
An Introdution to Probabilisti Graphial ModelsMihael I. JordanUniversity of California, BerkeleyJune 30, 2003

2

Chapter 4Probability Propagation and FatorGraphsIn this hapter we desribe an algorithm for probabilisti inferene known as the sum-produt, orbelief propagation, algorithm. The algorithm is losely related to the elimination algorithm, andindeed we will derive it from the perspetive of elimination. The algorithm goes signi�antly beyondthe elimination algorithm, however, in that it an ompute all single-node marginals (for ertainlasses of graphs) rather than only a single marginal.It is important to be lear that we are also taking a step bakward in this hapter|while theelimination algorithm is appliable to arbitrary graphs, the sum-produt algorithm is designed towork only in trees (or in the various \tree-like" graphs that we disuss in this hapter). Despite thisstep bakward, there are at least three reasons why the sum-produt algorithm overall representssigni�ant progress: (1) Trees are important graphs. Indeed, a signi�ant fration of the lassialliterature on graphial models was entirely restrited to trees, and many of these lassial applia-tions require the ability to ompute all singleton marginals. Examples inlude the hidden Markovmodel of Chapter 12 and the state-spae model of Chapter 15. (2) The sum-produt algorithmprovides new insights into the inferene problem, insights whih will eventually allow us to providea general solution to the exat inferene problem (the juntion tree algorithm of Chapter 17). Thesum-produt algorithm essentially involves an eÆient \alulus of intermediate fators," whihreognizes that many of the same intermediate fators are used in di�erent elimination orderings.The juntion tree algorithm extends this alulus to general graphs, by essentially ombining thekey ideas of the sum-produt algorithm and the elimination algorithm. (3) While our fous in theurrent hapter is exat inferene, the sum-produt algorithm also provides the basis of a lass ofapproximate inferene algorithms for general graphs, as we disuss in Chapter 20.Another goal of the urrent hapter is to introdue fator graphs, an alternative graphial rep-resentation of probabilities that is of partiular value in the ontext of the sum-produt algorithm.In partiular, we will show that the fator graph approah provides an elegant way to handle vari-ous general \tree-like" graphs, inluding \polytrees," a lass of direted graphial models in whihnodes have multiple parents.Finally, we also broaden our agenda in the urrent hapter, moving beyond the problem of om-3

4 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

(a) (b) (c)Figure 4.1: (a) An undireted tree. (b) A direted tree. () A polytree.puting marginal and onditional probabilities to the problem of omputing maximum a posterioriprobabilities. We show that this problem an be solved via an algorithm that is losely related tothe sum-produt algorithm.The hapter is organized as follows. In Setion 4.1 we begin with a disussion of probabilistiinferene on trees, treating both the direted ase and the undireted ase. Setion ?? introduesfator graphs, disusses the relationships with direted and undireted graphs, and develops thesum-produt algorithm for fator graphs. We disuss polytrees in Setion 4.2.4, and disuss algo-rithms for omputing maximum a posteriori probabilities in Setion 4.3.4.1 Probabilisti inferene on treesIn this setion we desribe an inferene algorithm for trees. Let us �rst larify exatly what is meantby a \tree." In the undireted ase, a tree is an undireted graph in whih there is one and onlyone path between any pair of nodes. An example of an undireted tree is shown in Figure 4.1(a).1In the direted ase, we de�ne a tree to be any graph whose moralized graph is an undiretedtree. Figure 4.1(b) shows a direted tree. Note that direted trees have a single node that has noparent|the root node|and that all other nodes have exatly one parent. Finally, note that thegraph in Figure 4.1() is not a direted tree; it has nodes with multiple parents, and the resultingmoralized graph has loops.Any undireted tree an be onverted into a direted tree by hoosing a root node and orientingall edges to point away from the root.From the point of view of graphial model representation and inferene there is little signi�antdi�erene between direted trees and undireted trees. A direted tree and the orrespondingundireted tree (the tree obtained by dropping the diretionality of the edges) make exatly thesame set of onditional independene assertions. Morever, as we show below, the parameterizations1Note that throughout the hapter we assume impliitly that our graphs are onneted, and thus we have a singletree rather than a forest. This is done without loss of generality|in the ase of a forest we have a olletion ofprobabilistially independent trees, and it suÆes to run an inferene algorithm separately on eah tree.

4.1. PROBABILISTIC INFERENCE ON TREES 5are essentially the same, with the undireted parameterization being slightly more exible by notrequiring potentials to be normalized (but, see Exerise ??, any undireted representation an bereadily onverted to a direted one).4.1.1 Parameterization and onditioningLet us �rst onsider the parameterization of probability distributions on undireted trees. Theliques are single nodes and pairs of nodes, and thus the joint probability an be parameterized viapotential funtions f (xi)g and f (xi; xj)g. In partiular, we have:p(x) = 1Z 0�Yi2V (xi) Y(i;j)2E (xi; xj)1A ; (4.1)for a tree T (V; E) with nodes V and edges E .For direted trees, the joint probability is formed by taking a produt over a marginal proba-bility, p(xr), at the root node r, and onditional probabilities, fp(xj jxi)g, at all other nodes:p(x) = p(xr) Y(i;j)2E p(xj jxi); (4.2)where (i; j) is a direted edge suh that i is the (unique) parent of j (i.e., fig = �j). We an treatsuh a parameterization as a speial ase of Eq. (4.1), and indeed it will be onvenient to do sothroughout this hapter. We de�ne: (xr) = p(xr) (4.3) (xi; xj) = p(xj jxi); (4.4)for i the parent of j, and de�ne all other singleton potentials, (xi), for i 6= r, to be equal to one.We thereby express the joint probability for a direted tree in the undireted form in Eq. (4.1),with Z = 1.Reall that we use \evidene potentials" to apture onditioning. Thus, if we are interested inthe onditional probability p(xF j �xE), for some subset E, we de�ne evidene potentials Æ(xi; �xi), fori 2 E, and multiply the joint probability by the produt of these potentials. This simply reduesto multiplying (xi) by Æ(xi; �xi), for i 2 E. In partiular, we de�ne: Ei (xi) , � i(xi)Æ(xi; �xi) i 2 E i(xi) i =2 E; (4.5)and substitute in Eq. (4.1) to obtain:p(x j �xE) = 1ZE 0�Yi2V E(xi) Y(i;j)2E (xi; xj)1A ; (4.6)

6 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHSwhere ZE =Px �Qi2V E(xi)Q(i;j)2E (xi; xj)�. Note that the original Z vanishes.In summary, the parameterization of unonditional distributions and onditional distributionson trees is formally idential, involving a produt of potential funtions assoiated with eah nodeand eah edge in the graph. We an thus proeed without making any speial distintion betweenthe unonditional ase and the onditional ase.Are there any speial features of direted trees that we lose in working exlusively with theundireted formalism? One feature of the parameterization for direted trees is that any summationof the formPxj p(xj jxi) is neessarily equal to one, and does not need to be performed expliitly.Indeed, in the unonditional ase, we an arrange things suh that all sums are of this form, byhoosing an elimination ordering that begins at the leaves and proeeds bakward to the root.(This shows that the normalization fator Z is neessarily equal to one in the unonditional ase).When we ondition, however, the resulting produt of potentials is unnormalized (the normalizationfator ZE is no longer one), and we are brought loser to the general undireted ase. It is still thease that we an \prune" any subtree that ontains only variables that are not onditioned on, byagain eliminating bakwards. We view this as an implementation detail, however, assuming thatany implementation of an inferene algorithm will be smart enough to prune suh subtrees at theoutset. We then �nd ourselves in a situation in whih the leaves of the tree are evidene nodes, andall of the sums have to be performed expliitly. In this ase, there is no essential di�erene betweenthe direted ase and the undireted ase, and in developing the general algorithm for inferene ontrees, it is onvenient to fous exlusively on the latter.4.1.2 From elimination to message-passingIn this setion and the following setion, we derive the Sum-Produt algorithm, a general algo-rithm for probabilisti inferene on trees. The algorithm involves a simple mathematial updateequation|a sum over a produt of potentials|applied one for eah outgoing edge at eah node.We derive this update equation from the point of view of the Eliminate algorithm. We subse-quently prove that a more general algorithm based on this update equation �nds all (singleton)marginals simultaneously.Let us begin by returning to Eliminate, but speializing to the ase of a tree. Reall thebasi struture of Eliminate: (1) Choose an elimination ordering I in whih the query node fis the �nal node; (2) Plae all potentials on an ative list; (3) Eliminate a node i by removingall potentials referening the node from the ative list, taking the produt, summing over xi, andplaing the resulting intermediate fator bak on the ative list. What are the speial features ofthis proedure when the graph is a tree?To take advantage of the reursive struture of a tree, we need to speify an elimination orderingI that respets this struture. In partiular, we onsider elimination orderings that arise from adepth-�rst traversal of the tree. Treat f as a root and view the tree as a direted tree by diretingall edges of the tree to point away from f . We now onsider any elimination ordering in whih anode is eliminated only after all of its hildren in the direted version of the tree are eliminated.It an be easily veri�ed that suh an elimination ordering proeeds inward from the leaves, andgenerates elimination liques of size at most two (showing that the tree-width of a tree is equal to

4.1. PROBABILISTIC INFERENCE ON TREES 7
i

j

to root
i

j

m ji ()xi

mkj ()xj mlj ()xj

k l

(a) (b)Figure 4.2: (a) A fragment of an undireted graph. Nodes i and j are neighbors, with i nearer tothe root than j. (b) The messages that are reated when nodes k, l and j are eliminated.one).Let us now onsider the elimination step. Consider nodes i and j that are neighbors in the tree,where i is loser to the root than j (see Figure 4.2(a)). We are interested in the intermediate fatorthat is reated when j is eliminated. This intermediate fator is a sum over a produt of ertainpotentials. Whih potentials are these? Clearly (xi; xj) is one of these potentials, given that itreferenes xj and given that i has yet to be eliminated. Also, E(xj) will appear. We an alsoexlude a number of possibilities. In partiular, none of the potentials in the produt an refereneany variable in the subtree below j, given that all of these variables have already been eliminated.Moreover, none of these potentials an referene any other variable outside the subtree, due to theassumption that the graph is a tree. That is, for a node k in the subtree and a node l outside ofthe subtree, there an be no potential (xk; xl) in the probability model. Thus, when eliminatingnodes in the subtree, we an never introdue any variable outside of the subtree into a summandand thus into an intermediate fator.We have shown that the intermediate fator reated by the sum over xj is a funtion solely ofxi. Let us introdue the notation \mji(xi)" to denote this term, where the �rst subsript denotesthe variable being eliminated and the seond subsript denotes the (sole) remaining neighbor of thevariable (the \buket" in the language of Setion ??). Note that the latter index is superuous in theontext of Eliminate|it is determined by the graph struture and the elimination ordering|but

8 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHSit will be needed in the ontext of the more general Sum-Produt algorithm.We refer to the intermediate fator mji(xi) as a \message" that j sends to i. As suggested byFigure 4.2(b), we an think of this message as \owing" along the edge linking j to i.Let us now onsider the mathematial operation that reates the messagemji(xi) in more detail.In partiular, onsider the potentials that are seleted from the ative list when we eliminate nodej|the potentials that referene xj . As we mentioned earlier, the potentials (xi; xj) and E(xj)are among the potentials seleted. The other potentials that are seleted are those reated inearlier elimination steps in whih the neighbors of node j (other than i) are eliminated. As shownin Figure 4.2(b), these steps an be viewed as reating messages mkj(xj), messages that ow fromeah neighbor k|where k 2 N (j)ni|to j.Thus, following the protool of the Eliminate algorithm, to eliminate xj we take the produtover all potentials that referene xj and sum over xj :mji(xi) =Xxj 0� E(xj) (xi; xj) Yk2N (j)nimkj(xj)1A : (4.7)This is the intermediate fator (\message") that j sends to i.Finally, let us onsider the �nal node f in the elimination ordering I. All other nodes have beeneliminated when we arrive at f , and thus messages mef (xf) have been omputed for eah of theneighbors e 2 N (f). These messages, and the potential E(xf), are the only terms on the ativelist at this point. Thus, again following the protool of Eliminate, we write the marginal of xf asthe following produt: p(xf j �xE) / E(xf) Ye2N (f)mef (xf); (4.8)where the proportionality onstant is obtained by summing the right-hand side with respet to xf .Eqs. (4.7) and (4.8) provide a onise mathematial summary of the Eliminate algorithm,for the speial ase of a tree. Leaving behind the algorithmi details of Eliminate, we see thatprobabilisti inferene essentially involves solving a oupled system of equations in the variablesmji(xi). To ompute p(xf), we solve these equations in an order that orresponds to a depth-�rsttraversal of a direted tree in whih f is the root.4.1.3 The Sum-Produt algorithmIn this setion we show that Eqs. (4.7) and (4.8) suÆe for obtaining not only a single marginal,but also for obtaining all of the marginals in the tree. The (somewhat magial) fat is that we anobtain all marginals by simply doubling the amount of work required to ompute a single marginal.In partiular, as we will show, after having passed messages inward from the leaves of the tree toan (arbitrary) root, we simply pass messages from the root bak out to the leaves, again usingEq. (4.7) at eah step. The net e�et is that a single message will ow in both diretions alongeah edge. One all suh messages have been omputed, we invoke Eq. (4.8) independently at eahnode; this yields the desired marginals.

4.1. PROBABILISTIC INFERENCE ON TREES 9One way to understand why this algorithm works is to onsider the naive approah of omputingall marginals by using a di�erent elimination ordering for eah marginal. Consider in partiularthe tree fragment shown in Figure 4.3(a). To ompute the marginal of X1 using elimination, weeliminate X4 and X3, whih, as we have seen, involves omputing messages m42(x2) and m32(x2)that are sent to X2. We subsequently eliminate X2, whih reates a message m21(x1) that is sentfrom X2 to X1.Now suppose that we wish to ompute the marginal at X2 using elimination. As shown inFigure 4.3(b), we eliminate X4, X3, and X1, passing messages m42(x2), m32(x2) and m12(x2) toX2. The message m12(x2) is new, but (ruially) m42(x2) and m32(x2) are the same messages asomputed earlier. Similarly, if we wish to ompute the marginal at X4, as shown in Figure 4.3(),we need a new message m24(x4), but we an reuse the messages m32(x2) and m12(x2). In general,if we ompute a message for eah diretion along eah edge in the tree, as shown in Figure 4.3(d),we an obtain all singleton marginals.The idea that messages an be \reused" is important. In e�et we an ahieve the e�etof omputing over all possible elimination orderings (a huge number) by omputing all possiblemessages (a small number). This is the key insight behind the Sum-Produt algorithm.The Sum-Produt algorithm is based on Eqs. (4.7), (4.8), and a \protool" that determineswhen any one of these equations an be invoked. The protool is given as follows:Message-Passing Protool. A node an send a message to a neighboring node when (and onlywhen) it has reeived messages from all of its other neighbors.There are two prinipal ways to implement algorithms that respet this protool. The �rst(and most diret) way is to interpret the protool as the spei�ation of a parallel algorithm. Inpartiular, let us view eah node as a proessor, and assume that the node an repeatedly pollits inoming edges for the presene of messages. For a node of degree d, whenever messages havearrived on any subset of d � 1 edges, the node omputes a message for the remaining edge anddelivers the message along that edge.An example is shown in Figure 4.4. We assume a synhronous parallel algorithm, and at eahstep show the messages that are delivered along the edges. Note that messages start to ow in fromthe leaves. Note also that when the algorithm terminates, it is the ase that a pair of messageshave been omputed for eah edge, one for eah diretion. Finally, note that all inoming messagesare eventually omputed for eah node, and that Eq. (4.8) an therefore be invoked at eah nodeto ompute the node marginal.For this algorithm to be meaningful in general, we need to insure that all messages will eventuallybe omputed and delivered; that is, that the algorithm will never \blok." We provide a proof thatthe protool is non-bloking in Corollary ?? below.We an also onsider sequential implementations of the Sum-Produt algorithm, in whihmessages are omputed aording to a partiular \shedule." One suh shedule (a shedule that iswidely used in pratie) is a two-phase shedule based on depth-�rst traversal from an arbitrary rootnode.2 In the �rst phase, messages ow inward from the leaves toward the root (as in Setion 4.1.2).2The original graph may have been a direted tree, with a orresponding root node. The \root" that is designatedfor the purposes of the Sum-Produt algorithm is unrelated to this root node.

10 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

m32 ()x2 m42 ()x2

m12 ()x1

(a)

3X

2X

4X

1X

m32 ()x2 m42 ()x2

(b)

m12 ()x2

3X

2X

4X

1X

m32 ()x2

m24 ()x4

(c)

m12 ()x2

3X

2X

4X

1X

m32 ()x2

m23 ()x3

m12 ()x2

m42 ()x2

m24 ()x4

m12 ()x1

(d)

3X

2X

4X

1X

Figure 4.3: (a) The messages formed when omputing the marginal of X1. (b) The messages formedwhen omputing the marginal of X2. () The messages formed when omputing the marginal ofX4. (d) All of the messages needed to ompute all singleton marginals.

4.1. PROBABILISTIC INFERENCE ON TREES 11

(a) (b)

(c) (d)Figure 4.4: Message-passing under a synhronous parallel algorithm. The solid arrows are themessages passed at a given time step, and the dashed arrows are those passed on earlier time steps.

12 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS
Sum-Produt(T , E)Evidene(E)f = ChooseRoot(V)for e 2 N (f)Collet(f; e)for e 2 N (f)Distribute(f; e)for i 2 VComputeMarginal(i)Evidene(E)for i 2 E E(xi) = (xi)Æ(xi; �xi)for i =2 E E(xi) = (xi)Collet(i; j)for k 2 N (j)niCollet(j; k)SendMessage(j; i)Distribute(i; j)SendMessage(i; j)for k 2 N (j)niDistribute(j; k)SendMessage(j; i)mji(xi) =Xxj (E(xj) (xi; xj) Yk2N (j)nimkj(xj))ComputeMarginal(i)p(xi) / E(xi) Yj2N (i)mji(xi)

i

j

k

i

j

kFigure 4.5: A sequential implementation of the Sum-Produt algorithm for a tree T (V; E). Thealgorithm works for any hoie of root node, and thus we have left ChooseRoot unspei�ed. Aall to Collet auses messages to ow inward from the leaves to the root. A subsequent all toDistribute auses messages to ow outward from the root to the leaves. After these alls havereturned, the singleton marginals an be omputed loally at eah node.

4.2. FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM 13In the seond phase|whih is initiated one all inoming messages have been reeived by the rootnode|messages ow outward from the root toward the leaves. In Figure 4.5, we show how suha shedule an be implemented via a pair of reursive funtion alls. In Exerise ??, we ask thereader to show that this shedule respets the Message-Passing Protool, and to show that theoverall e�et of the shedule is that a single message ows in eah diretion along eah and everyedge.4.1.4 Proof of orretness of the Sum-Produt algorithm3[Setion not yet written℄.4.2 Fator graphs and the Sum-Produt algorithmThe graphial model representations that we have disussed thus far|direted and undiretedgraphial models|aim at haraterizing probability distributions in terms of onditional indepen-dene statements. Fator graphs, an alternative graphial representation of probability distribu-tions, aim at apturing fatorizations. As we have disussed (see Setion ??), while losely related,onditional independene and fatorization are not exatly the same onepts. Reall in partiularour disussion of the parameterization of the omplete graph on three nodes. This graph makesno onditional independene assertions, and the orresponding parameterization is simply the ar-bitrary potential (x1; x2; x3). However, we may be interested in endowing the potentials withalgebrai struture, for example: (x1; x2; x3) = fa(x1; x2)fb(x2; x3)f(x1; x3); (4.9)for given funtions fa, fb and f. Suh a fatorized potential de�nes a proper subset of the family ofprobability distributions assoiated with the omplete graph, a subset whih has no interpretationin terms of onditional independene. Fator graphs provide a onvenient way to represent subsetsof this kind.In the following setion, we introdue the general fator graph representation, and disuss itsrelationships to direted and undireted graphs. We then fous on the speial ase of fator trees(fator graphs that are trees), and desribe the variant of the Sum-Produt algorithm that isgeared to fator trees.4.2.1 Fator graphsGiven a set of variables fx1; x2; : : : ; xng, we let C denote a set of subsets of f1; 2; : : : ; ng. Thus,for example, given variables fx1; x2; x3; x4; x5g, we might have C = ff1; 3g; f3; 4g; f2; 4; 5g; f1; 3gg.Note that C is a multiset|we allow the same subset of indies to appear multiple times. To avoidambiguity, we therefore index the members of C using an index set F ; thus, C = fCs : s 2 Fg.3This setion an be skipped without loss of ontinuity.

14 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHSTo eah index s 2 F , we assoiate a fator fs(xCs), a funtion on the subset of variablesindexed by Cs. In our example, letting F = fa; b; ; dg denote the indies, the fators are fa(x1; x3),fb(x3; x4), f(x2; x4; x5) and fd(x1; x3).Note also that there is no assumption that the subsets C orrespond to liques of an underlyinggraph. Indeed, at this point we do not have any graph struture in mind|C is just an arbitraryolletion of subsets of indies.Given a olletion of subsets and the assoiated fators, we de�ne a multivariate funtion onthe variables fx1; x2; : : : ; xng by taking the produt:f(x1; x2; : : : ; xn) , SYs=1 fs(xCs): (4.10)Our goal will be to de�ne a graphial representation of this funtion that will permit the eÆientevaluation of marginal funtions|funtions of a single variable obtained by summing over all othervariables.Fatorized funtions in the form of Eq. (4.11) our in many areas of mathematis, and themethods that we desribe in this setion has numerous appliations outside of probability theory.Our interest, however, will be foused on fatorized representations of probability distributions, andindeed the fatorized probability distributions assoiated with direted and undireted graphialmodels provide examples of the general produt-of-fators in Eq. (4.11).4We now introdue a graphial representation of Eq. (4.11). This graphial representation|thefator graph|di�ers from direted and undireted graphial models in that it inludes expliitnodes for the fators as well as the variables. We use round nodes to represent the variables andsquare nodes to represent the fators.Formally, a fator graph is a bipartite graph G(V;F ; E), where the verties V index the variablesand the verties F index the fators. The edges E are obtained as follows: eah fator node s 2 Fis linked to all variable nodes in the subset Cs. These are the only edges in the graph.An example of a fator graph is shown in Figure 4.6. This graph represents the fatorizedfuntion: f(x1; x2; x3; x4; x5) = fa(x1; x3)fb(x3; x4)f(x2; x4; x5)fd(x1; x3): (4.11)Note that fa(x1; x3) and fd(x1; x3) refer to the same set of variables. In an undireted graphialmodel these fators would be ollapsed into a single potential funtion, (x1; x3). In a fator graphthese funtions are allowed to maintain a separate identity.It will prove useful to de�ne neighborhood funtions on the nodes of a fator graph. In partiular,let N (s) � V denote the set of neighbors of a fator node s 2 F , and let N (i) � F denote theset of neighbors of a variable node i 2 V. Note that N (s) refers to the indies of all variablesreferened by the fator fs, and is idential to the subset Cs introdued earlier. On the other hand,the neighborhood set N (i), for a variable node i, is the set of all fators that referene the variablexi. Direted and undireted graphial models an be readily onverted to fator graphs. For ex-ample, the direted graphial model shown in Figure 4.7(a) an be represented as a fator graph4The normalization fator Z in the parameterization of undireted graphial models an be treated as a fator

4.2. FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM 15
1X 2X 3X X 4 X 5

af bf cf dfFigure 4.6: An example of a fator graph.
1X

3X

X 5

1X

2X

3X

X 4

X 5

2X

X 4

af

bf

cf

df

ef

(a) (b)Figure 4.7: (a) A direted graphial model. (b) The orresponding fator graph. Note that thereare six fator nodes, one for eah loal onditional probability in the direted graph.

16 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS
af bf

cf

1X

2X 3X

f

(a) (b) (c)

1X

2X 3X

1X

2X 3XFigure 4.8: (a) An undireted graphial model provides no information about possible fatoriza-tions of the potential funtion assoiated with a given lique. (b) The fator graph orrespondingto the fatorized potential (x1; x2; x3) = fa(x1; x2)fb(x2; x3)f(x1; x3). () The fator graph or-responding to the non-fatorized potential (x1; x2; x3) = f(x1; x2; x3).as shown in Figure 4.7(b).5By representing eah fator as a node in the graph, fator graphs provide a more �ne-grainedrepresentation of probability distributions than is provided by direted and undireted graphialmodels. In partiular, returning to the omplete graph on three nodes shown in Figure 4.8(a),fator graphs make it possible to display �ne-grained assumptions about the parameterization:Figure 4.8(b) shows the fator graph orresponding to the general potential (x1; x2; x3), whileFigure 4.8() shows the fator graph orresponding to the fatorized potential in Eq. (4.9).It is worth noting that it is always possible to mimi the �ne-grained representation of fatorgraphs within the direted and undireted formalisms, so that formally fator graphs provide noadditional representational power. For example, in Figure 4.9(a) we show an undireted graphthat an represent the fatorization in Eq. (4.9). In this graph, we have introdued three newrandom variables, Z1, Z2, and Z3. These variables are indiator variables piking out partiularombinations of the underlying variables X1, X2 and X3. Thus, for example, for binary X1 and X2,Z1 would take on four possible values, one for eah pair of values of X1 and X2, and the potentialfuntion (z1) would be set equal to the orresponding value of fa(x1; x2). (We ask the reader to�ll in the details of this onstrution in Exerise ??).Similarly, in Figure 4.9(b), we show a direted graph that mimis the fatorization in Eq. (4.9).In this graph, the three new variables, W1, W2, and W3, are binary variables that are always setequal to one. We set p(W1 = 1 jx1; x2) to the orresponding value of fa(x1; x2). (We again ask thereader to supply the details in Exerise ??).assoiated with the empty set|whih is appropriate given that it is a onstant.5In general, in the direted ase eah fator is a loal onditional probability, and the subsets Cs orrespond to\families" onsisting of a node and its parents. Given that we do not assume that the subsets Cs orrespond toliques of an underlying graph, we do not need to \moralize" in the fator graph formalism. This is onsistent withthe fat that the fator graph does not attempt to represent onditional independenies.

4.2. FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM 17
1X

2X 3X

1Z

2Z

3Z

1X

2X 3X

1W

2W

3W

(a) (b)Figure 4.9: (a) An undireted graph that mimis the fatorization shown in Figure 4.8(b) forappropriate hoies of the indiator variables Zi. (b) A direted graph that mimis the fatorizationshown in Figure 4.8(b) for appropriate hoies of the indiator variables Wi.In general, by introduing additional variables in a direted or undireted graph, we an mimithe fatorization that is made expliit in the fator graph. However, this proedure is arguablyrather arti�ial, and the fator graph representation provides a natural omplement to undiretedor direted graphs for situations in whih a �ne-grained representation of potentials is desired.4.2.2 The Sum-Produt algorithm for fator treesWe now turn to the inferene problem for fator graphs. As before, our goal is to ompute allsingleton marginal probabilities under the fatorized representation of the joint probability. In thissetion we show how to do this for fator graphs that are trees.A fator graph is de�ned to be a fator tree if the undireted graph obtained by ignoring thedistintion between variable nodes and fator nodes is an undireted tree. Restriting ourselvesto trees, we de�ne a variant of the Sum-Produt algorithm that provides all singleton marginalprobabilities for fator trees.As in the earlier Sum-Produt algorithm, we de�ne messages that ow along the edges ofthe graph. In the ase of fator trees, there are two kinds of messages: messages � that ow fromvariable nodes to fator nodes, and messages � that ow from fator nodes to variable nodes.These messages take the following form. We �rst onsider the messages that ow from variablenodes to fator nodes. As depited in Figure 4.10(a), the message �is(xi) that ows between thevariable node i and the fator node s is omputed as follows:�is(xi) = Yt2N (i)ns�ti(xi); (4.12)where the produt is taken over all inoming messages to variable node i, other than the messagefrom the fator node s that is the reipient of the message.

18 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

(a) (b)

νis()xi µsi()xi

µ ti ()xi

µui()xi νks()xk

νjs()xj

Xi

Xk

Xj

fs

ft

fu

Xi fs

Figure 4.10: (a) The omputation of the message �is(xi) that ows from fator node s to variablenode i. (b) The omputation of the message �si(xi) that ows from variable node i to fator nodes. Similarly, as shown in Figure 4.10(b), a message �si(xi) ows between the fator node s andthe variable node i. This message is omputed as follows:�si(xi) = XxN (s)ni0�fs(xN (s)) Yj2N (s)ni �js(xj)1A : (4.13)Note that the produt is taken over all inoming messages to fator node s, other than the messagefrom the variable node i that is the reipient of the message.Thus we have a oupled set of equations for a set of messages. As in our earlier Sum-Produtalgorithm, a full spei�ation of the algorithm requires a determination of when a given equationan be invoked. The protool turns out to be exatly the same as the earlier protool:Message-Passing Protool. A node an send a message to a neighboring node when (and onlywhen) it has reeived messages from all of its other neighbors.In the fator tree ase, the protool applies to both variable nodes and fator nodes.Finally, one a message has arrived at eah node from all of its neighbors, the marginal proba-bility of a node is obtained as follows: p(xi) / Ys2N (i)�si(xi): (4.14)Given the de�nition of �is(xi) in Eq. (4.12), this an also be written as follows:p(xi) / �is(xi)�si(xi); (4.15)for any s 2 N (i). That is, the marginal probability of node i an be obtained by taking the produtof the pair of messages owing along any edge inident on node i.

4.2. FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM 19A sequential implementation of the Sum-Produt algorithm for fator trees is provided inFigure 4.11.Consider the example shown in Figure 4.6(a). The fator tree representation of this model isshown in Figure 4.12(b). Let us run through the steps of the Sum-Produt algorithm. In the�rst step, shown in Figure 4.12(), the only nodes that are able to send messages are the leafnodes. These leaf nodes are fator nodes, and the produt in Eq. (4.13) is a vauous produt,whih by onvention we set equal to one. Moreover, the sum in Eq. (4.13) is a vauous sum.Thus, the message that ows in from a leaf node is simply the fator assoiated with that node:�si(xi) = E(xi), for i 2 V.The seond stage in the proess is also rather uninteresting. As shown in Figure 4.12(d), thevariable nodes X1 and X3 are able to send messages in this stage. For eah node, the produt inEq. (4.12) is omposed of only a single fator, and thus this fator is simply passed along the hain.Now onsider the third stage, shown in Figure 4.12(e). At the fator nodes along the bakboneof the hain, a sum is taken over the produt of the inoming message and the fator residing at thatnode. In the ase of the message �d2(x2), this yields �d2(x2) =Px1 E(x1) (x1; x2), and, similarly,�e2(x2) = Px3 E(x3) (x2; x3). Note that these messages are the same as the orrespondingmessages that would pass in a run of the Sum-Produt algorithm for the undireted graph inFigure 4.12(a). That is, we have: �d2(x2) = m12(x2), and �e2(x2) = m32(x2).Finally, in Figure 4.12(f), Figure 4.12(g), and Figure 4.12(h), we show the remaining stepsof the algorithm. The reader an again verify a orrespondene with the messages that wouldbe omputed in Figure 4.12(a): �d1(x1) = m21(x1) and �e3(x3) = m23(x3). By the end of thealgorithm, a message has passed in both diretions along every edge.In general, if we start with a graph that is an undireted tree and onvert to a fator graph,then we �nd that there is a diret relationship between the \m messages" of the Sum-Produtalgorithm for the undireted graph and the \� messages" of the Sum-Produt algorithm for thefator graph. Consider the graph fragment shown in Figure 4.13(a) and the orresponding fatorgraph representation in Figure 4.13(b). We laim that mji(xi) in the undireted graph is equal to�si(xi) in the fator graph. Indeed, we have:�si(xi) = XxN (s)ni0�fs(xN (s)) Yj2N (s)ni �js(xj)1A (4.16)= Xxj (xi; xj)�js(xj) (4.17)= Xxj (xi; xj) Yt2N (j)ns�tj(xj) (4.18)= Xxj 0� E(xj) (xi; xj) Yt2N 0(j)ns�tj(xj)1A ; (4.19)where N 0(j) denotes the neighborhood of j, omitting the singleton fator node assoiated with E(xj). We see that the expression for �si(xi) is formally idential to the update equation formji(xi) in Eq. (4.7).

20 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHSSum-Produt(T , E)Evidene(E)f = ChooseRoot(V)for s 2 N (f)�-Collet(f; s)for s 2 N (f)�-Distribute(f; s)for i 2 VComputeMarginal(i)�-Collet(i; s)for j 2 N (s)ni�-Collet(s; j)�-SendMessage(s; i)�-Collet(s; i)for t 2 N (i)ns�-Collet(i; t)�-SendMessage(i; s)�-Distribute(s; i)�-SendMessage(s; i)for t 2 N (i)ns�-Distribute(i; t)�-Distribute(i; s)�-SendMessage(i; s)for j 2 N (s)ni�-Distribute(s; j)�-SendMessage(s; i)�si(xi) = XxN (s)ni(fs(xN (s)) Yj2N (s)ni �js(xj))�-SendMessage(i; s)�is(xi) = Yt2N (i)ns�ti(xi)ComputeMarginal(i)p(xi) / �is(xi)�si(xi)Figure 4.11: A sequential implementation of the Sum-Produt algorithm for a fator treeT (V;F ; E). The algorithm works for any hoie of root node, and thus we have left Choose-Root unspei�ed. The subroutine Evidene(E) is presented in Figure 4.5.

4.2. FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM 21
af bf cf

df ef

1X 2X 3X

µa ()x11

ν1 ()x1d

µb ()x22 µc ()x33

ν3 ()x3e

µe ()x22µd ()x22 ν2 ()x2d ν2 ()x2e

ν2 ()x2b

ν1 ()x1a

µd ()x11 µe ()x33

ν3 ()x3c

(a) (b)

(c) (d)

(e) (f)

(g) (h)

1X 2X 3X

Figure 4.12: (a) A three-node undireted graphial model. (b) The fator tree representation.()-(h) A run of the Sum-Produt algorithm on the fator tree.

22 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

(a) (b)

m ji ()xi

mkj ()xj)mlj (xj

Xi

Xj

Xk Xl

µ si()xi

Xi

Xj

Xk Xl

µ ti ()xj µuj()xj

ft fu

fs

fr

ψ ()xj

Figure 4.13: (a) A fragment of an undireted tree. (b) The orresponding fragment of a fator tree.From this observation and an indution argument, it is not diÆult to prove that the Sum-Produt algorithm for fator trees is orret for fator trees that are obtained from undiretedtrees, by simply translating between the two versions of the Sum-Produt algorithm. We leave thisas an exerise (Exerise ??). It is also straightforward to develop a standalone proof by indutionthat the general Sum-Produt algorithm for fator trees is orret, whih we again leave as anexerise.If a graph is originally a tree (undireted or direted), there is little to be gained by translatingto the fator graph framework. The payo� for fator graphs arises when we onsider various \tree-like" graphs, to whih we now turn.4.2.3 Tree-like graphsConsider the graph shown in Figure 4.14(a). Assuming that the three-node luster in the en-ter of the graph is parameterized by a general non-fatorized potential funtion, the probabilitydistribution assoiated with the graph is given by:p(x) / (x1; x2) (x3; x5) (x4; x6) (x2; x3; x4); (4.20)where for simpliity we have negleted the singleton potentials. Although this graph is not a tree,it is \nearly" a tree. In partiular, we ould replae the three variable X2, X3, and X4 with anew \super-variable" Z, whose range is the Cartesian produt of the ranges of the three individual

4.2. FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM 23

(a)

1X

2X

3X X 4

X 5 X6

(b) (c)

1X

2X

3X X 4

X 5 X6

Z

1X

2X

3X X 4

X 5 X6Figure 4.14: (a) An undireted graphial model in whih the enter luster of nodes is assumed tobe parameterized as a non-fatorized potential, (x2; x3; x4). (b) An equivalent undireted modelbased on the \super-variable" Z. () An equivalent fator graph.variables. By reating new potential funtions, (x1; z), (x5; z), (x6; z), and (z), we an mimithe fatorization in Eq. (4.20). Moreover, the orresponding undireted graphial model, shown inFigure 4.14(b), is a tree.We an also apture the probability distribution in Eq. (4.20) using a fator graph. In partiular,the graph translates diretly to the fator graph shown in Figure 4.14(). Note that the fatornode at the enter of the graph has three neighbors|representing the dependeny struture of thepotential (x2; x3; x4). Note also that the fator graph is a fator tree.We see that the distribution represented by the tree-like undireted graph in Figure 4.14(a)translates diretly to a tree in the fator graph framework. There is no need to invent new variablesand new potential funtions.Finally, of most signi�ane is that the Sum-Produt algorithm for fator trees applies diretlyto the graph in Figure 4.14(). The fat that the original graph is not a tree is irrelevant|thefator graph is a tree, and the algorithm is orret for general fator trees.In general, if the variables in an undireted graphial model an be lustered into non-overlappingliques, and the parameterization of eah lique is a general, non-fatorized potential, then the or-responding fator graph is a tree, and the Sum-Produt applies diretly.4.2.4 PolytreesA polytree is a tree-like graph that is important enough to merit its own setion. In this setion wedisuss the Sum-Produt algorithm for polytrees, again exploiting the fator graph framework.As we have disussed, direted trees are essentially equivalent to undireted trees, providingno additional representational apability and no new issues for inferene. On the other hand, the

24 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS

(a) (b)

1X 2X

3X X 4

X 5

1X 2X

3X

X 4

X 5Figure 4.15: (a) A polytree. (b) The fator graph representation of the polytree in (a). Note thatthe fator graph is a fator tree.direted graph shown in Figure 4.15(a) is a tree-like graph that does present new apabilities andnew issues. As we saw in Chapter 2, the presene of nodes with multiple parents in a direted graphimplies a onditional independene semantis that is not available in undireted graphs, inludingthe \explaining-away" semantis that we studied in Chapter 2. Not surprisingly, this semantis hasimpliations for inferene, onretely via the onditional probability p(xi jx�i) that links a nodewith its parents.A polytree is a direted graph that redues to an undireted tree if we onvert eah diretededge to an undireted edge. Thus, polytrees have no loops in their underlying undireted graph.One way to treat polytrees is via the \super-variable" approah. That is, we reate a newvariable for eah ombination of a node and its parents (eah family) and link the super-variables(with undireted edges). It is easy to see that the resulting graph is a tree. This approah, however,su�ers from the inelegane alluded to in the previous setion.Alternatively, we an use fator graphs. In Figure 4.15(b), we show the fator graph orre-sponding to the polytree in Figure 4.15(a). We see that the fator graph is a tree. Moreover, thereis a fator orresponding to eah family, representing the onditional probability p(xi jx�i).The fat that the fator graph orresponding to a polytree is a tree implies that the Sum-Produt algorithm for fator graphs applies diretly to polytrees.Historially, polytrees were an important step along the way in the development of generalexat inferene algorithms for graphial models. In 1983, Kim and Pearl desribed a general sum-produt-like algorithm for polytrees. As in the ase of the Sum-Produt algorithm for fatorgraphs, this algorithm also involves two kinds of messages|\� messages" owing from hildren toparents, and \� messages" owing from parents to hildren. The algorithm an be derived readilyfrom the Sum-Produt algorithm for the orresponding fator graph. We present the algorithmin Exerise ??, and ask the reader to provide the derivation.

4.3. MAXIMUM A POSTERIORI PROBABILITIES 254.3 Maximum a posteriori probabilitiesIn this setion we disuss a new problem|that of omputing maximum a posteriori probabilities.Whereas the marginalization problem that we have addressed up until now involves summing overall on�gurations of sets of random variables, the maximum a posteriori (MAP) problem involvesmaximizing over suh on�gurations. The problem has two aspets|that of �nding the maximalprobability and that of �nding a on�guration that ahieves the maximal probability. We begin byfousing on the former problem.6Given a probability distribution p(x), where x = (x1; x2; : : : ; xn), given a partition (E;F)of the indies, and given a �xed on�guration �xE , we wish to ompute the maximum a posterioriprobability maxxF p(xF j �xE). Although we use the language of \maximum a posteriori probability"to desribe this problem, the onditioning turns out to play little signi�ant role in the problem.Indeed: maxxF p(xF j �xE) = maxxF p(xF ; �xE) (4.21)= maxx p(x)Æ(xE ; �xE) (4.22), maxx pE(x); (4.23)where pE(x) is the unnormalized representation of onditional probability introdued in Se-tion 3.1.1. We see that without loss of generality we an study the unonditional ase. Thatis, we treat the general problem of maximizing a nonnegative, fatorized funtion of n variables;this inludes as a speial ase the problem of maximizing suh a funtion when some of the variablesare held �xed.It is important to be lear that the MAP problem is quite distint from the marginalizationproblem. Naively, one might think that one ould solve the MAP problem by �rst omputing themarginal probability for eah variable, and then omputing the assignment of eah variable thatmaximizes its individual marginal, but this is inorret. Consider the pair of variables shown inFigure 4.16. The marginal probability of X is maximized by hoosing X = 1, and the marginalprobability of Y is maximized by hoosing Y = 1. However, the joint probability of the on�guration(X = 1; Y = 1) is equal to zero! The maximizing assignment is (X = 1; Y = 2), whih hasprobability 0.36.Although the MAP problem is distint from the marginalization problem, its algorithmi so-lution is quite similar. To see this, let us return to the example shown in Figure 4.17, a diretedgraphial model with the following fatorization:p(x) = p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(x6 jx2; x5): (4.24)To solve the MAP problem we expand the maximization into omponent-wise maximizations, andompute:maxx p(x) = maxx1 maxx2 maxx3 maxx4 maxx5 maxx6 p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(x6 jx2; x5)6There are generalizations of the MAP problem that involve �nding a small set of on�gurations that have highprobability, and �nding multiple on�gurations that have maximal probability when the maximum is not unique. Inthe urrent setion, we restrit ourselves to the simpler problem of �nding a single maximum.

26 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHS
X

Y

1

2

3

.6

.2

.2

1

2

3

1 2 3

1 2 30

1

1

.6 .4

0 0

0 0

.4 .36 .24

()p x ()p y | x ()p yFigure 4.16: The marginal and onditional probabilities for a pair of variables (X;Y). The maximiz-ing values of the individual marginals are X = 1 and Y = 1, but the on�guration (X = 1; Y = 1)has zero probability.

1X

2X

3X

X 4

X 5

X6

Figure 4.17: A direted graphial model.

4.3. MAXIMUM A POSTERIORI PROBABILITIES 27MAP-Eliminate(G; E)Initialize(G)Evidene(E)Update(G)MaximumInitialize(G)hoose an ordering Ifor eah node Xi in Vplae p(xi jx�i) on the ative listEvidene(E)for eah i in Eplae Æ(xi; �xi) on the ative listUpdate(G)for eah i in I�nd all potentials from the ative list that referene xi and remove them from the ative listlet �maxi (xTi) denote the produt of these potentialslet mmaxi (xSi) = maxxi �maxi (xTi)plae mmaxi (xSi) on the ative listMaximummaxx pE(x) = the salar value on the ative listFigure 4.18: TheMAP-Eliminate algorithm for solving the maximum a posteriori problem. Notethat after the �nal node has been eliminated in Update, the ative list ontains a single salarvalue, whih is the value returned as the maximum by the algorithm.= maxx1 p(x1)maxx2 p(x2 jx1)maxx3 p(x3 jx1)maxx4 p(x4 jx2)maxx5 p(x5 jx3)maxx6 p(x6 jx2; x5):These steps should look familiar from our earlier example of marginalization in this graph. Con-tinuing the omputation, we perform the maximization with respet to x6, thereby de�ning an\intermediate fator" that is a funtion of x2 and x5. Subsequent steps are idential to those of amarginalization omputation, with the \sum" operator replaed by the \max" operator.More generally, all of the derivations that we have presented in this hapter and the previoushapter go through if the \sum" operator is replaed everywhere by the \max" operator. Inpartiular, by making this substitution in Eliminate, we obtain a MAP version of Eliminate,whih we present in Figure 4.18.The reason that the derivations go through when \sum" is replaed by \max" is that both the\sum-produt" pair and the \max-produt" pair are examples of an algebrai struture known as aommutative semiring. A ommutative semiring is a set endowed with two operations|generially

28 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHSreferred to as \addition" and \multipliation"|that obey ertain laws. In partiular, addition andmultipliation are both required to be assoiative and ommutative. Moreover, multipliation isdistributive over addition: a � b+ a � = a � (b+): (4.25)This distributive law played a key role in our derivation of Eliminate, in whih the \sum" op-erator repeatedly migrates aross the \produt" operator. Also, the ability to group and reorderintermediate fators was required in the derivation of the Eliminate algorithm. In fat, it an beveri�ed that the assoiative, ommutative and distributive laws are all that are needed to derivethe Eliminate algorithm and the Sum-Produt algorithm. (Note in partiular that we do notrequire division, an operation that is available in the more restritive algebrai objet known as aring.)If we let the \max" operator play the role of addition, the fat that \max" distributes over\produt": max(a � b; a �) = a �max(b;) (4.26)shows that \max-produt" is a semiring (given the easy veri�ation that \max" is assoiative andommutative), and justi�es the MAP-Eliminate algorithm in Figure 4.18.A pratial problem with the MAP-Eliminate algorithm shown in Figure 4.18 is that theproduts of probabilities tend to underow. This an be handled by transforming to the log sale,making use of the fat that: maxx pE(x) = maxx log pE(x); (4.27)whih holds beause the logarithm is a monotone funtion. Given that the logarithm of a produtbeomes a sum of logarithms, we see that suh an implementation essentially involves working witha \max-sum" pair instead of a \max-produt" pair. Fortunately, \max-sum" is also a semiring,in whih \max" plays the role of addition and \sum" plays the role of multipliation. Indeed, thedistributive law is easily veri�ed:max(a+ b; a+) = a+max(b;); (4.28)as are the assoiative and ommutative laws. Thus we an implementMAP-Eliminate algorithmby working with logarithms of potentials, and replaing \produt" with \sum."There are many other ommutative semirings, inluding semirings on polynomials and dis-tributive latties. We explore some of these ommutative semirings in the exerises. The generiEliminate algorithm an be easily adapted to eah of these ommutative semirings.In Setion ?? we showed that in the ase of trees, the Eliminate algorithm an be equivalentlyexpressed in terms of a oupled set of equations, or \messages," a line of argument that led to theSum-Produt algorithm for inferene on trees. The same arguments apply to arbitrary ommu-tative semirings, and in partiular we an obtain a \Max-Produt" version of the algorithm asfollows: mmaxji (xi) = maxxj 0� E(xj) (xi; xj) Yk2N (j)nimmaxkj (xj)1A (4.29)

4.3. MAXIMUM A POSTERIORI PROBABILITIES 29maxx pE(x) = maxxi 0� E(xi) Yj2N (i)mmaxji (xi)1A : (4.30)Implementing a depth-�rst traversal of the tree, thereby passing messages from the leaves towardan arbitrarily-de�ned root, we invoke Eq. (4.30) at the root and obtain the MAP solution.Is there any value in onsidering a full message-passing algorithm in whih we also send messagesfrom the root bak toward the leaves? If the problem is simply that of �nding the maximal value ofthe MAP probability, maxx pE(x), then the answer is no. Invoking Eq. (4.30) at multiple nodes inthe graph, we obtain exatly the same solution|in all ases we have maximized over all nodes in thegraph. However, if our goal is also that of obtaining a maximizing on�guration|a on�gurationx� suh that x� 2 arg maxx pE(x)|then we an make use of an appropriately de�ned outwardphase. We explore this issue in the following setion.4.3.1 Maximum a posteriori on�gurationsLet us now onsider the problem of �nding a on�guration x� suh that x� 2 arg maxx pE(x). Thisproblem an be solved by keeping trak of the maximizing values of variables in the inward pass ofthe Max-Produt algorithm, and using these values as indies in an outward pass.Throughout this setion we assume that an arbitrary root node f has been hosen, and refer toan \inward pass" in whih messages ow from the leaves toward the root, and an \outward pass"in whih messages ow from the root toward the leaves.Note that when theMax-Produt algorithm arrives at the root node at the end of the inwardpass, the �nal maximization in Eq. (4.30) provides us with a value of the root node that belongsto a maximizing on�guration. Thus, letting f denote the root, we ompute:x�f 2 arg maxxf 0� E(xf) Ye2N (f)mmaxef (xf)1A ; (4.31)and thereby obtain a value x�f that neessarily belongs to a maximizing on�guration. Moreover,in priniple we ould perform an outward pass in whih we evaluate Eq. (4.29) for eah node fromthe root to the leaves, and subsequently perform the maximization in Eq. (4.30) at eah node. Thiswould yield values x�i that belong to maximizing on�gurations. Unfortunately, however, there isno guarantee that these values all belong to the same maximizing on�guration. To �nd a singlemaximizing on�guration we have to work a bit harder.Suppose that during the inward pass we maintain a reord of the maximizing values of nodeswhen we ompute the messages mmaxji (xi). That is, whenever we send a message mmaxji (xi) fromnode j to its parent node i, we also reord the maximizing values in a table Æji(xi):Æji(xi) 2 arg maxxj 0� E(xj) (xi; xj) Yk2N (j)nimmaxkj (xj)1A : (4.32)Thus, for eah xi, the funtion Æji(xi) piks out a value of xj (there may be several) that ahievesthe maximum.

30 CHAPTER 4. PROBABILITY PROPAGATION AND FACTOR GRAPHSHaving de�ned the funtion Æji(xi) during the inward pass, we use Æji(xi) to de�ne a onsistentmaximizing on�guration during an outward pass. Thus, starting at the root f , we hoose amaximizing value x�f . Given this value, whih we pass to the hildren of f , we set x�e = Æef (x�f) foreah e 2 N (f). This proedure ontinues outward to the leaves.The resulting algorithm is summarized in Figure 4.19. Note that the omputation of themmaxji (xi) messages in the inward pass of this algorithm is idential to the MAP-Eliminate algo-rithm (for undireted trees).4.4 ConlusionsIn this hapter we have presented a basi treatment of algorithms for omputing probabilities ongraphs. Restriting ourselves to trees, we presented the Sum-Produt algorithm, an algorithmfor omputing all singleton marginal probabilities. We also presented a Sum-Produt algorithmfor fator trees, and showed how this algorithm allows us to ompute marginal probabilities forvarious tree-like graphs, inluding polytrees. Finally, we showed that the algebra underlying theSum-Produt algorithm an be abstrated, yielding a general family of propagation algorithmsbased on ommutative semirings. In partiular, we presented the Max-Produt algorithm, analgorithm for omputing maximum a posteriori probabilities.Heneforth we will refer to all suh propagation algorithms as probability propagation algorithms.While we have restrited ourselves to trees in the urrent hapter, we will be onsidering probabilitypropagation algorithms on more general graphs in later hapters.Thus far we have foused on the problems of representation and inferene in graphial models.We return to these problems in Chapters 16 and 17, providing a more general and more formaltreatment of topis suh as onditional independene and probability propagation. In the inter-vening hapters, however, we shift to a di�erent line of inquiry. In partiular, we now begin toaddress the problem of interfaing graphial models to data, and we begin to develop methods forevaluating and improving models on the basis of suh data. We thus take up the statistial side ofthe story.4.5 Historial remarks and bibliography

4.5. HISTORICAL REMARKS AND BIBLIOGRAPHY 31
Max-Produt(T , E)Evidene(E)f = ChooseRoot(V)for e 2 N (f)Collet(f; e)MAP = maxxf (E(xf)Qe2N (f)mmaxef (xf))x�f = arg maxxf (E(xf)Qe2N (f)mmaxef (xf))for e 2 N (f)Distribute(f; e)Collet(i; j)for k 2 N (j)niCollet(j; k)SendMessage(j; i)Distribute(i; j)SetValue(i; j)for k 2 N (j)niDistribute(j; k)SendMessage(j; i)mmaxji (xi) = maxxj (E(xj) (xi; xj) Yk2N (j)nimmaxkj (xj))Æji(xi) 2 arg maxxj (E(xj) (xi; xj) Yk2N (j)nimmaxkj (xj))SetValue(i; j)x�j = Æji(x�i)Figure 4.19: A sequential implementation of the Max-Produt algorithm for a tree T (V; E). Thealgorithm works for any hoie of root node, and thus we have left ChooseRoot unspei�ed. Thesubroutine Evidene(E) is presented in Figure 4.5.

