
An Introdu
tion to Probabilisti
 Graphi
al ModelsMi
hael I. JordanUniversity of California, BerkeleyJune 30, 2003



2



Chapter 17The Jun
tion Tree AlgorithmIn earlier 
hapters we have presented a number of examples of inferential 
al
ulations in graphi
almodels. The general problem has been to 
al
ulate the 
onditional probability of a node or aset of nodes, given the observed values of another set of nodes. In the 
ase of mixture modelsand fa
tor analysis models the problem was to 
al
ulate the 
onditional probabilities of the latentvariables given the observed data, and the solution was a rather straightforward appli
ation ofBayes rule. In the 
ase of the HMM and the state-spa
e model we saw a somewhat more 
omplexinferen
e problem involving dependen
ies between nodes arranged in a sequen
e. The solution wasagain an appli
ation of Bayes rule, but it was ne
essary to �nd re
ursions that allowed the inferen
eproblem to be solved eÆ
iently. The Markov properties of the underlying graphi
al model providedthe formal ma
hinery to justify these re
ursions.In the 
urrent 
hapter we present a general approa
h to inferen
e that makes systemati
 useof the Markov properties of graphi
al models. All of the examples that we have treated until nowemerge as spe
ial 
ases; moreover, the re
ursions that we worked out rather painstakingly in ea
hindividual 
ase 
an now be derived more systemati
ally. The general idea is to use the Markovproperties of graphi
al models to �nd ways to de
ompose a general probabilisti
 
al
ulation into alinked set of lo
al 
omputations. The key to this approa
h is an appropriate de�nition of \lo
al."Chapter 3 presented a simple elimination algorithm (Elimination) for inferen
e on dire
ted orundire
ted graphs. As Elimination runs it 
reates dependen
ies between nodes, in e�e
t rede�n-ing the \lo
ality" relationships in the graph. To develop a deeper understanding of probabilisti
inferen
e, it proves helpful to abstra
t away from the spe
i�
 pro
ess of elimination and to fo
us onthis general notion of lo
ality. In e�e
t we shift our fo
us from the pro
ess of inferen
e to the datastru
tures that underly inferen
e. We �nd that a parti
ular data stru
ture|the jun
tion tree|emerges from these 
onsiderations. The jun
tion tree makes expli
it the important (and beautiful)relationship between graph-theoreti
 lo
ality and eÆ
ient probabilisti
 inferen
e.Although we present spe
i�
 algorithms for probabilisti
 inferen
e in this 
hapter, it is importantto emphasize at the outset that our goal is less that of providing spe
i�
 re
ipes as it is of providingan understanding of the key general 
on
epts that underly inferen
e. Thus, while we will des
ribe
on
rete algorithms (the \Hugin algorithm," the \Shafer-Shenoy algorithm," and the \Lauritzen-Spiegelhalter algorithm"), we view all of these algorithms as instan
es of a general algorithmi
3



4 CHAPTER 17. THE JUNCTION TREE ALGORITHMframework that we will refer to generi
ally as the jun
tion tree algorithm. Understanding the generalframework makes it easy to see how various spe
i�
 algorithms arise and how they interrelate.Moreover, an important bonus of developing the general jun
tion tree framework is the realizationthat probabilisti
 inferen
e is itself an instan
e of a more general 
lass of problems, all of whi
hinvolve fa
torized potentials on graphs, and all of whi
h 
an be solved using suitable variations onthe jun
tion tree theme. We dis
uss some instan
es of this more general 
lass at the end of the
hapter.We begin by returning to the elimination algorithm from Chapter 3, stripping away some of itsinessential details, and aiming to over
ome some of its de�
ien
ies.17.1 From elimination to the jun
tion treeIn Figure 17.1(a) we show the graph that served as a running example in Chapter 3. The fa
toredform of the joint probability distribution for this graph is as follows:p(x1; x2; : : : ; x6) = p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(x6 jx2; x5): (17.1)As in Chapter 3 we will use the elimination ordering (X6;X5;X4;X3;X2;X1) in our examples.Ea
h fa
tor in Eq. (17.1) expresses a dependen
y among one or more variables. Forming sum-mands during a run of the elimination algorithm 
reates additional dependen
ies|for example,summing over x6 
reates an intermediate fa
tor that is a fun
tion of x2 and x5. The elim-ination 
liques asso
iated with an elimination ordering 
an be viewed as an expli
it re
ord ofthese dependen
ies. Re
all that we 
an abstra
t away from probabilisti
 inferen
e and view theseelimination 
liques as being formed by a purely graph-theoreti
 pro
edure (
alled Undire
ted-GraphEliminate in Chapter 3) in whi
h we link all of the neighbors of a given node (thusforming a 
lique), and remove the node from the graph. In parti
ular, for the elimination ordering(X6;X5;X4;X3;X2;X1), the elimination 
liques are as shown in Figure ??(b). While the elimina-tion algorithm Elimination does not expli
itly form these 
liques, the graph-theoreti
 operationof forming elimination 
liques parallels the algebrai
 operation of marginalizing over a node, andneatly summarizes the graphi
al 
onsequen
es of marginalization.The elimination algorithm is \query-oriented." That is, the algorithm yields the marginal or
onditional probability of a given query node|the last node in the elimination ordering. Intermedi-ate fa
tors that are 
reated along the way are dis
arded. While in some 
ases this is what we want,in many 
ases it is not. Consider in parti
ular the 
hain-stru
tured graphi
al model asso
iatedwith the HMM or the state-spa
e model. To 
al
ulate the posterior probability of any parti
ularnode we 
an eliminate foreward and ba
kward until we arrive at the node. In doing so we 
reate anumber of intermediate fa
tors. Many of these same intermediate fa
tors 
an be used in 
al
ulatingthe posterior probability of other nodes. Clearly we wish to avoid re
omputing su
h fa
tors, as wewould do in a naive appli
ation of elimination. We also need to know whi
h intermediate fa
tors areneeded for whi
h posterior probabilities and how to 
ombine fa
tors|in essen
e we need a 
al
ulusfor the intermediate fa
tors. The elimination algorithm provides us with little help in this regard.As a �rst step in moving beyond the elimination algorithm we need to allo
ate data stru
tures|\permanent storage"|to the intermediate fa
tors. Ea
h su
h fa
tor is asso
iated with one of the
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(c)Figure 17.1: (a) The six-node example from Chapter 3. (b) The elimination 
lique 
reated from arun of the elimination algorithm using the ordering (X6;X5;X4;X3;X2;X1). (
) The elimination
liques arranged into a 
lique tree.
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Figure 17.2: A 
lique tree annotated with separator sets.elimination 
liques in Figure 17.1(b). We 
an therefore view the nodes in this �gure as representa-tions of the storage that we need if we are to re
ord the intermediate fa
tors 
reated during a runof the elimination algorithm.While a list of the elimination 
liques reveals some of the stru
ture asso
iated with the elim-ination algorithm, there is additional stru
ture that is worth noting. In parti
ular, as we haveseen, summing over a variable produ
es an intermediate fa
tor that subsequently appears in thesummand asso
iated with a later variable. For example, summing over x5 
reates an intermediatefa
tor that refers to x3 and thus appears in the summand when we subsequently sum over x3. Ifwe view the nodes in Figure 17.1(b) as storage sites, and if we view the operation of summing asoperating on the data stored at these sites, then it is natural to try to represent the transfer ofinformation between these sites. For example, the sum over x3 requires the fa
tor 
reated at thex5 site, and we therefore need to transfer this fa
tor between the site 
orresponding to the elimi-nation of x5|the elimination 
lique fX2;X3;X5g|and the site 
orresponding to the eliminationof x3|the elimination 
lique fX1;X2;X3g. As shown in Figure 17.1(
), we 
an 
apture this 
owof information by drawing an edge between these elimination 
liques.The graphi
al obje
t in Figure 2.1(
) is a 
lique tree|a singly-
onne
ted graph in whi
h thenodes are the 
liques of an underlying graph. Every run of the elimination algorithm 
an be viewedas impli
itly 
reating a 
lique tree|the 
lique tree 
an be viewed in essen
e as an \exe
ution tra
e"of the algorithm. What we are groping towards, however, is an algorithm that goes beyond theelimination framework by expli
itly representing a 
lique tree as a data stru
ture. The nodes insu
h a 
lique tree will store intermediate fa
tors, allowing these fa
tors to be reused in multiplequeries. Information will 
ow around the 
lique tree in multiple dire
tions.In Figure 17.2 we annotate the 
lique tree with some additional stru
ture that will prove to beuseful. Between ea
h linked pair of 
liques we introdu
e a separator set|the interse
tion of the
orresponding 
liques. The separator sets are themselves 
liques, being the interse
tion of 
liques.These sets provide an expli
it representation of the variables referred to by the intermediate fa
torsthat pass between 
liques. Consider, for example, the intermediate fa
tor 
reated at the 
liquefX2;X3;X5g. Summing over x5 
reates a fa
tor that is a fun
tion of x2 and x3, and this fa
tor
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Figure 17.3: A 
lique tree that does not possess the jun
tion tree property. Note in parti
ular thatthe 
liques 
ontaining the node X3 do not form a 
onne
ted subtree.is sent to the 
lique fX1;X2;X3g, where we subsequently sum over x3. The separator set on thelink between these 
liques 
ontains the nodes fX2;X3g, and thus expli
itly represents the domainof the intermediate fa
tor transferred between the 
liques.Not all 
lique trees are 
reated equal. In parti
ular, the 
lique tree in Figure 2.1(
) has somespe
ial properties. Note that the index \2" appears in �ve di�erent nodes in the �gure, and thatthese �ve nodes are 
onne
ted|they form a 
onne
ted subtree. Moreover, this is true of all of theother node indi
es. This interesting and important property is known as the jun
tion tree property.Not all 
lique trees possess the jun
tion tree property; for example, the tree in Figure 17.3 does notpossess the jun
tion tree property. As we will see in the remainder of the 
hapter, understandingthe jun
tion tree property is the key to a general understanding of probabilisti
 inferen
e.17.2 PotentialsWith the dis
ussion in the previous se
tion as ba
kground, we embark on a general dis
ussion ofthe jun
tion tree algorithm. We will be fo
using on a parti
ular variant of the general jun
tion treealgorithm known as the \Hugin algorithm," and will dis
uss other variations in later se
tions andin the exer
ises.Let G = (V;E) denote a dire
ted or undire
ted graph with verti
es V and edges E. Let Cdenote a set of 
liques of G; i.e., C is a set of 
ompletely 
onne
ted subsets of V . We generallyrequire these subsets to be maximal, so that no member of C is a subset of another member of C.However, at the 
ost of a bit of redundan
y it is at times 
onvenient to allow su
h proper subsetsto appear in C.Let X be a random ve
tor indexed by the verti
es V . Re
all that we allow subsets of the vertexset V to be used as indi
es; thus, 
orresponding to ea
h 
lique C 2 C, we have a set of randomvariables XC , with realizations xC . The number of su
h realizations is the produ
t of the numberof realizations of ea
h individual random variable Xu, for u 2 C.Asso
iated with ea
h C 2 C we de�ne a potential  C(xC), a nonnegative fun
tion on the real-izations xC . In general there are no 
onstraints on the potential fun
tions other than nonnegativity.Note in parti
ular that the sets C 
an overlap, and we make no \
onsisten
y" requirements on the
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Figure 17.4: A four-node model whi
h we assume is parameterized with pairwise potentials:  AB , AC ,  BC ,  BD, and  CD.overlap.We now de�ne a joint probability distribution on X as the normalized produ
t of potentialfun
tions: p(x) , 1Z YC2C  C(xC): (17.2)This is of 
ourse the same de�nition as that used for undire
ted graphs. Note, however, a subtlebut important 
hange in fo
us|in the 
urrent se
tion we view the set of subsets C as an expli
itdata stru
ture, with the underlying graph in the ba
kground. Te
hni
ally, our data stru
ture is ahypergraph|a set of subsets|with Eq. (17.2) de�ning the joint probability distribution asso
iatedwith the hypergraph.There are problems in whi
h it is natural to pose the problem dire
tly in terms of fa
toredpotentials on sets of subsets, without fo
using on an underlying graph. Most 
ommonly, however,the potentials on the hypergraph are initialized from those of an underlying graph. Let us 
onsiderhow this initialization pro
ess works for both undire
ted and dire
ted graphs.Undire
ted graphs 
ome endowed with potential fun
tions on 
liques, and if these 
liques arethe same as the set of subsets C, then the initialization problem is va
uous; we simply de�ne  C(xC)to be the 
orresponding potential from the underlying graph. In general, however, these sets arenot the same. In parti
ular, we generally in
lude only the maximal 
liques in the set C. If theparameterization of the underlying undire
ted graph is restri
ted to 
liques that are proper subsetsof the maximal 
liques of the graph, as is often the 
ase, then we have a many-to-one mapping fromparameterized 
liques to C. Consider, for example, the undire
ted graphi
al model in Figure 17.4,where we assume that the model is parameterized via pairwise potentials. The maximal 
liques ofthe graph are, however, triplets of nodes. In su
h a situation, the potentials on maximal 
liquesin Eq. (17.2) are formed as the produ
t of potentials from the underlying graph. Thus, in ourexample, we de�ne  ABC to be the produ
t  AB AC , while we de�ne  BCD to be the produ
t BC BD CD. Note that  BC 
an be asso
iated with either triple; we have arbitrarily assigned itto  BCD. In general ea
h potential  D on the underlying graph is assigned to one and only one C on the hypergraph, where D � C. If we assume that C in
ludes the maximal 
liques, then this
an always be done.Having assigned ea
h underlying potential to one and only one  C , the produ
t in Eq. (17.2) isa faithful representation of the joint probability from the underlying graph.Similar issues arise when we initialize a set of 
lique potentials from an underlying dire
ted



17.2. POTENTIALS 9Moralize(G)for ea
h node Xi in I
onne
t all of the parents of Xiend drop the orientation of all edgesreturn G Figure 17.5: An algorithm to moralize a dire
ted graph.
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(a) (b)Figure 17.6: (a) A dire
ted graph. Note that the 
onditional probability p(x6 jx2; x5) has asarguments a subset of nodes that are not 
ontained in any 
lique in the graph. In the moralgraph in (b), an edge has been added between X2 and X5, and now the arguments in the potentialp(x6 jx2; x5) are 
ontained with the 
lique fX2;X5;X6g.graph, with the additional 
ompli
ation that the original potentials|the lo
al 
onditional proba-bilities from the dire
ted graph|need not be de�ned on 
liques. In parti
ular, if the parents ofnode Xi are not linked, then p(xi jx�i) is not a fun
tion on a 
lique. To handle this situation,and thereby allow a uniform treatment of dire
ted and undire
ted graphs, we moralize the dire
tedgraph. Re
all from Chapter 3 that the moral graph Gm 
orresponding to a dire
ted graph G isobtained by linking the parents of ea
h node and dropping the dire
tionality of the edges. Wede�ne the moralization pro
edure more formally in Figure 17.2. On a moral graph, the lo
al 
ondi-tional probabilities are potential fun
tions on 
liques. We asso
iate ea
h su
h probability with oneand only one potential  C(xC), again assuming that C in
ludes the maximal 
liques. Taking theprodu
t over these potentials is then equivalent to taking the produ
t Qi p(xi jx�i), and faithfullyrepresents the joint probability from the underlying dire
ted graph.Note that for dire
ted graphs the potentials are already normalized; in other words, the nor-malization fa
tor Z is automati
ally one.Figure 17.2 shows an example for a dire
ted graph.Note that the moralization pro
edure adds edges to a dire
ted graph. How does this pro
edure



10 CHAPTER 17. THE JUNCTION TREE ALGORITHMsquare with the semanti
 distin
tions between dire
ted graphs and undire
ted graphs presentedin the previous 
hapter? Re
all that a given graph|dire
ted or undire
ted|is asso
iated witha family of probability distributions. This family 
an be spe
i�ed by writing down the list of
onditional independen
e statements asso
iated with the graph. Any distribution that respe
tsall of the 
onditional independen
e statements in the list belongs to the family. Clearly, if wemake fewer statements we make the family larger. Now note that a moral graph ne
essarily makesfewer 
onditional independen
e statements than its 
orresponding dire
ted graph. In parti
ular, adire
ted graph asserts all of the 
onditional independen
ies that 
hara
terize the moral graph, aswell as additional independen
ies between the parents of a given node in the marginal distributionin whi
h the node is eliminated. Thus the set of probability distributions asso
iated with thedire
ted graph is a subset of the set of probability distributions asso
iated with the moral graph.If we solve the inferen
e problem for the family of probability distributions asso
iated with theundire
ted moral graph, we solve it for the family of probability distributions asso
iated with thedire
ted graph as well.Moralization is not merely a 
onvenien
e, but is also a ne
essary 
omponent of any inferen
ealgorithm. Marginalization or 
onditioning 
ouples the parents of a node, 
reating an intermediatefa
tor that is in general a non-trivial fun
tion of the parents.1 Intuitively, moralization is ne
essaryto 
apture dependen
ies su
h as \explaining-away" that arise whenever a node is an eviden
e nodeor has des
endants that are eviden
e nodes.To summarize, our pro
edure will be to identify the maximal 
liques of an undire
ted or (mor-alized) dire
ted graph.2 We initialize the potential fun
tions asso
iated with these 
liques from thepotentials and lo
al 
onditional probabilities on the underlying graph.17.3 Introdu
ing eviden
eWe now 
onsider the problem of 
onditioning, or \introdu
ing eviden
e." We suppose that thenodes are partitioned into subsets H and E, and that the random ve
tor XE is observed to take ona spe
i�
 value. The problem that we dis
uss in this se
tion is that of representing the 
onditionalprobability p(xH jxE). On
e we have de
ided on su
h a representation, the inferential problem of
omputing marginals under this probability|the 
onditional probabilities of subsets of the nodesXH|will be no di�erent in prin
iple from the 
al
ulation of marginal probabilities under the overalljoint p(x).Our general approa
h will be to represent 
onditionals via taking \sli
es" of the potentialsde�ning the joint probability. Suppose in parti
ular that we have represented the joint probabilityas a produ
t over 
liques as in Eq. (17.2). For ea
h 
lique C, 
onsider the interse
tion C \E. Thenodes in this interse
tion have been �xed to spe
i�
 values, and the potential in e�e
t now ranges1If a node is not an eviden
e node or has no des
endants that are eviden
e nodes, summing over the values of thenode yields the trivial value of one.2Some readers may wonder how we 
an a
hieve this|�nding maximal 
liques is an NP-hard problem! In fa
t,we will not be �nding the maximal 
liques of arbitrary graphs, but only of a spe
ial 
lass|the triangulated graphs.Maximal 
liques of triangulated graphs 
an be found easily. Let us postpone our dis
ussion of triangulation, however,at the 
ost of a bit of naivet�e with regards to identifying maximal 
liques.
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omplement (in C) of this set of nodes, i.e., C \H. where C = (C \H) [ (C \E) by theassumption that H and E partition V . Thus, for a parti
ular �xed 
on�guration �xE , we have:p(xH ; �xE) = 1Z YC2C  C(xC\H ; �xC\E): (17.3)This is a produ
t of \sli
es" of potential fun
tions.A sli
e of a potential fun
tion is itself a potential fun
tion. Thus we 
an also view Eq. (17.3) asa produ
t of potential fun
tions on subsets fXC\H of the nodes XH , suppressing referen
e to thenodes XE . That is, writing ~ C\H(xC\H) ,  C(xC\H ; �xC\E) to suppress the expli
it referen
e tothe �xed 
on�guration �xE , we have:p(xH ; �xE) = 1Z YC2C ~ C\H(xC\H) (17.4)as a produ
t of potential fun
tions over XH .There is an oddity to Eq. (17.4), however, in that the normalization fa
tor Z is obtained bysumming over both XH and XE , whereas the produ
t is de�ned only over XH . It should be nosurprise that Z is not in fa
t the normalization fa
tor for the produ
t of potentials ~ C\H ; indeed,this produ
t is not normalized. Let us 
ompute the normalization fa
tor. Summing over H, anddenoting the sum as ~Z, we 
ompute:~Z , XH p(xH ; �xE) (17.5)= XH 1Z YC2C ~ C\H(xC\H): (17.6)We also know, however, that PH p(xH ; �xE) = p(�xE), by de�nition. Putting these fa
ts together,we have: p(xH ; �xE)p(�xE) = QC2C ~ C\H(xC\H)PHQC2C ~ C\H(xC\H) : (17.7)That is, the sli
es ~ C\H(xC\H) provide a potential fun
tion representation of the 
onditional prob-ability p(xH j �xE). The normalization fa
tor for this representation is the marginal probability~Z = p(�xE). Note that the original normalization 
onstant, Z, 
an
els when we form the ratio onthe right-hand-side of Eq. (17.7). Thus, for the purpose of 
al
ulating 
onditional probabilities, wehave no need of knowing the normalization 
onstant asso
iated with the original set of potentials;it suÆ
es to 
ompute the normalization 
onstant of the sli
ed potentials.Let us see how this works for a parti
ularly simple 
ase. In Figure 17.7. we show a dire
tedgraph and the 
orresponding moralized graph for two binary nodes X and Y . Given the threeprobabilities p(X = 1) = :8, p(Y = 1 jX = 1) = :7 and p(Y = 1 jX = 0) = :4, we 
an 
onstru
t ajoint probability distribution. Converting to a set of 
liques, we have a single 
lique fX;Y g, with
lique potential given by the produ
t p(x)p(y jx): fX;Y g = � :12 :08:24 :56 � (17.8)
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A B A BFigure 17.7: A two-node graphi
al model with its moralized graph.Given that this potential arises from a dire
ted graph, it is no surprise that the 
lique potential isnormalized. Suppose that we now observe eviden
e Y = 1. We obtain the sli
e:~ fXg = � :08:56 � ; (17.9)whi
h is a fun
tion only of X. Note that this new 
lique potential is unnormalized. Normaliz-ing yields the number ~Z = :64, whi
h we re
ognize as the probability p(Y = 1). Morever, thenormalized potential is given by dividing ~ fXg by ~Z = :64:1~Z ~ fXg = � :125:875 � ; (17.10)whi
h is the 
onditional distribution p(x jY = 1).To summarize, our general representation of a probability distribution is a (possibly) unnor-malized set of potentials on a set of 
liques. Conditioning is handled by restri
ting attention tosubsets of the original set of 
liques, and by de�ning potentials on these subsets that are sli
es ofthe original potentials. In general we make no fundamental representational distin
tion between
onditional and joint distributions.This perspe
tive also helps to reveal more of the unity in undire
ted and dire
ted representationsof probabilities. In the dire
ted 
ase, the set of potentials is normalized at the outset: Z = 1. But assoon as we observe eviden
e, the resulting set of sli
es is no longer normalized, and the 
onditionaldistribution is represented as an unnormalized produ
t of potential fun
tions, as in the undire
ted
ase.An equivalent approa
h to representing 
onditional probability distributions involves introdu
-ing \eviden
e potentials." An eviden
e potential is a delta fun
tion, Æ(xE ; �xE), i.e., a fun
tionwhi
h is equal to one if its arguments are equal and zero otherwise. We used eviden
e potentials inour presentation of the elimination algorithm in Chapter 3. Multiplying the original produ
t of po-tentials by the eviden
e potential yields an unnormalized produ
t on the set (XH ;XE). Summingover xE has the e�e
t of setting p(xH ; xE) equal to p(xH ; �xE). Thus we obtain the same repre-sentation as that 
onsidered in this se
tion, on
e we \marginalize" and restri
t attention to XH .The approa
h based on eviden
e potentials is elegant be
ause it treats sli
es as formally equivalentto marginalization; indeed that was the reason that we introdu
ed it in Chapter 3. In pra
ti
e,however, using eviden
e potentials involves introdu
ing zeros and then summing over those zeros.As an algorithmi
 matter it is more eÆ
ient to simply take sli
es.
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Figure 17.8: A three-node Markov 
hain.17.4 Clique treesWe now begin to address the 
rux of the problem, whi
h is that of 
omputing marginal probabilities.Thus, we wish to 
ompute the marginal p(xF jxE), where (F;G) is a partition of H and where Franges over a set of subsets of interest. In parti
ular, we may wish to 
ompute all probabilitiesp(xF jxE), where F ranges over all singleton nodes. More generally, we will address the problemof 
omputing p(xF jxE), where F ranges over all 
liques in C, and over all subsets of these 
liques.A still more general problem is that of 
omputing p(xF jxE) for arbitrary F , and while wewill address this problem in Se
tion ??, it is worth noting that in most appli
ations it suÆ
es to
ompute marginal probabilities for the 
liques. In parti
ular, the 
liques are suÆ
ient statisti
s fordistributions that fa
tor a

ording to Eq. (17.2); thus, for 
omputing expe
ted suÆ
ient statisti
sin the 
ontext of an EM algorithm it suÆ
es to obtain 
lique marginals.We de�ne a 
lique tree as a singly-
onne
ted graph whose nodes represent members of the 
liqueset C. Edges in this graph will allow us to de�ne information 
ows between 
liques. The jun
tiontree algorithm 
an be understood as an algorithm that uses these information 
ows to manipulatethe 
lique potentials so as to yield marginal probabilities. In parti
ular, after the algorithm runs,the potential  C will be equal to the marginal probability p(xC ; �xE). This probability is an un-normalized version of the 
onditional p(xC j �xE), where the normalization 
onstant is obtained bysumming or integrating  C over xC . Thus, we 
an obtain the desired marginal probabilities via alo
al operation. The goal of the remainder of the 
hapter is to explain how this is a
hieved.In the previous two se
tions, we showed how to initialize the 
lique potentials so as obtain arepresentation of the joint or 
onditional probability. This is a global representation; the individualpotentials do not ne
essarily 
orrespond to lo
al probabilities. Consider in parti
ular the Markov
hain shown in Figure 17.8. The 
liques of this graph are fA;Bg and fB;Cg. The joint probabilityis p(xA; xB ; xC) = p(xA)p(xB jxA)p(xC jxB), and while p(xA) and p(xB jxA) 
an be grouped toinitialize the potential  AB to the marginal p(xA; xB), the remaining fa
tor  BC = p(xC jxB) isnot a marginal. To 
onvert this potential into a marginal, we marginalize  AB to obtain p(xB), andmultiply  BC by this fa
tor. The transfer of the probability p(xB) is an instan
e of the information
ow that we referred to above.After adjusting  BC we have a
hieved the goal of obtaining marginal probabilities for both ofthe 
liques, but we have also lost something. In parti
ular, the joint probability on (xA; xB ; xC)is not equal to the produ
t of marginals p(A;B) and p(B;C), and thus the produ
t of the 
liquepotentials is no longer a representation of the joint probability.The jun
tion tree approa
h in essen
e allows us to have our 
ake and eat it too, retaining arepresentation of the joint probability while also manipulating the 
lique potentials so as to 
onvert



14 CHAPTER 17. THE JUNCTION TREE ALGORITHMthem into marginal probabilities. This is done by utilizing an extended representation of jointprobabilities that makes use of the separator sets dis
ussed in Se
tion ??. The remainder of thisse
tion introdu
es this important generalized representation.On ea
h edge of a 
lique tree we asso
iate a separator set whi
h 
ontains the interse
tion of the
liques that it links. For example, in Figure 17.16, the separator is the singleton XB . For a general
lique tree on N nodes, we have N � 1 separators.We now augment our potential-based representation of joint probabilities to in
lude potentialfun
tions on the separators as well as the 
liques. Thus, letting S denote the set of all separators,we introdu
e a potential fun
tion �S(xS) for ea
h S 2 S. Given a 
lique tree with 
liques C andseparators S we de�ne the joint probability as follows:p(x) = QC  C(xC)QS �S(xS) : (17.11)Note that we have omitted expli
it referen
e to a normalizing 
onstant Z. We adopt a 
onventionof in
luding the empty set as one of the separators and letting the \potential" on this empty setbe the normalizing 
onstant Z.We have several questions to answer regarding this extended representation, but let us �rstreturn to our example and show what the representation a
hieves for us.Expanding the joint probability asso
iated with Figure 17.8, we have:p(xA; xB ; xC) = p(xA; xB)p(xC jxB) (17.12)= p(xA; xB)p(xB ; xC)p(xB) : (17.13)This has the form of the extended representation shown in Eq. (17.11), where we de�ne  AB =p(xA; xB),  BC = p(xB ; xC), and �B = p(xB). Thus, making use of the 
exibility o�ered by theseparator potentials, we are able to a
hieve a representation that is a produ
t of marginals, andyet is also a representation of the joint probability. It turns out that we 
an always �nd this kindof representation for a given probability distribution. The proof of this fa
t will emerge during ourdevelopment of the jun
tion tree algorithm.In our dis
ussion of the Hammersley-Cli�ord theorem in Chapter 16, we showed that the rep-resentation of joint probability in Eq. (17.2) is general, in the sense that it allows us to 
apture allof the joint probability distributions that respe
t the 
onditional independen
e statements assertedby a graph. Clearly the extended representation in
ludes all su
h joint probability distributions(set the separator potentials to unity). Does it in
lude any others? The answer is no. This is seenby noting that the separators are (by de�nition) subsets of one or more 
liques. Asso
iating ea
hseparator with one su
h 
lique, and dividing that 
lique potential by the separator potential, weobtain a new set of 
lique potentials that represent the same joint, but without the separators.Thus the separator potentials do not enlargen the set of joint probability distributions that we 
anrepresent. They are essentially a 
onvenien
e|they allow us to represent the set of joint probabilitydistributions asso
iated with a graphi
al model in a more 
exible way.An additional issue that we need to 
onsider is the possibility of division by zero. We allowdivision by zero but only in a 
onstrained set of 
ir
umstan
es. In parti
ular, we de�ne a separator
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Figure 17.9: The basi
 data stru
tures underlying the 
ow of information between 
liques V andW .potential to be supportive if whenever a 
on�guration yields a value of zero for the separatorpotential, the 
lique potentials at both ends of the edge 
ontaining that separator also evaluate tozero. Thus we 
an never divide by zero in Eq. (17.11) unless the numerator is also zero. In this 
asewe de�ne the ratio to be zero. This makes sense|if a 
lique potential is zero for a 
on�gurationthen the probability of that 
on�guration should also be zero.Ea
h step of the jun
tion tree algorithm is guaranteed to maintain supportiveness (see Exer-
ise ??). Thus, if we have supportive separator potentials at the outset then we maintain support-iveness as the algorithm runs.We initialize the separator potentials to unity. Thus, at the outset, on
e we have introdu
edeviden
e, the set of 
lique potentials and separator potentials are (as before) a global representationof the joint 
onditional probability p(xH jxE). The new 
apability that the extended representationhas provided is the ability (in prin
iple) to obtain a lo
al representation of marginal probabilities,while maintaining an overall representation of the joint. We now show how this is a
hieved inpra
ti
e.17.5 Lo
al 
onsisten
yNote that 
liques 
an overlap, so the same node 
an appear in multiple 
liques. Clearly, if thepotentials are to represent marginal probabilities, it is ne
essary that they be 
onsistent with ea
hother; that is, they must give the same marginals for nodes that they have in 
ommon. Thisseemingly inno
uous observation is the germ of the jun
tion tree algorithm. We will �nd that
onsisten
y is not only a ne
essary 
ondition, but it is also a suÆ
ient 
ondition for a probabilisti
inferen
e algorithm. Moreover, it turns out not to be ne
essary to 
ompare all pairs of 
liques thatinterse
t; it will suÆ
e to arrange the 
liques into a spe
ial 
lique tree|a \jun
tion tree"|andrequire only that 
liques that are neighbors in the jun
tion tree agree on the nodes that they havein 
ommon.Let us postpone the general jun
tion tree 
onstru
tion, and instead fo
us on the elementalproblem of a
hieving 
onsisten
y between a pair of 
liques. Suppose that we have two 
liques Vand W and suppose that V and W have a non-empty interse
tion S (see Figure 17.9). The 
liquesV and W have potentials  V and  W , and we also endow S with a potential �S that we initializeto unity. The basi
 operation of the jun
tion tree algorithm is an ex
hange of information betweenV and W , with S serving as a 
onduit for the 
ow of information. We �rst update W based on V ,



16 CHAPTER 17. THE JUNCTION TREE ALGORITHMwhere the asterisk means \updated value of":��S = XV nS  V (17.14) �W = ��S�S  W : (17.15)The �rst equationmarginalizes the potential  V with respe
t to S, storing the result in the separatorpotential. The se
ond equation res
ales the potential on W by multiplying by an \update fa
tor"that is the ratio of the new separator potential to its old value.This update has an important invariant: the joint distribution p(xH ; �xE). Note that  V isun
hanged during the update. De�ning  �V =  V , we have: �V  �W��S =  V  W��S�S��S (17.16)=  V  W�S ; (17.17)and thus the joint distribution as de�ned in Eq. ?? is un
hanged. Whether or not we have a
hievedanything useful with the update is as yet un
lear; but at least the joint probability has not beenaltered.We now pass information from W ba
k to V , using the same update rule. In parti
ular:���S = XWnS  �W (17.18) ��V = ���S��S  �V : (17.19)(Noting that  �W is un
hanged during this update, we de�ne  ��W =  �W ).Note that on
e again the joint probability p(xH ; �xE) remains unaltered by the update.There is another important property that 
hara
terizes the pair of updates. In parti
ular, thepotentials  ��V and  ��W are 
onsistent with respe
t to their interse
tion S; that is, they have thesame marginals. This is easily veri�ed:XV nS  ��V = XV nS ���S��S  �V (17.20)= ���S��S XV nS  �V (17.21)= ���S��S ��S (17.22)= ���S (17.23)= XWnS  ��W : (17.24)



17.5. LOCAL CONSISTENCY 17Inspe
ting this derivation, we see that the key steps for a
hieving 
onsisten
y are Eqs. 17.14 and17.19. In the forward pass, from V to W , the algorithm stores the marginal of the V potential inthe separator potential. In the ba
kward pass, from W to V , the algorithm divides the V potentialby its stored marginal and multiplies the result by the new marginal ���S . This latter marginal isthe marginal of the W potential. The res
aling equation essentially substitutes one marginal foranother, thus making the two 
lique potentials 
onsistent. This is a
hieved in the 
ontext of asymmetri
 algorithm that passes information in both dire
tions, and leaves the joint probabilitydistribution invariant.Consider for example the Markov 
hain in Figure 17.8. Initially, the 
lique potential on fX;Y gis p(x; y), and the 
lique potential on fY;Zg is p(z j y). The �rst pair of update equations resultsin the following update: ��Y = Xx p(x; y) = p(y) (17.25) �Y Z = p(y)1 p(z j y) = p(y; z); (17.26)and we see that the 
lique potentials have be
ome marginal probabilities. The ba
kward phase inthis 
ase is va
uous; marginalizing over p(y; z) yields p(y) again for the separator marginal and theupdate fa
tor is unity.Now 
onsider the 
hain in the 
ase in whi
h eviden
e is observed. Suppose for simpli
ity thatall nodes are binary, and the eviden
e is X = 1. In
orporating the eviden
e means taking the sli
eof the potential on fX;Y g in whi
h X = 1; i.e., taking the se
ond row of the potential table. Themarginalization operation is now a va
uous operation, and we have:��Y = p(X = 1; y): (17.27)Performing the update of the fY;Zg potential yields: �Y Z = p(X = 1; y)p(z j y) = p(X = 1; y; z): (17.28)Thus our potentials are as follows:  �XY = p(X = 1; y) (17.29)��Y = p(X = 1; y) (17.30) �Y Z = p(X = 1; y; z); (17.31)and we see that we have obtained marginals as before, but these are unnormalized marginals.Normalizing (a lo
al operation), we 
an readily read o� the 
onditionals p(y jX = 1), p(y jX = 1),and p(y; z jX = 1). Note that on
e again the ba
kward pass is va
uous.The reader may wish to try the 
ases in whi
h eviden
e Z = 1 is available and when both X = 1and Z = 1 are observed.
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Figure 17.10: A 
lique tree with expli
it representation of the separators. The separators are theinterse
tion of the pair of 
liques at the ends of the edge. Thus, for example, S = V \W .17.6 Propagation in a 
lique treeWe now turn to the issue of how to perform lo
al updates when we have multiple overlapping
liques.In Figure 17.10 we show a 
lique tree. Ea
h edge in this tree is asso
iated with a separator.Cliques that are neighbors in this tree are subje
t to the updating pro
edure des
ribed in theprevious se
tion.There are two issues that we must address|how to 
onstru
t an appropriate 
lique tree andhow to perform the updates so that lo
al 
onsisten
y obtained between a 
lique and its neighbor isnot ruined by subsequent updates between the 
lique and other neighbors. In this se
tion we fo
uson the se
ond issue, returning to the problem of 
onstru
ting the tree in Se
tion 17.10.How do we maintain lo
al 
onsisten
y in a 
lique tree? Consider again the 
lique tree shown inFigure 17.10. Suppose that we were to a
hieve lo
al 
onsisten
y between V and W using the pairof updates dis
ussed in the previous se
tion, and subsequently we update W based on its otherneighbors. The latter updates would generally ruin the 
onsisten
y that has been a
hieved betweenV and W . To ensure that this does not happen, we develop a proto
ol that 
onstrains the order inwhi
h updates are performed.3Let us refer to the update of one 
lique based on another as a \message-passing" operation.That is, we \pass a message" from V to W by evaluating Eqs. 17.14 and 17.15. In general, as wesaw in the previous se
tion, we require a message in both dire
tions in order to render a pair of
liques 
onsistent with ea
h other.Our problem is to de
ide when a given 
lique is allowed to pass a message to one of its neighbors.This problem is solved by the following proto
ol:Message-Passing Proto
ol. A 
lique 
an send a message to a neighboring 
lique only when ithas re
eived messages from all of its other neighbors.3In fa
t the proto
ol is not needed if we are willing to perform redundant steps. If ea
h node is updated repeatedly(for example in parallel), 
onsisten
y-ruining steps will eventually be 
orre
ted (see Exer
ise ??).



17.6. PROPAGATION IN A CLIQUE TREE 19For example, in Figure 17.10, we 
an send a message from W to V only when W has re
eivedmessages from its other neighbors D1 and D2.An easy argument establishes the 
orre
tness of the proto
ol. Consider the moment in time atwhi
h W has re
eived all of the messages from its other neighbors, and is sending a message toV . There are two 
ases to 
onsider: either V has not yet sent its message to W , or V has alreadysent its message to W . In the latter 
ase, we know that V has already re
eived messages from allof its other neighbors. The message from W to V renders the 
liques 
onsistent. Neither 
liquere
eives any additional messages, thus 
onsisten
y is maintained. In the former 
ase, W sends amessage to V , storing its marginal on S, and waits. At some later time, V will have re
eived allof the messages from its other neighbors and will send a message to W . This message will utilizethe stored marginal and render W 
onsistent with V . Neither 
lique will undergo any additionalupdates and 
onsisten
y is maintained.Although our proto
ol is 
orre
t, is it realizable? Are there message-passing algorithms thatrealize the proto
ol and ensure that a message is passed in both dire
tions between every pair of
liques?There are in fa
t many message-passing algorithms that realize the proto
ol; their existen
e isa simple 
onsequen
e of the re
ursive de�nition of a tree. One way to obtain su
h algorithms isbased on designating one 
lique in the tree as the root. On
e a root of the 
lique tree is designated,the tree be
omes an oriented tree with ea
h leaf having a unique path to the root. Clearly ea
hleaf 
an send a message inward at any time. Interior nodes send a message toward the root on
ethey have re
eived messages from all of their 
hildren. On
e all messages have arrived at the root,we propagate messages outward to the leaves.More formally, we de�ne the following pair of re
ursive pro
edures:Colle
tEviden
e( node )beginfor ea
h 
hild of nodebeginUpdate( node, Colle
tEviden
e( 
hild ) )endreturn( node )endDistributeEviden
e( node )beginfor ea
h 
hild of nodebeginUpdate( 
hild, node )DistributeEviden
e( 
hild )endend
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(a) (b)Figure 17.11: (a) The message-passing resulting from a 
all of Colle
tEviden
e at the root node(the doubly-
ir
led node). (b) The message-passing resulting from a 
all of DistributeEviden
eat the root node.where Update(V;W ) is a routine that invokes the pair of equations Eq. 17.14 and 17.15. CallingColle
tEviden
e(root) followed by DistributeEviden
e(root) 
auses messages to propagateinward to the root and outward to the leaves.Theorem 1 The Colle
tEviden
e and DistributeEviden
e re
ursions respe
t the Message-Passing Proto
ol.Proof. When Colle
tEviden
e is 
alled at a node, the node 
alls all of its other neighbors andwaits on return messages from those nodes before returning a message ba
k to its 
aller. ThusColle
tEviden
e obeys the proto
ol.After Colle
tEviden
e has run, ea
h node has re
eived a message from all of its neighborsex
ept its parent. On
e it re
eives a message from its parent it is free to send messages to anyother node. DistributeEviden
e sends a message from a parent to its 
hild before 
alling itselfon that 
hild. Thus DistributeEviden
e respe
ts the proto
ol. 2Consider the example shown in Figure 17.11, where the doubly-
ir
led node is designated as
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B,D

C,DFigure 17.12: An undire
ted graphi
al model and a 
orresponding 
lique tree.the root node. A 
all of Colle
tEviden
e results in messages pro
eeding inward as shown inFigure 17.11, and a 
all of DistributeEviden
e results in the outward-going messages shownin Figure 17.11. Note that it is 
lear that one and only one message is passed in both dire
tionsbetween every pair of 
liques.17.7 The jun
tion tree propertyAt this point we have developed most of the ma
hinery asso
iated with the jun
tion tree algorithm,and we are in the position to des
ribe re
ursive inferen
e algorithms for some non-trivial graphi
almodels. In fa
t the ma
hinery dis
ussed thus far is suÆ
ient to handle all of the models that we
onsidered in Part I. In parti
ular, an impatient reader 
ould jump to Chapter 18 to see how thealgorithm spe
ializes to the 
ase of the HMM and the state-spa
e model. Both of those 
ases involvea rather obvious 
hoi
e for the tree of 
liques, and given a parti
ular 
hoi
e of root node, the re
ur-sive algorithms that we developed in earlier 
hapters fall out naturally from Colle
tEviden
eand DistributeEviden
e.Despite this heady su

ess, we have as yet no theoreti
al guarantee that the algorithm is 
or-re
t for general graphi
al models. In fa
t it turns out that the algorithm as developed thus far isnot 
orre
t for general graphi
al models. In this se
tion we identify the (last) problem that mustbe addressed. We should emphasize at the outset that the problem is essentially a data stru
-ture problem involving the 
onstru
tion of the 
lique tree. There is in fa
t no problem with ourmarginalizing and res
aling equations, nor with our Message-Passing Proto
ol. It suÆ
es to getthe data stru
ture right.To see that our labor is not yet �nished, 
onsider the undire
ted graphi
al model shown inFigure 17.12. There are four 
liques in this graph. A parti
ular 
hoi
e of 
lique tree is shown inFigure 17.12. Note that this 
lique tree has a problemati
 feature. In parti
ular, the node C appearsin two di�erent 
liques in the tree and these 
liques are not neighbors. Given that our algorithmonly enfor
es lo
al 
onsisten
y, there is no guarantee that the two 
liques 
ontaining C will be
onsistent. Indeed, if the leftmost 
lique that 
ontains C is 
hanged (e.g., by the introdu
tion ofeviden
e), there is no me
hanism to insure that this information will 
ow to the rightmost 
liquethat 
ontains C. In general, lo
al 
onsisten
y does not imply global 
onsisten
y.Note that the la
k of global 
onsisten
y does not imply that we have an in
orre
t representation



22 CHAPTER 17. THE JUNCTION TREE ALGORITHMof the joint probability distribution. Indeed, as we saw earlier, the jun
tion tree algorithm does notalter the joint probability, and thus we maintain a 
orre
t representation of the joint throughout.What we fail to a
hieve in Figure 17.12 is lo
ality|the 
lique potentials 
orre
tly represent thejoint probability, but they are not lo
al marginal probabilities.The reader 
an verify that there is no alternative 
lique tree that avoids the problem. All 
liquetrees have a pair of nodes that lie in non-neighboring 
liques.A 
lue to understanding the problem 
omes from observing that the elimination algorithmwould unavoidably 
reate new links in the graph in Figure 17.12; e.g., eliminating C would 
onne
tA and B. Another way to put the problem is that there is no way to 
hoose an elimination orderingsu
h that the elimination 
liques are 
ontained within the 
liques of the original graph.While this argument based on elimination provides insight, we prefer to restate the problemdire
tly in terms of properties of 
lique trees. To do so, we arti
ulate a property that rules outthe problemati
 
on�gurations of the kind that we saw in Figure 17.12. The relevant property isknown as the jun
tion tree property :The jun
tion tree property. A 
lique tree possesses the jun
tion tree property if for every pairof 
liques V and W , all 
liques on the (unique) path between V and W 
ontain V \W .A 
lique tree that possesses the jun
tion tree property is referred to as a jun
tion tree.The 
onsequen
es of the jun
tion tree property for inferen
e are as follows. If a node A appearsin two 
liques in a jun
tion tree, then A is 
ontained in every 
lique along the path between thesetwo 
liques. If the 
liques along the path are pairwise 
onsistent with respe
t to A then they will bejointly 
onsistent with respe
t to A. In a jun
tion tree, lo
al 
onsisten
y implies global 
onsisten
y.This argument implies that if we are fortunate enough to have a 
lique tree that is a jun
tiontree, and if we run the message-passing pro
edure as des
ribed in the previous se
tion, we a
hievenot only lo
al 
onsisten
y but also global 
onsisten
y. We 
an get the same answer for any node Aby 
onsulting any potential that 
ontains A.Re
all however that our goal is to obtain a set of potentials that are not only 
onsistent, butare also marginals|that is, ea
h potential represents the marginal probability of the nodes in its
lique. It is 
on
eivable that the jun
tion tree 
ould be 
onsistent, but the potentials would not bemarginals. In fa
t, somewhat surprisingly, this 
annot be the 
ase. In a jun
tion tree, the jun
tiontree algorithm not only a
hieves global 
onsisten
y, but it yields the sought-after 
lique marginalsas well. To prove this important result we require the following lemma.Lemma 1 Let C be a leaf in a jun
tion tree for a graph with vertex set V . Let S be the asso
iatedseparator (see Figure 17.13). Let R = CnS be the set of nodes in C but not in the separator, andlet U = V nC be the set of nodes in V but not in C. Then:R ?? U jS (17.32)Proof. Suppose, by way of 
ontradi
tion, that A 2 R has a neighbor N 2 U . Consider themaximal 
omplete subset 
ontaining both A and N . This 
lique is not C be
ause N 62 C. However,A 
annot be 
ontained in any 
lique other than C be
ause A would have to belong to S as well, by
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S

C
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V

Figure 17.13: The \residual" set R = CnS is the set of nodes in C that are not in S, and, by thejun
tion tree property, also not in U .the jun
tion tree property, and nodes in R are not in S by de�nition. Thus no su
h N exists andS must therefore separate A from U . Sin
e A is arbitrary, S separates R from T . 2We now state and prove our main result.Theorem 2 Let the probability p(xH ; �xE) be represented by the 
lique potentials  C and separatorpotentials �S of a jun
tion tree. When the jun
tion tree algorithm terminates, the 
lique potentialsand separator potentials are proportional to lo
al marginal probabilities. In parti
ular: C = p(xC ; �xE) (17.33)�S = p(xS ; �xE) (17.34)Proof. The separators are subsets of the 
liques. That the separator potentials are proportional tomarginals therefore follows from the fa
t that they are 
onsistent with the 
lique potentials. Thuswe need only prove the result for the 
lique potentials.The proof is a proof by indu
tion. The result holds for the base 
ase of a single 
lique byde�nition. Let us suppose that the result holds for jun
tion trees of N or fewer 
liques, and
onsider a jun
tion tree with N + 1 
liques.We 
hoose a 
lique ~C that is a leaf in the jun
tion tree. Let ~S be the 
orresponding separator,let ~R = ~Cn ~S and let ~T = V n ~C. We also de�ne analogous quantities in whi
h the eviden
e variablesare omitted. In parti
ular, let C = ~CnE, R = ~RnE and T = ~TnE. By Lemma 1 we have:p(xH ; �xE) = p(xR; xS ; xT ; �xE) = p(xR jxS ; �xE)p(xS ; xT ; �xE): (17.35)



24 CHAPTER 17. THE JUNCTION TREE ALGORITHMSumming both sides over R, we obtain:p(xS; xT ; �xE) = XR p(H; �xE) (17.36)= XR QC  C(xC)QS �S(xS) (17.37)= XR  C�S QC0 6=C  C0(C 0)QS 6=S0�S0(x0S) (17.38)= PR  C�S QC0 6=C  C0(C 0)QS 6=S0�S0(x0S) (17.39)= QC0 6=C  C0(C 0)QS 6=S0�S0(x0S) (17.40)where Eq. 17.40 follows from the fa
t that C and S are 
onsistent and thus PR  C = �S .Eq. 17.40 shows that p(xS ; xT ; �xE) is represented by the 
lique potentials and separator poten-tials on the jun
tion tree over S [ T . By the indu
tion hypothesis, after a full round of messagepassing the 
lique potentials on this jun
tion tree are equal to marginals.It remains to show that the 
lique potential on C is a marginal. Let D be the neighbor of C inthe jun
tion tree. By 
onsisten
y we have �S(xS) =PDnS  D(xD). We have  D = p(xD; �xE) andthus  S(xS) = p(xS; �xE). Thus: p(xR jxS ; �xE) =  C(xC)�S(xS) (17.41)=  C(xC)p(xS ; �xE) (17.42)whi
h implies  C(xC) = p(xC ; �xE). 217.8 Triangulated graph ) Jun
tion treeThe jun
tion tree property provides a suÆ
ient 
ondition for the 
orre
tness of the jun
tion treealgorithm. What 
lass of graphs have a jun
tion tree? How do we handle graphs that do not havea jun
tion tree?In this se
tion we present a suÆ
ient 
ondition for a graph to have a jun
tion tree|the 
onditionis that the graph must be triangulated. It turns out that triangulation is also a ne
essary 
onditionfor a graph to have a jun
tion tree. In the 
urrent se
tion, however, we restri
t ourselves to the proofof suÆ
ien
y, proving ne
essity in Appendix A. The Appendix also demonstrates that triangulationis equivalent to de
omposability ; a 
hara
terization of graphs that we dis
ussed in Se
tion ??.We begin by de�ning a triangulated graph and then pro
eed to the proof of suÆ
ien
y. Thereader willing to a

ept the proof on faith 
an read the de�nition of triangulation in the nextparagraph and then skip to the following se
tion without loss of 
ontinuity.



17.8. TRIANGULATED GRAPH ) JUNCTION TREE 25Consider a 
y
le in an undire
ted graph. A 
y
le is 
hordless if there are no edges betweennodes that are not su

essors in the 
y
le. For example, the 
y
le A�B�D�C�A in Figure 17.12is 
hordless be
ause there is no edge between A and C or between B and D. A graph is said to betriangulated if there are no 
hordless 
y
les in the graph.Our �rst stop in the proof of suÆ
ien
y is a simple lemma that shows that triangulated graphs
an be de
omposed into three subsets with spe
ial properties.Lemma 2 Let G = (V;E) be a non
omplete triangulated graph with at least three nodes. Thenthere exists a de
omposition of V into disjoint sets A, B and S su
h that S separates A and B andS is 
omplete.Proof. Choose a pair of nonadja
ent nodes � and �. Let S be the minimal set of nodes su
h thatany path from � to � passes through S. Let A be the set of nodes rea
hable from � when S isremoved and similarly let B be the set of nodes rea
hable from � when S is removed. Clearly thesetwo sets are separated by S. We need only establish that S is 
omplete.Let C and D be nodes in S. Sin
e S is minimal, there is a path from � to C and from � to D;thus there is a path from C to D in A[S. Take the shortest su
h path. Similarly take the shortestpath joining C to D in B [ S. Link these paths to obtain a 
y
le. This 
y
le must have a 
hord.This 
hord must be an edge between C and D, by our 
hoi
e of shortest paths. Thus C and D areneighbors. 2We also require the notion of a simpli
ial node. A node is simpli
ial if all of its neighborsare 
onne
ted. The following lemma guarantees the existen
e of simpli
ial nodes in triangulatedgraphs.Lemma 3 Every triangulated graph that 
ontains at least two nodes has at least two simpli
ialnodes. If the graph is not 
omplete, then these nodes 
an be 
hosen to be nonadja
ent.Proof. We again use indu
tion and again the base 
ase is trivial. Consider a triangulated graphG with N + 1 nodes. If the graph is 
omplete then all nodes are simpli
ial. Otherwise we useLemma 2 to de
ompose the graph into disjoint sets A, B and S. The subgraphs A [ S and B [ S
annot 
ontain any 
hordless 
y
les (be
ause any su
h 
y
les would also be 
hordless in G), andthus they are both triangulated. The indu
tion hypothesis implies the existen
e of two simpli
ialnodes in A[S. If A[S is not 
omplete these 
an be taken to be nonadja
ent, and, given that S is
omplete, one of the two nodes 
an be taken to be in A. Otherwise, pi
k any node in A. Similarly,the indu
tion hypothesis implies the existen
e of two simpli
ial nodes in B [ S, and one of these
an be taken in B. Given that A and B are separated by S, the two nodes that we have sele
tedare simpli
ial in G and they are also nonadja
ent. 2We now demonstrate that triangulation implies the existen
e of a 
lique tree with the jun
tiontree property.Theorem 3 All triangulated graphs have a jun
tion tree.Proof. We on
e again use indu
tion and on
e again the base 
ase is trivial. Consider a graph Gwith N + 1 nodes. By Lemma 3, the graph has at least one simpli
ial node �.
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ial node from a triangulated graph yields a triangulated graph, be
ause no
hordless 
y
les 
an be 
reated. Thus by the indu
tion hypothesis, the graph with � removed hasa jun
tion tree T . We 
onstru
t a jun
tion tree for G from T .Let C denote the 
lique formed by � and its neighbors. If Cn� is a 
lique in T , then simplyadd � to that 
lique; T with the augmented 
lique is a jun
tion tree for G.If Cn� is not a 
lique D in T , then it is a subset of a 
lique D in T . Add C as a new leafnode for T , with a link to D and a separator set S = Cn�. The result is a jun
tion tree. This isestablished by noting that (1) � is 
ontained only in C and therefore 
annot violate the jun
tiontree property; and (2) all other nodes in C are in S and in D and therefore 
annot violate thejun
tion tree property. 217.9 Elimination ) TriangulationIn this se
tion we show that Undire
tedGraphEliminate 
an be viewed as a pro
edure for
reating a triangulated graph. This result will show us how to deal with nontriangulated graphswithin the jun
tion tree framework. It also allows us to demonstrate that the elimination algorithmis a spe
ial 
ase of the jun
tion tree algorithm.Re
all that Undire
tedGraphEliminate is a simple iterative algorithm that su

essivelyeliminates the nodes in a graph by (1) 
onne
ting the (remaining) neighbors of the node and (2)removing the node and its edges from the graph. The input to the algorithm is a graph and anelimination ordering.Theorem 4 Undire
tedGraphEliminate yields a triangulated graph.Proof. We prove the theorem by indu
tion. The base 
ase is a graph with a single node, whi
h isobviously triangulated. Suppose now that the hypothesis holds for graphs with N or fewer nodesand 
onsider a graph with N +1 nodes. Eliminating a node results in a graph with N nodes, whi
h
annot 
ontain a 
hordless 
y
le by the indu
tion hypothesis. Moreover, it is not possible to forma 
hordless 
y
le involving the eliminated node, be
ause the elimination step 
onne
ts all of theneighbors of the node. 2Thus the edges added by the Undire
tedGraphEliminate algorithm are exa
tly those thatturn a nontriangulated graph into a triangulated graph.This result suggests the following general approa
h to dealing with nontriangulated graphs.Given an initial undire
ted graph (possibly obtained by moralizing a dire
ted graph), we �rst tri-angulate the graph using Undire
tedGraphEliminate. We are not 
onstrained in our 
hoi
eof elimination ordering and 
an use any of a variety of heuristi
s to 
hoose a \good" eliminationordering; e.g., one that introdu
es as few extra edges as possible (see Appendix A). Given a tri-angulation, we 
onstru
t a jun
tion tree from the triangulated graph and run the message-passingpro
edure. The algorithm 
al
ulates marginal probabilities for all of the 
liques of the triangulatedgraph. Marginals for subsets of these 
liques (e.g., individual nodes) 
an be obtained by furthermarginalization and normalization of individual potentials.The 
orre
tness of this approa
h follows from an argument similar to that used to justifymoralization. Adding edges to a graph 
an only de
rease the set of 
onditional independen
ies
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iated with the graph and thus expand the set of probability distributions asso
iated with thegraph. This implies that the set of probability distributions asso
iated with the triangulation of agraph in
ludes the set of probability distributions asso
iated with the original graph. Solving theinferen
e problem for the triangulated graph solves it for the original graph as well.Our argument also suggests (
orre
tly) that the elimination algorithm is a spe
ial 
ase of thejun
tion tree algorithm. As we ask the reader to show in Exer
ise ??, applying the jun
tion treealgorithm to the 
liques of the triangulated graph resulting from a given elimination ordering were
over exa
tly the probabilisti
 
al
ulations of the elimination algorithm.It is possible to prove a 
onverse to Theorem 4 showing that for any triangulated graph thereexists an ordering su
h that elimination using that ordering introdu
es no new edges.4 Thus,elimination and triangulation are essentially equivalent notions. This does not imply, however, thatpra
ti
al algorithms for triangulation are ne
essarily best viewed as elimination algorithms. Rather,treating triangulation as a 
ombinatorial optimization problem provides a broader perspe
tive onthe problem. In Appendix A, we return to these issues and des
ribe pra
ti
al algorithms for graphtriangulation.If our goal is to obtain the marginal probabilities of all of the non-eviden
e nodes in the graph,then the naive elimination algorithm would require us to 
hoose di�erent elimination orderings inwhi
h the target node is the �nal node in the ordering. These di�erent elimination orderings wouldin general produ
e in
ommensurate elimination 
liques, and make it diÆ
ult, if not impossible,to share the intermediate potentials. The jun
tion tree framework, on the other hand, 
al
ulatesa single triangulation, in e�e
t using a single elimination ordering. While this ordering may notbe optimal for 
al
ulating any given individual marginal, the 
hoi
e of a single ordering makes itpossible to share intermediate potentials, and thus supports the eÆ
ient 
al
ulation of marginalsfor all 
liques in the graph.17.10 Constru
ting the jun
tion treeThe results of Se
tion 17.8 show that every triangulated graph has a jun
tion tree. This proof|anexisten
e proof|leaves us just short of our goal. How do we 
onstru
t a jun
tion tree from atriangulated graph?It is 
ertainly not the 
ase that every 
lique tree obtained from a triangulated graph is a jun
tiontree. Consider the triangulated graph shown in Figure 17.14(a). The 
lique tree in Figure 17.14(b)is not a jun
tion tree (
onsider node B). A jun
tion tree for this graph is shown in Figure 17.14(
).The separators in Figure 17.14(b) are fC;Dg and fDg, whereas in Figure 17.14(
) the separatorsare fB;Dg and fC;Dg. The total 
ardinality of the separator sets is larger in the latter �gure.Intuitively this fa
t would seem to have something to do with the fa
t that Figure 17.14(
) possessesthe jun
tion tree property while Figure 17.14(b) does not.To ea
h 
lique tree T asso
iated with a triangulated graph we 
an assign a weight w(T ) givenby the sum of the 
ardinalities of the separator sets in the tree. We show in this se
tion that a
lique tree is a jun
tion tree if and only if it has maximal weight, ranging over all possible trees of
liques. There may be several su
h trees.4See, e.g., Jensen, (1996).
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(a) (b) (c)Figure 17.14: (a) A triangulated graph. (b) A 
lique tree based on (a) that does not have thejun
tion tree property. (
) A 
lique tree based on (a) that does have the jun
tion tree property.Our problem is an instan
e of the 
lassi
al \maximal spanning tree problem." The problem isreadily solved via one of a number of simple greedy algorithms. One solution is given by Kruskal'salgorithm: Begin with no edges between the 
liques. At ea
h step add an edge that has maximalseparator 
ardinality, ensuring that the resulting graph has no 
y
les. On
e the graph is fully
onne
ted (there is a path between any pair of 
liques), we have a maximal spanning tree.5Consider a node Xk and a 
lique tree T with 
liques Ci and separators Sj . Consider further the
ount of the number of times that Xk appears as an element in one the 
liques Ci, as well as the
ount of the number of times that Xk appears as an element in one of the Sj. Clearly these 
ountsare related, and in parti
ular the fa
t that T is a tree implies that the latter 
ount is no more thanthe former 
ount less one: M�1Xj=1 1(Xk 2 Sj) � MXi=1 1(Xk 2 Ci)� 1; (17.43)where 1(�) is the indi
ator fun
tion and whereM is the number of 
liques. Moreover, this inequalitybe
omes an equality when the subgraph of T indu
ed by Xk is a tree.As we have noted earlier, the statement that the subgraph of T indu
ed by a node Xk is a treeis nothing more than a restatement of the jun
tion tree property. Thus we have in Eq. 17.43 aninequality whi
h is indi
ative of the jun
tion tree property, at least with respe
t to a single nodeXk.We are now ready to state the theorem linking jun
tion trees and maximal spanning trees.Theorem 5 A 
lique tree T is a jun
tion tree if and only if it is a maximal spanning tree.Proof. The total weight of a 
lique tree is equal to the sum of the 
ardinalities of its separators.5See Cormen, Leisherson, and Rivest (1990) for a proof of this result. Another approa
h is given by Prim'salgorithm, whi
h maintains a partial tree at ea
h step and iteratively adds nodes to this tree.



17.11. THE HUGIN ALGORITHM 29Thus we have: w(T ) = M�1Xj=1 jSj j (17.44)= M�1Xj=1 NXk=1 1(Xk 2 Sj) (17.45)= NXk=1M�1Xj=1 1(Xk 2 Sj) (17.46)� NXk=1 " MXi=1 1(Xk 2 Ci)� 1# (17.47)= MXi=1 NXk=1 1(Xk 2 Ci)�M (17.48)= MXi=1 jCij �M: (17.49)Noting that the right-hand side is independent of T , and that the inequality in Eq. 17.47 is anequality if and only if T is a jun
tion tree, we obtain the result. 217.11 The Hugin algorithmThe algorithm that we have developed in previous se
tions is known as the \Hugin algorithm," aninstan
e of the general jun
tion tree framework. We summarize the algorithm here. There are �veprin
ipal steps to the algorithm, the �rst of whi
h applies only to dire
ted graphs.� Moralization. The moralization step 
onverts a dire
ted graph into an undire
ted graph.Nodes that have a 
ommon 
hild are linked, and dire
ted edges are 
onverted to undire
tededges. The lo
al 
onditional probability of ea
h node is multiplied onto the potential of a
lique that 
ontains the node and its parents.� Introdu
tion of eviden
e. Eviden
e is introdu
ed by taking sli
es of the potentials.� Triangulation. The graph is triangulated, using one of several possible algorithms. Thepotential of ea
h 
lique of the original graph is multiplied onto the potential of a 
lique that
ontains the 
lique.� Constru
tion of jun
tion tree. A jun
tion tree is 
onstru
ted by forming a maximalspanning tree from the 
liques of the triangulated graph. Separators are introdu
ed and theirpotentials are initialized to unity.



30 CHAPTER 17. THE JUNCTION TREE ALGORITHM� Propagation of probabilities. Computation pro
eeds in the jun
tion tree via the followingupdate equations: ��S = XV nS  V (17.50) �W = ��S�S  W : (17.51)The updates must respe
t the Message-Passing Proto
ol. This 
an be a
hieved by designatinga root node and 
alling Colle
tEviden
e and DistributeEviden
e from the root. On
ethe algorithm terminates, the 
lique potentials and separator potentials are proportional tomarginal probabilities. Further marginalization 
an be performed to obtain the probabilitiesof singleton nodes or other subsets.17.12 The Shafer-Shenoy algorithmThere are a number of variations on the jun
tion tree theme. All of these variations have at their 
orethe notion of a triangulated graph and the jun
tion tree property, but the way that propagationpro
eeds on the jun
tion tree 
an be di�erent. Some of these variations 
an provide additionalinsights into exa
t inferen
e and provide di�erent pathways for generalizations to approximateinferen
e. Moreover, di�erent variations on jun
tion tree propagation 
an have di�erent numeri
alproperties or time/spa
e properties. In this se
tion we dis
uss one su
h variation|the Shafer-Shenoy algorithm.The Shafer-Shenoy algorithm 
an be viewed as a variation on the jun
tion tree frameworkin whi
h no use is made of separator potentials. While the separator potentials have been use-ful in providing a simple me
hanism for a
hieving 
onsisten
y between neighboring 
liques, andwhile we will en
ounter ar
hite
tural examples in whi
h separator potentials are parti
ularly useful(
f. Se
tion18.2.4), there is a sense in whi
h separator potentials are redundant (they are simplymarginals of the 
lique potentials) and perhaps they 
an be disposed with.Rather than fo
using on separator potentials, let us instead fo
us on the ratios of separatorpotentials; the quantities that we referred to as \update fa
tors" in our earlier presentation. Re
allthat in the se
ond step of the message-passing 
al
ulation (Eq. 17.15), the 
lique potential ismultiplied by the update fa
tor. What we will show is that a propagation pro
edure 
an be basedsolely on the update fa
tors.Consider the pair of 
liques Ci and Cj in Figure 17.15, with separator Sij = Ci \ Cj . We wishto ex
hange messages between these 
liques so as to implement a jun
tion tree algorithm, and wewish to do so without making use of a potential on the separator Sij . To do so, de�ne �ij(Sij) asthe message sent from Ci to Cj .6 The Shafer-Shenoy algorithm tells us how to 
al
ulate �ij(Sij)based on the messages arriving at 
lique Ci from all 
liques other than 
lique Cj :�ij(Sij) = XCinSij  CiYk 6=i�ki(Ski) (17.52)6Note that we are using the term \message" in a slightly more spe
i�
 manner than before; for the Shafer-Shenoyalgorithm, we equate \message" with the values �ij(Sij).
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(a) (b)Figure 17.15: (a) A jun
tion tree showing the messages �ij and �ji that are passed between 
liquesCi and Cj. Note that both messages are fun
tions of the separator Sij . (b) A jun
tion tree showingthe separator expli
itly.On
e 
lique Ci has re
eived messages from all of its neighbors, we 
ompute the marginal probabilityfor Ci as follows: p(Ci) /  CiYk �ki(Ski): (17.53)Equations 17.52 and 17.53 
onstitute the Shafer-Shenoy algorithm. We now derive this algorithmfrom the point of view of our earlier jun
tion tree algorithm, thereby proving the 
orre
tness ofthe impli
it assertion in Eq. 17.53|that we do in fa
t obtain the marginal probabilities via thisalgorithm.Consider now the pair of 
liques Ci and Cj in Figure 17.15(b) with the expli
it separator Sij .The 
onne
tion between the new algorithm and the earlier algorithm is made as follows. De�ne�ij(Sij) to be the update fa
tor asso
iated with the update of the link in the dire
tion from Ci toCj. That is, if the �rst update of this link pro
eeds in the i-to-j dire
tion, let:�ij(Sij) , ��Sij�Sij ; (17.54)otherwise, let: �ij(Sij) , ���Sij��Sij : (17.55)In either 
ase, �ij(Sij) is the update fa
tor arriving at 
lique Cj from 
lique Ci. Now note that the�nal potential at a given 
lique is the produ
t of its initial potential and all of the update fa
torsarriving from its neighbors. This immediately shows that Eq. 17.53 has the 
orre
t form. We haveredu
ed our problem to that of establishing the 
orre
tness of Eq. 17.52.We 
onsider two 
ases. Suppose �rst that the initial update of the link between Ci and Cj o

ursin the i-to-j dire
tion. For this update to o

ur it must be the 
ase that Ci has already re
eivedupdates from all of its other neighbors (the Message-Passing Proto
ol). Thus at the moment whenthe update o

urs, the value of the potential on Ci must be the produ
t of its initial potential andthe update fa
tors from its neighbors Ck, for k 6= j. Let us assume (as an indu
tive hypothesis)that these update fa
tors are 
orre
tly given by �ki(Ski), and 
onsider the update fa
tor that Ci



32 CHAPTER 17. THE JUNCTION TREE ALGORITHMsends to Cj. From Eq. 17.14 we have:��Sij = XCinSij  CiYk 6=i�ki(Ski): (17.56)Comparing this with Eq. 17.52, we see that �ij(Sij) = ��Sij and, re
alling that the initial value ofthe separator potential, �Sij , is unity, we have �ij(Sij) = ��Sij �Sij as required.Now 
onsider the 
ase in whi
h an earlier update has already o

urred in the j-to-i dire
tion.In this 
ase, at the moment of the update from Ci to Cj, the potential on Ci must be the produ
tof its initial potential and the update fa
tors from all of its neighbors, in
luding Cj. Thus, fromEq. 17.14 we have: ���Sij = XCinSij  CiYk �ki(Ski) (17.57)= XCinSij  Ci�ji(Sji)Yk 6=j �ki(Ski) (17.58)= XCinSij  Ci ��Sij�Sij Yk 6=j �ki(Ski) (17.59)(17.60)and this yields: ���Sij��Sij = XCinSij Yk 6=j �ki(Ski); (17.61)where we again use the fa
t that �Sij � 1. Comparing this result with Eq. 17.52, we see that�ij(Sij) = ���Sij=��Sij as required.17.13 Computational 
omplexityIn this se
tion we dis
uss the 
omputational 
omplexity of the jun
tion tree algorithm. For 
on-
reteness we fo
us on the Hugin algorithm and 
onsider the 
omputational 
omplexity of the Shafer-Shenoy algorithm in the exer
ises.It is important to distinguish between two phases of the jun
tion tree algorithm. The �rstphase, whi
h we will refer to as the 
ompilation phase, involves moralization, triangulation andthe maximal spanning tree algorithm. The se
ond phase, the propagation phase, involves theintrodu
tion of eviden
e and message-passing on the jun
tion tree.The 
ompilation phase is an \o�-line" phase, o

uring on
e for a given graphi
al model. Thealgorithms in the propagation phase are \on-line," running ea
h time a new set of 
onditionalprobabilities is desired.Moralization is 
learly a 
omputationally tra
table pro
edure. Letting N denote the number ofnodes in the graph, and M the number of edges, moralization runs in time O(N +M).



17.13. COMPUTATIONAL COMPLEXITY 33Moreover, the maximal spanning tree problem is 
omputationally tra
table. This is a well-studied problem and the 
omputational 
omplexity results are 
lassi
al. In parti
ular, the run timeof Kruskal's algorithm is O(N2) and the run time of Prim's algorithm is O(N2).7Let us turn to the triangulation problem. If we are not 
on
erned with optimality (e.g., �ndinga jun
tion tree with the smallest maximal 
lique, or the smallest number of edges), then �nding atriangulation is 
omputationally tra
table. In parti
ular, the run time of Undire
tedGraphE-liminate is easily seen to be O(XXX). The problem of �nding an optimal jun
tion tree, however,is an NP-hard problem, under any of a number of de�nitions of optimality. We dis
uss this in-tra
tability result in more detail in Appendix A.The fa
t that triangulation is an o�-line phase of the jun
tion tree algorithm tempers some ofthe 
on
ern that a

ompanies the NP-hardness result. Moreover, as we dis
uss in Appendix A,there are heuristi
 algorithms available for triangulation that perform reasonably well in empiri
alexperiments. One may be willing to pay the 
ost of allowing one of these algorithms to run for asubstantial time to obtain a good triangulation. Finally, it is important to be aware that for manygraphi
al models the initial graph is suÆ
iently dense that even the optimal triangulation, if it
ould be found, would have a large number of edges or a large maximal 
lique size. It is the sizeof these 
liques, whi
h impa
ts the se
ond phase of the jun
tion tree algorithm, whi
h is generallythe key pra
ti
al limitation in using the algorithm.The se
ond phase of the algorithm involves 
onditioning and message-passing. Conditioning isa straightforward pro
edure that simply annotates ea
h 
lique with the indi
es that are to be held�xed in the sli
e 
orresponding to the 
onditioning variables. We therefore turn to the message-passing pro
edure.Ea
h step of the message-passing pro
edure involves the marginalization and res
aling of 
liquepotentials. Let us suppose that these potentials are represented nonparametri
ally, as tables. Thisis a worst-
ase assumption, and spe
i�
 parametri
 representations of the 
lique potentials maygive more favorable 
omplexity results. Marginalizing a table requires us to a

ess ea
h entryin the table, and thus the number of operations s
ales as the number of entries in the table.The number of su
h entries is exponential in the number of variables in the 
orresponding 
lique.This exponentiality is the key determinant of the 
omputational 
omplexity of the jun
tion treealgorithm.Res
aling a potential again involves a

essing ea
h entry in the a�e
ted 
lique potential, andthus is again exponential in the number of variables in the 
lique.The number of 
liques in a jun
tion tree is no more than N , the number of nodes in theunderlying graph (assuming that we use maximal 
liques). Thus the number of separators isbounded above by N � 1, and we have at most 2N � 1 messages 
owing in a run of the Huginalgorithm. Ea
h message involves two operations on 
lique potentials|a marginalization operationand a res
aling operation. In summary, a 
omplete run of the Hugin algorithm involves at most4N�2 su
h operations. Given that the size of a 
lique 
an be as large as the number of nodes N , theexponentiality of an individual marginalization or res
aling operation dominates the 
omputational
omplexity.It is of interest to 
ompare the number of operations needed to obtain the marginal probabilities7See, e.g., Cormen Leisherson, and Rivest (1990).



34 CHAPTER 17. THE JUNCTION TREE ALGORITHMFigure 17.16: XXXof all of the nodes in the graph|obtained via the jun
tion tree algorithm|to the number ofoperations needed to obtain the marginal probabilities of a single node in the graph|obtained viathe elimination algorithm. The latter algorithm is spe
ial 
ase; just run Colle
tEviden
e. Tou
hesea
h potential on
e.17.14 Generalized marginalizationOne of the virtues of the jun
tion tree framework is its 
lear distin
tion between the graph-theoreti
and the algebrai
 ma
hinery involved in probabilisti
 inferen
e. The algebrai
 ma
hinery that weutilized in deriving the algorithm was elementary|our proofs reposed on the asso
iative, 
ommu-tative and distributive laws of arithmeti
. As we dis
uss in this se
tion, if we repla
e the spe
i�
algebrai
 operators that we used with other operators that obey these same laws, we �nd thatthe jun
tion tree framework extends readily to a wide 
lass of other problems involving fa
torizedalgebrai
 expressions, of whi
h probabilisti
 inferen
e is a spe
ial 
ase.17.14.1 Maximum probability 
on�gurationsIn Se
tion ?? we dis
ussed the Viterbi algorithm for hidden Markov models. Given an observationsequen
e, this algorithm returns a single 
on�guration of the hidden states that has maximalprobability. In this se
tion we des
ribe a \generalized Viterbi algorithm" that 
omputes mostprobable 
on�gurations for arbitrary graphi
al models.That we need to do essentially no additional work to derive su
h an algorithm is suggested byreturning to the example in Figure 17.16. Let us �nd a set of values of the nodes|a 
on�guration|that maximizes the joint probability p(x1; x2; : : : ; x6).The �rst few steps of the 
al
ulation are as follows:maxx p(x) = maxx1 maxx2 maxx3 maxx4 maxx5 maxx6 p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(x6 jx2; x5)= maxx1 p(x1)maxx2 p(x2 jx1)maxx3 p(x3 jx1)maxx4 p(x4 jx2)maxx5 p(x5 jx3)maxx6 p(x6 jx2; x5):Computing the maximum of p(x6 jx2; x5) with respe
t to x6 yields an intermediate fa
tor that isa fun
tion of x2 and x5. This fa
tor is then retained until needed in a subsequent maximization,in this 
ase the maximization over x5.The sequen
e of steps 
ontinue in an identi
al manner to those that we 
arried out in ourdevelopment of the elimination algorithm in Chapter 3. Clearly, from a symboli
 point of view, the
omputation is the same. In parti
ular, the graphi
al 
onsequen
es of the maximization operatorare identi
al to those of our earlier 
al
ulations with the summation operator.In the light of this example, let us 
onsider repla
ing \sum" with \max" in the jun
tion tree al-gorithm. The only step in the algorithm that spe
i�
ally refers to summation is the marginalization



17.14. GENERALIZED MARGINALIZATION 35step in Eq. (17.14). Changing this step to maximization, we have:��S = maxV nS  V (17.62) �W = ��S�S  W ; (17.63)where the res
aling step is un
hanged.In essen
e we now obtain an inferen
e algorithm based on a generalized notion of marginaliza-tion. All of the steps that we took in deriving the jun
tion tree algorithm go through as before, giventhat the maximization operator has the same 
ommutativity and asso
iativity properties as sum-mation, and given that maximization distributes over multipli
ation just as summation distributesover multipli
ation.What do we obtain from this algorithm? Re
all that our key result is that 
ontained in The-orem 2, where we showed that at the end of the jun
tion tree pro
edure, ea
h 
lique potential isequal to its marginal probability. Here \marginal" means that the random variables not 
ontainedin the 
lique have been \summed out." If we repla
e summation by maximization, we obtain thesame result, but now \marginal" means that the random variables not 
ontained in the 
lique havebeen \maximized out." Thus, we must have C(xC) = maxV nC p(x): (17.64)We interpret the resulting entries in the 
lique potential as 
ontaining the values of the maximalprobability attainable for ea
h possible 
on�guration of the random variables XC . Maximizing overthese values, we obtain the a
tual 
on�gurationWe 
ould also take one or more of the variables to be eviden
e variables and maximize the
onditional probability distribution of the remaining variables; this would simply involve holdingthe eviden
e variables �xed.17.14.2 Appendix A. De
omposable � Triangulated � Jun
tion treeIn Se
tion 17.8 we showed that all triangulated graphs possess a jun
tion tree. For the purpose ofdevising an inferen
e algorithm, this result suÆ
es, fo
using our attention on the problem of �ndinga triangulation of a graph. It is of interest to know, however, that in a 
ertain sense triangulation isnot merely a means to an end, but rather triangulation is for
ed on us if we wish to avail ourselvesof the jun
tion tree property. In parti
ular, in this Appendix we strengthen our earlier result andshow that a graph has a jun
tion tree if and only if the graph is triangulated.We also show that these two properties are equivalent to a third property|de
omposability.Re
all from Se
tion ?? that a graph is de
omposable if it 
an be re
ursively subdivided into sets A,B and S, where S separates A and B, and where S is 
omplete. The equivalen
e of de
omposabilityand the jun
tion tree property provides an appealing interpretation of the jun
tion tree algorithmas a divide-and-
onquer algorithm.Theorem 6 All de
omposable graphs are triangulated.



36 CHAPTER 17. THE JUNCTION TREE ALGORITHMProof. We prove the result by indu
tion. The base 
ase of a single node is trivial. We assumethat the result holds for N or fewer nodes and 
onsider a graph with N + 1 nodes.If the graph is 
omplete then it is obviously triangulated. Otherwise, the de�nition of de
om-posability implies a de
omposition of the graph into sets A, B, and S su
h that S is 
omplete andS separates A and B. Also, both A[S and B [ S are de
omposable. By the indu
tion hypothesisthere are no 
hordless 
y
les in either A [ S or B [ S. The only possible 
hordless 
y
les musttherefore in
lude one or more nodes in both A and B. But su
h 
y
les must pass twi
e through S,and the 
ompleteness of S implies that they have a 
hord. 2Theorem 6 and Theorem 3 together show that all de
omposable graphs have a jun
tion tree.We have proved the 
orre
tness of the jun
tion tree algorithm for the 
lass of de
omposable graphs.We now show a stronger result, namely that de
omposability, triangulation and the jun
tiontree property are equivalent. This implies that the jun
tion tree algorithm is 
orre
t only for the
lass of de
omposable graphs.Theorem 7 The following are equivalent 
hara
terizations of an undire
ted graph G:(D) G is de
omposable.(T) G is triangulated.(J) G has a jun
tion tree.Proof. We have already shown that (D) implies (T ) implies (J). Thus we 
an prove the theoremby showing that (J) implies (D).The proof is a proof by indu
tion. In the base 
ase G has a single 
lique and is de
omposable byde�nition. Suppose that the theorem holds for jun
tion trees with N or fewer 
liques and 
onsidera jun
tion tree T for G = (X;E) with N + 1 
liques.Let C be a leaf node in T with separator S. De�ne R = CnS (re
all Figure 17.13). Considerthe disjoint sets R, XnC and S. We show that these sets are a de
omposition of G.Lemma 1 implies that S separates R and XnC. That S is 
omplete follows from the fa
t thatS is the interse
tion of a pair of 
liques.To show that G is de
omposable it remains to show that C = R [ S and XnR = (XnC) [ Sare de
omposable. We show that both subsets have jun
tion trees and 
on
lude by the indu
tionhypothesis that they are de
omposable.That C has a jun
tion tree follows immediately be
ause it is a single 
lique.Consider the e�e
t on the jun
tion tree T of the removal of nodes in R. Ea
h node in R is
ontained only in C and its neighbors are therefore fully 
onne
ted (i.e., nodes in R are simpli
ial).Removing any su
h node therefore leaves the remaining nodes in C fully 
onne
ted, and thus Cremains a 
lique and the jun
tion tree T is unaltered. When all nodes in R have been removed, allthat remains of C is the separator S, whi
h is a subset of the neighboring 
lique in T . By simplypruning the C 
lique and its separator S from T we therefore obtain a jun
tion tree for XnR. 217.15 Histori
al remarks and bibliography


