way to harness this intuition is to plaean \atom" of mass at that point (see Figure 5.11). Moreover, making the assumption that theunderlying probability density is smooth, we let the atoms have a non-zero \width." SuperimposingN suh atoms, one per data point, we obtain a density estimate.More formally, let k(x; xn; �) be a kernel funtion|a nonnegative funtion integrating to one(with respet to x). The argument xn determines the loation of the kernel funtion; kernelsare generally symmetri about xn. The parameter � is a general \smoothing" parameter thatdetermines the width of the kernel funtions and thus the smoothness of the resulting densityestimate. Superimposing N suh kernel funtions, and dividing by N , we obtain a probabilitydensity: p̂(x) = 1N NXn=1 k(x; xn; �): (5.54)This density is the kernel density estimate of the underlying density p(x).A variety of di�erent kernel funtions are used in pratie. Simple (e.g., pieewise polynomial)



24 CHAPTER 5. STATISTICAL CONCEPTSfuntions are often preferred, partly for omputational reasons (alulating the density at a givenpoint x requires N funtion evaluations). Gaussian funtions are sometimes used, in whih ase xnplays the role of the mean and � plays the role of the standard deviation.While the kernel funtion is often hosen a priori, the value of � is generally hosen based on thedata. This is a nontrivial estimation problem for whih lassial estimation methods are often oflittle help. In partiular, it is important to understand that maximum likelihood is not appropriatefor solving this problem. Suppose that we interpret the density in Eq. (5.54) as a likelihood funtion,with � as the parameter. For most reasonable kernels, this \likelihood" inreases monotoniallyas � goes to zero, beause the kernel assigns more probability density to the points xn for smallervalues of �. Indeed, in the limit of � = 0, the kernel generally approahes a delta funtion, givingin�nite likelihood to the data. A sum of delta funtions is obviously a poor density estimate.We will disuss methods for hoosing smoothing parameters in Chapter 25. As we will see, mostpratial methods involve some form of ross-validation, in whih a fration of the data are heldout and used to evaluate various hoies of �. Both overly small and overly large values of � willtend to assign small probability density to the held-out data, and this provides a rational approahto hoosing �.The problem here is a general one, motivating a distintion between parametri models andnonparametri models and suggesting the need for distint methods for their estimation. Under-standing the distintion requires us to onsider how a given model would hange if the number ofdata points N were to inrease. For parametri models the basi struture of the model remains�xed as N inreases. In partiular, for the Gaussian estimation problem treated in Setion 5.2.1,the lass of densities that are possible �ts to the data remains the same whatever the value ofN ; for eah N we obtain a Gaussian density with estimated parameters �̂ and �̂2. Inreasing thenumber of data points inreases the preision of these estimates, but it does not inrease the lassof densities that we are onsidering. In the nonparametri ase, on the other hand, the lass ofdensities inreases as N inreases. In partiular, with N + 1 data points it is possible to obtaindensities with N + 1 modes; this is not possible with N data points.An alternative perspetive is to view the loations of the kernels as \parameters"; the number ofsuh \parameters" inreases with the number of data points. In e�et, we an view nonparametrimodels as parametri, but with an unbounded, data-dependent, number of parameters. Indeed, inan alternative language that is often used, parametri models are referred to as \�nite-dimensionalmodels," and nonparametri models are referred to as \in�nite-dimensional models."It is worthwhile to ompare the kernel density estimator in Eq. (5.54) to the mixture modelin Eq. (5.44). Consider in partiular the ase in whih Gaussian mixture omponents are used inEq. (5.44) and Gaussian kernel funtions are used in Eq. (5.54). In this ase the kernel estimatoran be viewed as a mixture model in whih the means are �xed to the data point loations, thevarianes are set to �2, and the mixing proportions are set to 1=N . In what sense are the twodi�erent approahes to density estimation really di�erent?Again, the key di�erene between the two approahes is revealed when we let the number ofdata points N grow. The mixture model is generally viewed as a parametri model, in whih asethe number of mixture omponents, K, does not inrease as the number of data points grows.This is onsistent with our interpretation of a mixture model in terms of a set of K underly-



5.2. STATISTICAL PROBLEMS 25ing subpopulations|if we believe that these subpopulations exist, then we do not vary K as Ninreases. In the kernel estimation approah, on the other hand, we have no ommitment to under-lying subpopulations, and we aord no speial treatment to the number of kernels. As the numberof data points grows, we allow the number of kernels to grow. Moreover we generally expet that� will shrink as N grows to allow an inreasingly lose �t to the details of the true density.There are several aveats to this disussion. First, in the mixture model setting, we may notknow the number K of mixture omponents in pratie and we may wish to estimate K from thedata. This is a model seletion problem (see Setion 5.3). Solutions to model seletion problemsgenerally involve allowing K to inrease as the number of data points inreases, based on thefat that more data points are generally needed to provide more ompelling evidene for multiplemodes. Seond, mixture models an also be used nonparametrially. In partiular, a mixture sieveis a mixture model in whih the number of omponents is allowed to grow with the number of datapoints. This di�ers from kernel density estimation in that the loation of the mixture omponentsare treated as free parameters rather than being �xed at the data points; moreover, eah mixtureomponent generally has its own (free) sale parameter. Also, the growth rate of the number of\parameters" in mixture sieves is slower than that of kernel density estimation (e.g., logN vs.N). As this disussion begins to suggest, however, it beomes diÆult to enfore a lear boundarybetween parametri and nonparametri methods. A given approah an be treated in one way orthe other, depending on a modeler's goals and assumptions.There is a general tradeo� between exibility and statistial eÆieny that is relevant to thisdisussion. If the underlying \true" density is a Gaussian, then we probably want to estimate thisdensity using a parametri approah, we an also use a kernel density estimate. The latter estimatewill eventually onverge to the true density, but it may require very many data points. A parametriestimator will onverge more rapidly. Of ourse, if the true density is not a Gaussian, then theparametri estimate would still onverge, but to the wrong density, whereas the nonparametriestimate would eventually onverge to the true density. In sum, if we are willing to make moreassumptions then we get faster onvergene, but with the possibility of poor performane if realitydoes not math our assumptions. Nonparametri estimators allow us to get away with fewerassumptions, while requiring more data points for omparable levels of performane.There is also a general point to be made with respet to the representation of densities ingraphial models. As suggested in Figure 5.12, there are two ways to represent a multi-modaldensity as a graphial model. As shown in Figure 5.12(a), we an allow the lass of densitiesp(x) at node X to inlude multi-modal densities, suh as mixtures or kernel density estimates.Alternatively, we an use the \strutured" model depited in Figure 5.12(b), where we obtain amixture distribution for Xn by marginalizing over the latent variable Zn. Although it may seemnatural to reserve the latter representation for parametri modeling, in partiular for the settingin whih we attribute a \meaning" to the latent variable, suh a step is in general unwarranted.The mixture sieve exempli�es a situation in whih we may wish to use graphial mahinery torepresent the struture of a nonparametri model expliitly. In general, the hoies of how touse and how to interpret graphial struture are modeling deisions. While we may wish to usegraphial representations to express domain-spei� strutural knowledge, we may also be guidedby other fators, inluding mathematial onveniene and the availability of omputational tools.
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Figure 5.12: Two ways to represent a multi-modal density within the graphial model formalism.(a) The loal probability model at eah node is a mixture or a kernel density estimate. (b) A latentvariable is used to represent mixture omponents expliitly; marginalizing over the latent variableyields a mixture model for the observable Xn.There is nothing inappropriate about letting suh fators be a guide, but in doing so we must beautious about any interpretation or meaning that we attah to the model.Summary of density estimationOur goal in this setion has not been to provide a full treatment of density estimation; indeedwe have only srathed the surfae of what is an extensive literature in statistis. We do hope,however, to have introdued a few key ideas|the alulation of maximum likelihood and Bayesianparameter estimates for Gaussian and multinomial densities, the use of mixture models to obtain ariher lass of density models, and the distintion between parametri and nonparametri densityestimation. Eah of these ideas will be piked up and pursued in numerous ontexts throughoutthe book.5.2.2 RegressionIn a regression model the goal is to model the dependene of a response or output variable Yon a ovariate or input variable X. We apture this dependene via a onditional probabilitydistribution p(y jx). In graphial model terms, we have a two-node model in whih X is the parentand Y is the hild (see Figure 5.13).One way to treat regression problems is to estimate the joint density of X and Y and to alulate
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NFigure 5.14: The IID regression model represented graphially.the onditional p(y jx) from the estimated joint. This approah fores us to model X, however,whih may not be desired. Indeed, in many appliations of regression, X is high-dimensional andhard to model. Moreover, the observations of X are often �xed by experimental design or anotherform of non-random proess, and it is problemati to treat them via a simple sampling model,suh as the IID model. In summary, it is neessary to develop methods appropriate to onditionaldensities.Our disussion here will be brief, with a fous on basi representational issues.We assume that we have a set of pairs of observed data, f(xn; yn);n = 1; : : : ; Ng, where xn isan observation of the input variable and yn is a orresponding observation of the output variable.We again assume an independent, idential distributed (IID) sampling model for simpliity. Thegraphial representation of the IID regression model is shown as a plate in Figure 5.14.Let us now onsider some of the possible hoies for the onditional probability model p(yn jxn).
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Figure 5.15: The linear regression model expresses the response variable Y in terms of the ondi-tional mean funtion|the line in the �gure|and input-independent random variation around theonditional mean.As in the ase of density estimation, we have a wide spetrum of possibilities, inluding parametrimodels, mixture models, and nonparametri models. We will disuss these models in detail inChapters 6, 10, and 25, respetively, but let us sketh some of the possibilities here.A linear regression model expresses Yn as the sum of (1) a purely deterministi omponent thatdepends parametrially on xn, and (2) a purely random omponent that is funtionally independentof xn: Yn = �Txn + �n; (5.55)where � is a parameter vetor and �n is a random variable having zero mean. Taking the onditionalexpetation of both sides of this equation yieldsE[Yn jxn℄ = �Txn. Thus the linear regression modelexpresses Yn in terms of input-independent random variation �n around the onditional mean �Txn(see Figure 5.15). The hoie of the distribution of �n, whih ompletes the spei�ation of themodel, is analogous to the hoie of a density model in density estimation, and depends on thenature of Yn. \Linear regression" generally refers to the ase in whih Yn is real-valued and thedistribution is taken to beN (0; �2). (In Chapter 8 we will be disussing \generalized linear models,"whih are regression models that are appropriate for other types of response variables). In the linearregression ase, we have:P (yn jxn; �) = 1(2��2)1=2 exp�� 12�2 (yn � �Txn)2� ; (5.56)where for simpliity we have taken yn to be univariate. The parameter vetor � inludes �, whihdetermines the onditional mean, and �2, whih is the variane of �n and determines the sale of



5.2. STATISTICAL PROBLEMS 29the variation around the onditional mean.Linear regression is in fat broader than it may appear at �rst sight, in that the funtion �Txnneed only be linear in � and in partiular may be nonlinear in xn. Thus the model:Yn = �T�(xn) + �n; (5.57)where �(�) is a vetor-valued funtion of xn, is a linear regression model. This model is a parametrimodel in that �(�) is �xed and our freedom in modeling the data omes only from the �nite set ofparameters �.The problem of estimating the parameters of regression models is in priniple no di�erent fromthe orresponding estimation problem for density estimation. In the maximum likelihood approah,we form the log likelihood: l(�;x) = NXn=1 log p(yn jxn; �); (5.58)take derivatives with respet to �, set to zero and (attempt to) solve. We will disuss the issuesthat arise in arrying out this alulation in later hapters.Conditional mixture modelsMixture models provide a way to move beyond the stritures of linear regression modeling. We anonsider both a broader lass of onditional mean funtions as well as a broader lass of densitymodels for �n. Consider in partiular the graphial model shown in Figure 5.16(a). We haveintrodued a multinomial latent variable Zn that depends on the input Xn; moreover, the responseYn depends on both Xn and Zn. This graph orresponds to the following probabilisti model:p(yn jxn; �) = KXk=1 p(zkn = 1 jxn; �)p(yn j zkn = 1; xn; �); (5.59)a onditional mixture model. Eah mixture omponent p(yn j zkn = 1; xn) orresponds to a di�erentregression model, one for eah value of k. The mixing proportions p(zkn = 1 jxn) \swith" among theregression models as a funtion of xn. Thus, as suggested in Figure 5.16(a), the mixing proportionsan be used to pik out regions of the input spae where di�erent regression funtions are used. Wean parameterize both the mixing proportions and the regression models and estimate both sets ofparameters from data. This is a \divide-and-onquer" methodology in the regression domain. (Weprovide a fuller desription of this model in Chapter 10).The example in Figure 5.16(a) utilizes mixing proportions that are sharp, nearly binary fun-tions of Xn, but it is also of interest to onsider models in whih these funtions are smoother,allowing overlap in the omponent regression funtions. Indeed, in the limiting ase we obtain themodel shown in Figure 5.16(b) in whih the latent variable Zn is independent of Xn. Here thepresene of the latent variable serves only to indue multimodality in the onditional distributionp(yn jxn). Muh as in the ase of density estimation, suh a regression model may arise from a setof subpopulations, eah haraterized by a di�erent \onditional mean."
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Figure 5.16: Two variants of onditional regression model. In (a), the latent variable Zn is depen-dent on Xn. This orresponds to breaking up the input spae into (partially overlapping) regionslabeled by the values of Zn. An example with binary Zn is shown in the �gure on the right, wherethe dashed line labeled by zn = 1 is the probability p(zn = 1 jxn), and the dashed line labeled byzn = 0 is the probability p(zn = 0 jxn). The two lines are the onditional means of the regres-sions, p(yn j zn; xn), for the two values of zn, with the leftmost line orresponding to zn = 0 andthe rightmost line orresponding to zn = 1. In (b), the latent variable Zn is independent of Xn.This orresponds to total overlap of the regions orresponding to the values of Zn and yields aninput-independent mixture density for eah value of xn.
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Figure 5.17: A Bayesian linear regression model. The parameter vetor � is endowed with aGaussian prior, N (�; �2). The variane �2 is endowed with an inverse gamma prior, IG(�; �).The parameters of onditional mixture models an be estimated using the EM algorithm, asdisussed in Chapter 10. Indeed, EM an be used quite generially for latent variable models suhas those in Figure 5.16.Nonparametri regressionLet us briey onsider the nonparametri approah to regression. While it is possible to usenonparametri methods to expand the repertoire of probability models for �n, a more ommonusage of nonparametri ideas involves allowing a wider lass of onditional mean funtions. Thebasi idea is to break up the input spae into (possibly overlapping) regions, with one suh regionfor eah data point. Let us give an example from the lass of methods known as kernel regression.As in kernel density estimation, let k(x; xn; �) be a kernel funtion entered around the data pointxn. Denoting the onditional mean funtion as f(x), we form an estimate as follows:f̂(x) = PNn=1 k(x; xn; �)ynPNm=1 k(x; xm; �) (5.60)That is, we estimate the onditional mean at x as the onvex sum of the observed values yn, wherethe weights in the sum are given by the normalized values of the kernel funtions, one for eah xn,evaluated at x. Given that kernel funtions are generally hosen to be \loal," having most of theirsupport near xn, we see that the kernel regression estimate at x is a loal average of the values ynin the neighborhood of x.We an one again forge a link between the mixture model approah and the nonparametrikernel regression approah. As we ask the reader to verify in Exerise ??, taking the onditional



32 CHAPTER 5. STATISTICAL CONCEPTS

nY
N

nX1
nX 2

nX d

Figure 5.18: A graphial representation of the regression model in whih the omponents of theinput vetor are treated as expliit nodes.mean of Eq. (5.59) yields a weighted sum of onditional mean funtions, one for eah omponentk, where the weights are the mixing proportions p(zkn = 1 jxn). The kernel regression estimatein Eq. (5.60) an be viewed as an instane of this model, if we treat the normalized kernelsk(x; xn; �)=PNm=1 k(x; xm; �) as mixing proportions, and the values yn as (onstant) onditionalmeans. The same omments apply to this redution as to the analogous redution in the aseof density estimation. In partiular, as N inreases, the number of omponents K in a para-metri onditional mixture model generally remain �xed, whereas the number of kernels in thekernel regression model grow. We an, however, onsider onditional mixture sieves, and obtain anonparametri variant of a mixture model.Bayesian approahes to regressionAll of the models that we have onsidered in this setion an be treated via Bayesian methods,where we endow the parameters (or entire onditional mean funtions) with prior distributions.We then invoke Bayes rule to alulate posterior distributions. Figure 5.17 illustrates one suhBayesian regression model.RemarksLet us make one �nal remark regarding the graphial representation of regression models. Notethat in this setion we have treated the input variables Xn as single nodes, not availing ourselvesof the opportunity to represent the omponents of these vetor-valued variables as separate nodes(see Figure 5.18). This is onsistent with our treatment of Xn as �xed variables to be onditionedon; representing the omponents as separate nodes would imply marginal independene betweenthe omponents, an assumption that we may or may not wish to make. It is important to note,
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(a) (b)Figure 5.19: (a) The generative approah to lassi�ation represented as a graphial model. Fittingthe model requires estimating the marginal probability p(q) and the onditional probability p(x j q).(b) The disriminative approah to lassi�ation represented as a graphial model. Fitting themodel requires estimating the onditional probability p(q jx).however, that regression methods are agnosti regarding modeling assumptions about the ondi-tioning variables. Regression methods form an estimate of p(y jx) and this onditional density anbe omposed with an estimate of p(x) to obtain an estimate of the joint. This allows us to useregression models as omponents of larger models. In partiular, in the ontext of a graphial modelin whih a node A has multiple parents B1; B2; : : : ; Bk, we are free to use regression methods torepresent p(A jB1; B2; : : : ; Bk), regardless of the modeling assumptions made regarding the nodesBi. Indeed eah of the Bi may themselves be modeled in terms of regressions on variables further\upstream."5.2.3 Classi�ationClassi�ation problems are related to regression problems in that they involve pairs of variables.The distinguishing feature of lassi�ation problems is that the response variable ranges over a�nite set, a seemingly minor issue that has important impliations.In lassi�ation we often refer to the ovariate X as a feature vetor, and the orrespondingdisrete response, whih we denote by Q, as a lass label. We typially view the feature vetors asdesriptions of objets, and the goal is to label the objets, i.e., to lassify the objets into one ofa �nite set of ategories.There are two basi approahes to lassi�ation problems, whih an be interpreted graphiallyin terms of the diretion of the edge between X and Q. The �rst approah, whih we will refer toas generative, is based on the graphial model shown in Figure 5.19(a), in whih there is an arrowfrom Q to X. This approah is losely related to density estimation|for eah value of the disrete
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(a) (b)Figure 5.20: The IID lassi�ation models for the (a) generative approah and (b) disriminativeapproah.variable Q we have a density, p(x j q), whih we refer to as a lass-onditional density. We alsorequire the marginal probability p(q), whih we refer to as the prior probability of the lass Q (itis the probability of the lass before a feature vetor X is observed). This marginal probabilityis required if we are going to be able to \invert the arrow" and ompute p(q jx)|the posteriorprobability of lass Q.The seond approah to lassi�ation, whih we refer to as disriminative, is losely related toregression. Here we represent the relationship between the feature vetors and the labels in termsof an arrow from X to Q (see Figure 5.19(b)). That is, we represent the relationship in terms ofthe onditional probability p(q jx). When lassifying an objet we simply plug the orrespondingfeature vetor x into the onditional probability and alulate p(q jx). Performing this alulation,whih tells us whih lass label has the highest probability, makes no referene to the marginalprobability p(x) and, as in regression, we may wish to abstain from inorporating suh a marginalinto the model.As in regression, we have a set of data pairs f(xn; qn) : n = 1; : : : ; Ng, assumed IID for simpliity.The representations of the lassi�ation problem as plates are shown in Figure 5.20.One again we postpone a general presentation of partiular representations for the onditionalprobabilities in lassi�ation problems until later hapters. But let us briey disuss a anonialexample that will illustrate some typial representational hoies, as well as illustrate some ofthe relationships between the generative and the disriminative approahes to lassi�ation. Thisexample and several others will be developed in onsiderably greater detail in later hapters.We speialize to two lasses. Let us hoose Gaussian lass-onditional densities with equalovariane matries for the two lasses. An example of these densities (where we have assumed equal
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Figure 5.21: (a) Contour plots and samples from two Gaussian lass-onditional densities for two-dimensional feature vetors xn = (x1n; x2n). The Gaussians have means �0 and �1 for lass qn = 0and qn = 1, respetively, and equal ovariane matries. (b) The solid lines are the ontours ofthe posterior probability, p(qn = 1 jxn). In the diretion orthogonal to the linear ontours, theposterior probability is a monotonially inreasing funtion given by (Eq. (5.61)). This funtion isskethed at the top of the �gure.lass priors) is shown in Figure 5.21(a). We use Bayes rule to ompute the posterior probabilitythat a given feature vetor xn belongs to lass qn = 1. Intuitively, we expet to obtain a ramp-likefuntion whih is zero in the viinity of the lass qn = 0, inreases to one-half in the region betweenthe two lasses, and approahes one in the viinity of the lass qn = 1. This posterior probabilityfuntion is shown in Figure 5.21(b), where indeed we see the ramp-like shape.Analytially, as we show in Chapter 7, for Gaussian lass-onditional densities the ramp-likeposterior probability turns out to be the logisti funtion:p(qn = 1 jxn) = 11 + e��T xn ; (5.61)where � is a parameter vetor that depends on the partiular hoies of means and ovarianes forthe lass-onditional densities, as well as the lass priors. The inner produt between � and xn isa projetion operation that is responsible for the linear ontours that we see in Figure 5.21(b).Given these parametri forms for the lass-onditional densities (the Gaussian densities) andthe posterior probability (the logisti funtion), we must speify how to estimate the parametersbased on the data. It is here that the generative and disriminative approahes begin to diverge.From the generative point of view, the problem is that of estimating the means and ovarianes ofthe Gaussian lass-onditional densities, as well as the lass priors. These are density estimation
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(a) (b)Figure 5.22: (a) A lassi�ation problem with the lass qn = 0 labeled with a \0" and the lassqn = 1 labeled with a \x". (b) The same feature vetors xn as in (a), but with the labels erased.problems, and the mahinery of Setion 5.2.1 is invoked to solve them. With these density estimatesin hand, we derive an estimate of � and thereby alulate an estimate of the posterior probability.Essentially, the goal is to model the lasses, without any diret attempt to disriminate betweenthe lasses.In the disriminative approah, on the other hand, the logisti funtion is the entral objet ofanalysis. Indeed, in Chapter 7, we desribe a regression-like method for estimating � diretly fromdata, without making referene to the means and ovarianes of an underlying generative model.Intuitively, this method an be viewed as an attempt to orient and position the ramp-like posteriorprobability in Figure 5.21(b) so as to assign a posterior probability that is near zero to the pointsxn having label qn = 0, and a posterior probability near one to the points xn having label qn = 1.Essentially, the goal is to disriminate between the lasses, without any diret attempt to modelthe lasses.More generally, in a disriminative approah to lassi�ation we are not restrited to the lo-gisti funtion, or to any other funtion that is derived from a generative model. Rather we anhoose funtions whose ontours appear to provide a natural haraterization of boundaries betweenlasses. On the other hand, it may not always be apparent how to hoose suh funtions, and insuh ases we may prefer to take advantage of the generative approah, in whih the boundariesarise impliitly via Bayes rule. In general, both the disriminative and the generative approahesare important tools to have in a modeling toolbox.Mixture models revisitedSuppose we onsider a lassi�ation problem in whih none of the lass labels are present. Is thisa sensible problem to pose? What an one possibly learn from unlabeled data, partiularly datathat are ompletely unlabeled?
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Figure 5.23: A model for partially labeled data in whih the feature vetors x2; x5 and x6 arelabeled and the other feature vetors are unlabeled.Consider Figure 5.22(a), where we have depited a typial lassi�ation problem with twolasses. Now onsider Figure 5.22(b), where we have retained the feature vetors xn, but erased thelabels qn. As this latter plot makes lear, although the labels are missing, there is still substantialstatistial struture in the problem. Rather than solving a lassi�ation problem, we an solvea lustering problem, making expliit the fat that the data appear to fall into two lusters andassigning feature vetors to lusters.In fat we have already solved this problem. The mixture model approah to density estimationdisussed in Setion 5.2.1 treats the density in terms of a set of underlying \subpopulations" labeledby a latent variable Z. The inferential alulation p(zn jxn) given in Eq. (5.52) expliitly alulatesthe probability that the feature vetor xn belongs to eah of the subpopulations.The relationship between lassi�ation and mixture models is also lari�ed by omparing the\generative" graphial model in Figure 5.19(b) and the mixture model in Figure 5.9(a). Theseare the same graphial model|the only di�erene is the shading, orresponding to the assumptionthat the labels Qn are observed in lassi�ation whereas the latent variables Zn are unobservedin mixture modeling. In the setting of unlabeled data the generative lassi�ation model beomesidential to a mixture model.In a more general setting we may have a \partially labeled" ase in whih the labels Qn areobserved for some data points and unobserved for other data points. This situation is representedgraphially in Figure 5.23. We will be able to treat the problem of estimation in this ase using theEM algorithm; indeed this \partially labeled" ase requires no additional mahinery beyond thatalready required for the mixture model.It is ommon to refer to lassi�ation and regression models as \supervised learning" models andto refer to density estimation models as \unsupervised learning" models. In the omparison betweenmixture models and lassi�ation models just disussed, the distintion refers to the observationof the labels Qn; one says that the labels in lassi�ation are provided by a \supervisor." Whilethis terminology an be useful in making broad distintions between models, it is our view thatthe terminology does not reet a fundamental underlying distintion and we will tend to avoid itsuse in this book. It is our feeling that many models are neither entirely \supervised" nor entirely



38 CHAPTER 5. STATISTICAL CONCEPTS\unsupervised," and invoking the distintion often fores us to group together methods that havelittle in ommon as well as to separate methods that are losely related. We feel that a better wayto understand relationships between models is to make them expliit as graphs. Models an thenbe ompared in terms of graphial features suh as whih variables are onsidered latent and whihobserved, the diretionalities of ars that are used to represent onditional relationships, and thepresene or absene of partiular strutural motifs.RemarksWe have already indiated a relationship between mixture models and lassi�ation, but there areother roles for mixture models in the lassi�ation setting. In partiular, we an use mixturesas lass-onditional densities in the generative approah to lassi�ation, just as we used mixturemodels in the density estimation setting to extend the range of models that we onsidered. Also,in the ontext of the disriminative approah to lassi�ation, we an use onditional mixtures torepresent the posterior probability p(q jx), breaking this funtion into overlapping piees, muh aswe did with the onditional mean in the ase of regression.Similarly, nonparametri methods have many roles to play in lassi�ation models. We aneither extend the generative approah to allow nonparametri estimates of the lass-onditionaldensities, or extend the disriminative approah to allow nonparametri estimates of the posteriorprobability.Finally, there are one again Bayesian approahes in all of these ases. From a graphial pointof view, these Bayesian approahes essentially involve making the parameters expliit as nodes, andusing hyperparameters to express prior probability distributions on these nodes.5.3 Model seletion and model averagingThus far we have assumed that a spei� model has been hosen in advane and we have foused onrepresenting the model graphially and estimating its parameters. In some ases this assumption isreasonable|the model is determined by the problem and there is no need to onsider data-drivenapproahes to hoosing the model. More ommonly, however, we wish to use the data to makeinformed hoies regarding the model. We present a brief disussion of this problem|known as themodel seletion problem|in this setion, antiipating our more detailed presentation in Chapter 26.We onsider a lassM of possible models, letting m 2M denote a spei� model in this family.We also augment our earlier notation to inlude expliit referene to the model; thus, p(x j �;m)refers to the probability model for the random variable X, given a spei� model and a spei�hoie of parameters for that model.4 Also, in the Bayesian approah, p(� jm) refers to the priorprobability that we attah to the parameters �, and p(� jx;m) refers to the orresponding posterior.We wish to develop methods for hoosing m based on the data x.Let us begin with the Bayesian approah. Reall that unknowns are treated as random variablesin the Bayesian approah; thus we introdue a random variable M to denote the model. The range4For simpliity we use the same notation � to represent the parameters in eah of the models; in general we ouldallow the parameterization to vary with m.



5.3. MODEL SELECTION AND MODEL AVERAGING 39of M is M, and m denotes a realization of M . The goal of Bayesian analysis is to alulate theposterior probability of M , onditioning on the data x:p(m jx) = p(x jm)p(m)p(x) : (5.62)Note two important features of this equation. First, as in the ase of parameter estimation, werequire a prior probability; in partiular, we need to speify the prior probability p(m) of the modelm. Seond, note the absene of expliit mention of the parameter �. The probabilities needed forBayesian model seletion are marginal probabilities.Let us onsider this latter issue in more detail. The alulation of the posterior probabilityin Eq. (5.62) requires the probability p(x jm), a onditional probability that is referred to as themarginal likelihood. We ompute the marginal likelihood from the likelihood by integrating overthe parameters: p(x jm) = Z p(x; � jm)d� (5.63)= Z p(x j �;m)p(� jm)d�; (5.64)where the prior probability p(� jm) plays the role of a weighting funtion. Multiplying the marginallikelihood by the prior probability p(m) yields the desired posterior p(m jx), up to the normalizationfator p(x).If we wish to use the posterior to selet a model, then we must ollapse the posterior to a point.As in the ase of parameter estimation, various possibilities present themselves; in partiular, apopular approah is to pik the model that maximizes the posterior probability. An advantage ofthis approah is that it obviates the need to alulate the normalization onstant p(x).More generally, however, the Bayesian approah aims to use the entire posterior. To illustratethe use of the model posterior, let us again onsider the problem of predition. Taking Xnew to beonditionally independent of X, given � and m, we have:p(xnew jx) = Z Z p(xnew; �;m jx)d�dm (5.65)= Z Z p(xnew j �;m)p(�;m jx)d�dm (5.66)= Z Z p(xnew j �;m)p(� jx;m)p(m jx)d�dm: (5.67)From this latter equation, we see that a full Bayesian approah to predition requires two posteriorprobabilities: the model posterior p(m jx) from Eq. (5.62) and the parameter posterior p(� jx;m)from Eq. (5.1). These posteriors an be viewed as \weights" for the predition p(xnew j �;m); thetotal predition an be viewed as a \weighted predition." This approah to predition is referredto as model averaging.It should be aknowledged that it is a rare irumstane in whih the integrals in Eq. (5.64)and Eq. (5.67) an be done exatly, and Bayesian model averaging and model seletion generallyinvolve making approximations. We will disuss some of these approximations in Chapter 26.



40 CHAPTER 5. STATISTICAL CONCEPTSFrequentist approahes to model seletion avoid the use of prior probabilities and Bayes rule.Rather, one onsiders various model seletion proedures, and evaluates these proedures in terms ofvarious frequentist riteria. For example, one ould onsider a senario in whih the true probabilitydensity is assumed to lie within the lass M, and ask that a model seletion proedure pik thetrue model with high frequeny. Alternatively, one ould ask that the proedure selet the \best"model inM, where \best" is de�ned in terms of a measure suh as the Kullbak-Leibler divergenebetween a model and the true probability density.It is important to understand that maximum likelihood itself annot be used as a model seletionproedure. Augmenting a model with additional parameters annot derease the likelihood, andthus maximum likelihood will prefer more omplex models. More omplex models may of oursebe better than simpler models, if they provide aess to probability densities that are signi�antlyloser to the true density, but at some point there are diminishing returns and more omplexmodels prinipally provide aess to additional poor models. The fat that we have to estimateparameters implies that with some probability we will selet one of the poor models. Thus the\variane" introdued by the parameter estimation proess an lead to poorer performane with amore omplex model. Maximum likelihood is unable to address this \over�tting" phenomenon.One approah to frequentist model seletion is to \orret" maximum likelihood to aountfor the variane due to parameter estimation. The AIC method to be disussed in Chapter 26exempli�es this approah. An alternative approah, also disussed in Chapter 26, is the ross-validation idea, in whih the data are partitioned in subsets, with one subset used to �t parametersfor various models, and another subset used to evaluate the resulting models.5.4 Appendix AIn this setion we alulate the posterior density of � in the univariate Gaussian density estimationproblem. Reall that the joint probability of x and � is given by:p(x; �) = 1(2��2)N=2 exp(� 12�2 NXn=1(xn � �)2) 1(2��2)1=2 expf� 12�2 (�� �0)2g; (5.68)and the problem is to normalize this joint probability.Let us fous on the terms involving �, treating all other terms as \onstants" and droppingthem throughout. We have:p(x; �) / exp(� 12�2 NXn=1 �x2n � 2xn�+ �2�� 12�2 ��2 � 2�0�+ �20�) (5.69)= exp(�12 NXn=1 � 1�2 �x2n � 2xn�+ �2�+ 1�2 ��2N � 2�0�N + �20N ��) (5.70)= exp(�12 NXn=1 �� 1�2 + 1N�2��2 � 2�xn�2 + �0N�2��+ C�) (5.71)



5.5. HISTORICAL REMARKS AND BIBLIOGRAPHY 41/ exp��12 ��N�2 + 1�2��2 � 2�N �x�2 + �0�2���� (5.72)/ exp(�12 �N�2 + 1�2�"�2 � 2�N�2 + 1�2��1�N �x�2 + �0�2��#) (5.73)= exp�� 12~�2 ��2 � 2~���� ; (5.74)where ~�2 = �N�2 + 1�2��1 (5.75)and ~� = N=�2N=�2 + 1=�2 �x+ 1=�2N=�2 + 1=�2 �0; (5.76)This identi�es the posterior as a Gaussian distribution with mean ~� and variane ~�2.5.5 Historial remarks and bibliography


