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Chapter 17The Juntion Tree AlgorithmIn earlier hapters we have presented a number of examples of inferential alulations in graphialmodels. The general problem has been to alulate the onditional probability of a node or aset of nodes, given the observed values of another set of nodes. In the ase of mixture modelsand fator analysis models the problem was to alulate the onditional probabilities of the latentvariables given the observed data, and the solution was a rather straightforward appliation ofBayes rule. In the ase of the HMM and the state-spae model we saw a somewhat more omplexinferene problem involving dependenies between nodes arranged in a sequene. The solution wasagain an appliation of Bayes rule, but it was neessary to �nd reursions that allowed the infereneproblem to be solved eÆiently. The Markov properties of the underlying graphial model providedthe formal mahinery to justify these reursions.In the urrent hapter we present a general approah to inferene that makes systemati useof the Markov properties of graphial models. All of the examples that we have treated until nowemerge as speial ases; moreover, the reursions that we worked out rather painstakingly in eahindividual ase an now be derived more systematially. The general idea is to use the Markovproperties of graphial models to �nd ways to deompose a general probabilisti alulation into alinked set of loal omputations. The key to this approah is an appropriate de�nition of \loal."Chapter 3 presented a simple elimination algorithm (Elimination) for inferene on direted orundireted graphs. As Elimination runs it reates dependenies between nodes, in e�et rede�n-ing the \loality" relationships in the graph. To develop a deeper understanding of probabilistiinferene, it proves helpful to abstrat away from the spei� proess of elimination and to fous onthis general notion of loality. In e�et we shift our fous from the proess of inferene to the datastrutures that underly inferene. We �nd that a partiular data struture|the juntion tree|emerges from these onsiderations. The juntion tree makes expliit the important (and beautiful)relationship between graph-theoreti loality and eÆient probabilisti inferene.Although we present spei� algorithms for probabilisti inferene in this hapter, it is importantto emphasize at the outset that our goal is less that of providing spei� reipes as it is of providingan understanding of the key general onepts that underly inferene. Thus, while we will desribeonrete algorithms (the \Hugin algorithm," the \Shafer-Shenoy algorithm," and the \Lauritzen-Spiegelhalter algorithm"), we view all of these algorithms as instanes of a general algorithmi3



4 CHAPTER 17. THE JUNCTION TREE ALGORITHMframework that we will refer to generially as the juntion tree algorithm. Understanding the generalframework makes it easy to see how various spei� algorithms arise and how they interrelate.Moreover, an important bonus of developing the general juntion tree framework is the realizationthat probabilisti inferene is itself an instane of a more general lass of problems, all of whihinvolve fatorized potentials on graphs, and all of whih an be solved using suitable variations onthe juntion tree theme. We disuss some instanes of this more general lass at the end of thehapter.We begin by returning to the elimination algorithm from Chapter 3, stripping away some of itsinessential details, and aiming to overome some of its de�ienies.17.1 From elimination to the juntion treeIn Figure 17.1(a) we show the graph that served as a running example in Chapter 3. The fatoredform of the joint probability distribution for this graph is as follows:p(x1; x2; : : : ; x6) = p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(x6 jx2; x5): (17.1)As in Chapter 3 we will use the elimination ordering (X6;X5;X4;X3;X2;X1) in our examples.Eah fator in Eq. (17.1) expresses a dependeny among one or more variables. Forming sum-mands during a run of the elimination algorithm reates additional dependenies|for example,summing over x6 reates an intermediate fator that is a funtion of x2 and x5. The elim-ination liques assoiated with an elimination ordering an be viewed as an expliit reord ofthese dependenies. Reall that we an abstrat away from probabilisti inferene and view theseelimination liques as being formed by a purely graph-theoreti proedure (alled Undireted-GraphEliminate in Chapter 3) in whih we link all of the neighbors of a given node (thusforming a lique), and remove the node from the graph. In partiular, for the elimination ordering(X6;X5;X4;X3;X2;X1), the elimination liques are as shown in Figure ??(b). While the elimina-tion algorithm Elimination does not expliitly form these liques, the graph-theoreti operationof forming elimination liques parallels the algebrai operation of marginalizing over a node, andneatly summarizes the graphial onsequenes of marginalization.The elimination algorithm is \query-oriented." That is, the algorithm yields the marginal oronditional probability of a given query node|the last node in the elimination ordering. Intermedi-ate fators that are reated along the way are disarded. While in some ases this is what we want,in many ases it is not. Consider in partiular the hain-strutured graphial model assoiatedwith the HMM or the state-spae model. To alulate the posterior probability of any partiularnode we an eliminate foreward and bakward until we arrive at the node. In doing so we reate anumber of intermediate fators. Many of these same intermediate fators an be used in alulatingthe posterior probability of other nodes. Clearly we wish to avoid reomputing suh fators, as wewould do in a naive appliation of elimination. We also need to know whih intermediate fators areneeded for whih posterior probabilities and how to ombine fators|in essene we need a alulusfor the intermediate fators. The elimination algorithm provides us with little help in this regard.As a �rst step in moving beyond the elimination algorithm we need to alloate data strutures|\permanent storage"|to the intermediate fators. Eah suh fator is assoiated with one of the
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(c)Figure 17.1: (a) The six-node example from Chapter 3. (b) The elimination lique reated from arun of the elimination algorithm using the ordering (X6;X5;X4;X3;X2;X1). () The eliminationliques arranged into a lique tree.
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Figure 17.2: A lique tree annotated with separator sets.elimination liques in Figure 17.1(b). We an therefore view the nodes in this �gure as representa-tions of the storage that we need if we are to reord the intermediate fators reated during a runof the elimination algorithm.While a list of the elimination liques reveals some of the struture assoiated with the elim-ination algorithm, there is additional struture that is worth noting. In partiular, as we haveseen, summing over a variable produes an intermediate fator that subsequently appears in thesummand assoiated with a later variable. For example, summing over x5 reates an intermediatefator that refers to x3 and thus appears in the summand when we subsequently sum over x3. Ifwe view the nodes in Figure 17.1(b) as storage sites, and if we view the operation of summing asoperating on the data stored at these sites, then it is natural to try to represent the transfer ofinformation between these sites. For example, the sum over x3 requires the fator reated at thex5 site, and we therefore need to transfer this fator between the site orresponding to the elimi-nation of x5|the elimination lique fX2;X3;X5g|and the site orresponding to the eliminationof x3|the elimination lique fX1;X2;X3g. As shown in Figure 17.1(), we an apture this owof information by drawing an edge between these elimination liques.The graphial objet in Figure 2.1() is a lique tree|a singly-onneted graph in whih thenodes are the liques of an underlying graph. Every run of the elimination algorithm an be viewedas impliitly reating a lique tree|the lique tree an be viewed in essene as an \exeution trae"of the algorithm. What we are groping towards, however, is an algorithm that goes beyond theelimination framework by expliitly representing a lique tree as a data struture. The nodes insuh a lique tree will store intermediate fators, allowing these fators to be reused in multiplequeries. Information will ow around the lique tree in multiple diretions.In Figure 17.2 we annotate the lique tree with some additional struture that will prove to beuseful. Between eah linked pair of liques we introdue a separator set|the intersetion of theorresponding liques. The separator sets are themselves liques, being the intersetion of liques.These sets provide an expliit representation of the variables referred to by the intermediate fatorsthat pass between liques. Consider, for example, the intermediate fator reated at the liquefX2;X3;X5g. Summing over x5 reates a fator that is a funtion of x2 and x3, and this fator
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Figure 17.3: A lique tree that does not possess the juntion tree property. Note in partiular thatthe liques ontaining the node X3 do not form a onneted subtree.is sent to the lique fX1;X2;X3g, where we subsequently sum over x3. The separator set on thelink between these liques ontains the nodes fX2;X3g, and thus expliitly represents the domainof the intermediate fator transferred between the liques.Not all lique trees are reated equal. In partiular, the lique tree in Figure 2.1() has somespeial properties. Note that the index \2" appears in �ve di�erent nodes in the �gure, and thatthese �ve nodes are onneted|they form a onneted subtree. Moreover, this is true of all of theother node indies. This interesting and important property is known as the juntion tree property.Not all lique trees possess the juntion tree property; for example, the tree in Figure 17.3 does notpossess the juntion tree property. As we will see in the remainder of the hapter, understandingthe juntion tree property is the key to a general understanding of probabilisti inferene.17.2 PotentialsWith the disussion in the previous setion as bakground, we embark on a general disussion ofthe juntion tree algorithm. We will be fousing on a partiular variant of the general juntion treealgorithm known as the \Hugin algorithm," and will disuss other variations in later setions andin the exerises.Let G = (V;E) denote a direted or undireted graph with verties V and edges E. Let Cdenote a set of liques of G; i.e., C is a set of ompletely onneted subsets of V . We generallyrequire these subsets to be maximal, so that no member of C is a subset of another member of C.However, at the ost of a bit of redundany it is at times onvenient to allow suh proper subsetsto appear in C.Let X be a random vetor indexed by the verties V . Reall that we allow subsets of the vertexset V to be used as indies; thus, orresponding to eah lique C 2 C, we have a set of randomvariables XC , with realizations xC . The number of suh realizations is the produt of the numberof realizations of eah individual random variable Xu, for u 2 C.Assoiated with eah C 2 C we de�ne a potential  C(xC), a nonnegative funtion on the real-izations xC . In general there are no onstraints on the potential funtions other than nonnegativity.Note in partiular that the sets C an overlap, and we make no \onsisteny" requirements on the
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Figure 17.4: A four-node model whih we assume is parameterized with pairwise potentials:  AB , AC ,  BC ,  BD, and  CD.overlap.We now de�ne a joint probability distribution on X as the normalized produt of potentialfuntions: p(x) , 1Z YC2C  C(xC): (17.2)This is of ourse the same de�nition as that used for undireted graphs. Note, however, a subtlebut important hange in fous|in the urrent setion we view the set of subsets C as an expliitdata struture, with the underlying graph in the bakground. Tehnially, our data struture is ahypergraph|a set of subsets|with Eq. (17.2) de�ning the joint probability distribution assoiatedwith the hypergraph.There are problems in whih it is natural to pose the problem diretly in terms of fatoredpotentials on sets of subsets, without fousing on an underlying graph. Most ommonly, however,the potentials on the hypergraph are initialized from those of an underlying graph. Let us onsiderhow this initialization proess works for both undireted and direted graphs.Undireted graphs ome endowed with potential funtions on liques, and if these liques arethe same as the set of subsets C, then the initialization problem is vauous; we simply de�ne  C(xC)to be the orresponding potential from the underlying graph. In general, however, these sets arenot the same. In partiular, we generally inlude only the maximal liques in the set C. If theparameterization of the underlying undireted graph is restrited to liques that are proper subsetsof the maximal liques of the graph, as is often the ase, then we have a many-to-one mapping fromparameterized liques to C. Consider, for example, the undireted graphial model in Figure 17.4,where we assume that the model is parameterized via pairwise potentials. The maximal liques ofthe graph are, however, triplets of nodes. In suh a situation, the potentials on maximal liquesin Eq. (17.2) are formed as the produt of potentials from the underlying graph. Thus, in ourexample, we de�ne  ABC to be the produt  AB AC , while we de�ne  BCD to be the produt BC BD CD. Note that  BC an be assoiated with either triple; we have arbitrarily assigned itto  BCD. In general eah potential  D on the underlying graph is assigned to one and only one C on the hypergraph, where D � C. If we assume that C inludes the maximal liques, then thisan always be done.Having assigned eah underlying potential to one and only one  C , the produt in Eq. (17.2) isa faithful representation of the joint probability from the underlying graph.Similar issues arise when we initialize a set of lique potentials from an underlying direted



17.2. POTENTIALS 9Moralize(G)for eah node Xi in Ionnet all of the parents of Xiend drop the orientation of all edgesreturn G Figure 17.5: An algorithm to moralize a direted graph.
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(a) (b)Figure 17.6: (a) A direted graph. Note that the onditional probability p(x6 jx2; x5) has asarguments a subset of nodes that are not ontained in any lique in the graph. In the moralgraph in (b), an edge has been added between X2 and X5, and now the arguments in the potentialp(x6 jx2; x5) are ontained with the lique fX2;X5;X6g.graph, with the additional ompliation that the original potentials|the loal onditional proba-bilities from the direted graph|need not be de�ned on liques. In partiular, if the parents ofnode Xi are not linked, then p(xi jx�i) is not a funtion on a lique. To handle this situation,and thereby allow a uniform treatment of direted and undireted graphs, we moralize the diretedgraph. Reall from Chapter 3 that the moral graph Gm orresponding to a direted graph G isobtained by linking the parents of eah node and dropping the diretionality of the edges. Wede�ne the moralization proedure more formally in Figure 17.2. On a moral graph, the loal ondi-tional probabilities are potential funtions on liques. We assoiate eah suh probability with oneand only one potential  C(xC), again assuming that C inludes the maximal liques. Taking theprodut over these potentials is then equivalent to taking the produt Qi p(xi jx�i), and faithfullyrepresents the joint probability from the underlying direted graph.Note that for direted graphs the potentials are already normalized; in other words, the nor-malization fator Z is automatially one.Figure 17.2 shows an example for a direted graph.Note that the moralization proedure adds edges to a direted graph. How does this proedure



10 CHAPTER 17. THE JUNCTION TREE ALGORITHMsquare with the semanti distintions between direted graphs and undireted graphs presentedin the previous hapter? Reall that a given graph|direted or undireted|is assoiated witha family of probability distributions. This family an be spei�ed by writing down the list ofonditional independene statements assoiated with the graph. Any distribution that respetsall of the onditional independene statements in the list belongs to the family. Clearly, if wemake fewer statements we make the family larger. Now note that a moral graph neessarily makesfewer onditional independene statements than its orresponding direted graph. In partiular, adireted graph asserts all of the onditional independenies that haraterize the moral graph, aswell as additional independenies between the parents of a given node in the marginal distributionin whih the node is eliminated. Thus the set of probability distributions assoiated with thedireted graph is a subset of the set of probability distributions assoiated with the moral graph.If we solve the inferene problem for the family of probability distributions assoiated with theundireted moral graph, we solve it for the family of probability distributions assoiated with thedireted graph as well.Moralization is not merely a onveniene, but is also a neessary omponent of any inferenealgorithm. Marginalization or onditioning ouples the parents of a node, reating an intermediatefator that is in general a non-trivial funtion of the parents.1 Intuitively, moralization is neessaryto apture dependenies suh as \explaining-away" that arise whenever a node is an evidene nodeor has desendants that are evidene nodes.To summarize, our proedure will be to identify the maximal liques of an undireted or (mor-alized) direted graph.2 We initialize the potential funtions assoiated with these liques from thepotentials and loal onditional probabilities on the underlying graph.17.3 Introduing evideneWe now onsider the problem of onditioning, or \introduing evidene." We suppose that thenodes are partitioned into subsets H and E, and that the random vetor XE is observed to take ona spei� value. The problem that we disuss in this setion is that of representing the onditionalprobability p(xH jxE). One we have deided on suh a representation, the inferential problem ofomputing marginals under this probability|the onditional probabilities of subsets of the nodesXH|will be no di�erent in priniple from the alulation of marginal probabilities under the overalljoint p(x).Our general approah will be to represent onditionals via taking \slies" of the potentialsde�ning the joint probability. Suppose in partiular that we have represented the joint probabilityas a produt over liques as in Eq. (17.2). For eah lique C, onsider the intersetion C \E. Thenodes in this intersetion have been �xed to spei� values, and the potential in e�et now ranges1If a node is not an evidene node or has no desendants that are evidene nodes, summing over the values of thenode yields the trivial value of one.2Some readers may wonder how we an ahieve this|�nding maximal liques is an NP-hard problem! In fat,we will not be �nding the maximal liques of arbitrary graphs, but only of a speial lass|the triangulated graphs.Maximal liques of triangulated graphs an be found easily. Let us postpone our disussion of triangulation, however,at the ost of a bit of naivet�e with regards to identifying maximal liques.



17.3. INTRODUCING EVIDENCE 11over the omplement (in C) of this set of nodes, i.e., C \H. where C = (C \H) [ (C \E) by theassumption that H and E partition V . Thus, for a partiular �xed on�guration �xE , we have:p(xH ; �xE) = 1Z YC2C  C(xC\H ; �xC\E): (17.3)This is a produt of \slies" of potential funtions.A slie of a potential funtion is itself a potential funtion. Thus we an also view Eq. (17.3) asa produt of potential funtions on subsets fXC\H of the nodes XH , suppressing referene to thenodes XE . That is, writing ~ C\H(xC\H) ,  C(xC\H ; �xC\E) to suppress the expliit referene tothe �xed on�guration �xE , we have:p(xH ; �xE) = 1Z YC2C ~ C\H(xC\H) (17.4)as a produt of potential funtions over XH .There is an oddity to Eq. (17.4), however, in that the normalization fator Z is obtained bysumming over both XH and XE , whereas the produt is de�ned only over XH . It should be nosurprise that Z is not in fat the normalization fator for the produt of potentials ~ C\H ; indeed,this produt is not normalized. Let us ompute the normalization fator. Summing over H, anddenoting the sum as ~Z, we ompute:~Z , XH p(xH ; �xE) (17.5)= XH 1Z YC2C ~ C\H(xC\H): (17.6)We also know, however, that PH p(xH ; �xE) = p(�xE), by de�nition. Putting these fats together,we have: p(xH ; �xE)p(�xE) = QC2C ~ C\H(xC\H)PHQC2C ~ C\H(xC\H) : (17.7)That is, the slies ~ C\H(xC\H) provide a potential funtion representation of the onditional prob-ability p(xH j �xE). The normalization fator for this representation is the marginal probability~Z = p(�xE). Note that the original normalization onstant, Z, anels when we form the ratio onthe right-hand-side of Eq. (17.7). Thus, for the purpose of alulating onditional probabilities, wehave no need of knowing the normalization onstant assoiated with the original set of potentials;it suÆes to ompute the normalization onstant of the slied potentials.Let us see how this works for a partiularly simple ase. In Figure 17.7. we show a diretedgraph and the orresponding moralized graph for two binary nodes X and Y . Given the threeprobabilities p(X = 1) = :8, p(Y = 1 jX = 1) = :7 and p(Y = 1 jX = 0) = :4, we an onstrut ajoint probability distribution. Converting to a set of liques, we have a single lique fX;Y g, withlique potential given by the produt p(x)p(y jx): fX;Y g = � :12 :08:24 :56 � (17.8)
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A B A BFigure 17.7: A two-node graphial model with its moralized graph.Given that this potential arises from a direted graph, it is no surprise that the lique potential isnormalized. Suppose that we now observe evidene Y = 1. We obtain the slie:~ fXg = � :08:56 � ; (17.9)whih is a funtion only of X. Note that this new lique potential is unnormalized. Normaliz-ing yields the number ~Z = :64, whih we reognize as the probability p(Y = 1). Morever, thenormalized potential is given by dividing ~ fXg by ~Z = :64:1~Z ~ fXg = � :125:875 � ; (17.10)whih is the onditional distribution p(x jY = 1).To summarize, our general representation of a probability distribution is a (possibly) unnor-malized set of potentials on a set of liques. Conditioning is handled by restriting attention tosubsets of the original set of liques, and by de�ning potentials on these subsets that are slies ofthe original potentials. In general we make no fundamental representational distintion betweenonditional and joint distributions.This perspetive also helps to reveal more of the unity in undireted and direted representationsof probabilities. In the direted ase, the set of potentials is normalized at the outset: Z = 1. But assoon as we observe evidene, the resulting set of slies is no longer normalized, and the onditionaldistribution is represented as an unnormalized produt of potential funtions, as in the undiretedase.An equivalent approah to representing onditional probability distributions involves introdu-ing \evidene potentials." An evidene potential is a delta funtion, Æ(xE ; �xE), i.e., a funtionwhih is equal to one if its arguments are equal and zero otherwise. We used evidene potentials inour presentation of the elimination algorithm in Chapter 3. Multiplying the original produt of po-tentials by the evidene potential yields an unnormalized produt on the set (XH ;XE). Summingover xE has the e�et of setting p(xH ; xE) equal to p(xH ; �xE). Thus we obtain the same repre-sentation as that onsidered in this setion, one we \marginalize" and restrit attention to XH .The approah based on evidene potentials is elegant beause it treats slies as formally equivalentto marginalization; indeed that was the reason that we introdued it in Chapter 3. In pratie,however, using evidene potentials involves introduing zeros and then summing over those zeros.As an algorithmi matter it is more eÆient to simply take slies.
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Figure 17.8: A three-node Markov hain.17.4 Clique treesWe now begin to address the rux of the problem, whih is that of omputing marginal probabilities.Thus, we wish to ompute the marginal p(xF jxE), where (F;G) is a partition of H and where Franges over a set of subsets of interest. In partiular, we may wish to ompute all probabilitiesp(xF jxE), where F ranges over all singleton nodes. More generally, we will address the problemof omputing p(xF jxE), where F ranges over all liques in C, and over all subsets of these liques.A still more general problem is that of omputing p(xF jxE) for arbitrary F , and while wewill address this problem in Setion ??, it is worth noting that in most appliations it suÆes toompute marginal probabilities for the liques. In partiular, the liques are suÆient statistis fordistributions that fator aording to Eq. (17.2); thus, for omputing expeted suÆient statistisin the ontext of an EM algorithm it suÆes to obtain lique marginals.We de�ne a lique tree as a singly-onneted graph whose nodes represent members of the liqueset C. Edges in this graph will allow us to de�ne information ows between liques. The juntiontree algorithm an be understood as an algorithm that uses these information ows to manipulatethe lique potentials so as to yield marginal probabilities. In partiular, after the algorithm runs,the potential  C will be equal to the marginal probability p(xC ; �xE). This probability is an un-normalized version of the onditional p(xC j �xE), where the normalization onstant is obtained bysumming or integrating  C over xC . Thus, we an obtain the desired marginal probabilities via aloal operation. The goal of the remainder of the hapter is to explain how this is ahieved.In the previous two setions, we showed how to initialize the lique potentials so as obtain arepresentation of the joint or onditional probability. This is a global representation; the individualpotentials do not neessarily orrespond to loal probabilities. Consider in partiular the Markovhain shown in Figure 17.8. The liques of this graph are fA;Bg and fB;Cg. The joint probabilityis p(xA; xB ; xC) = p(xA)p(xB jxA)p(xC jxB), and while p(xA) and p(xB jxA) an be grouped toinitialize the potential  AB to the marginal p(xA; xB), the remaining fator  BC = p(xC jxB) isnot a marginal. To onvert this potential into a marginal, we marginalize  AB to obtain p(xB), andmultiply  BC by this fator. The transfer of the probability p(xB) is an instane of the informationow that we referred to above.After adjusting  BC we have ahieved the goal of obtaining marginal probabilities for both ofthe liques, but we have also lost something. In partiular, the joint probability on (xA; xB ; xC)is not equal to the produt of marginals p(A;B) and p(B;C), and thus the produt of the liquepotentials is no longer a representation of the joint probability.The juntion tree approah in essene allows us to have our ake and eat it too, retaining arepresentation of the joint probability while also manipulating the lique potentials so as to onvert



14 CHAPTER 17. THE JUNCTION TREE ALGORITHMthem into marginal probabilities. This is done by utilizing an extended representation of jointprobabilities that makes use of the separator sets disussed in Setion ??. The remainder of thissetion introdues this important generalized representation.On eah edge of a lique tree we assoiate a separator set whih ontains the intersetion of theliques that it links. For example, in Figure 17.16, the separator is the singleton XB . For a generallique tree on N nodes, we have N � 1 separators.We now augment our potential-based representation of joint probabilities to inlude potentialfuntions on the separators as well as the liques. Thus, letting S denote the set of all separators,we introdue a potential funtion �S(xS) for eah S 2 S. Given a lique tree with liques C andseparators S we de�ne the joint probability as follows:p(x) = QC  C(xC)QS �S(xS) : (17.11)Note that we have omitted expliit referene to a normalizing onstant Z. We adopt a onventionof inluding the empty set as one of the separators and letting the \potential" on this empty setbe the normalizing onstant Z.We have several questions to answer regarding this extended representation, but let us �rstreturn to our example and show what the representation ahieves for us.Expanding the joint probability assoiated with Figure 17.8, we have:p(xA; xB ; xC) = p(xA; xB)p(xC jxB) (17.12)= p(xA; xB)p(xB ; xC)p(xB) : (17.13)This has the form of the extended representation shown in Eq. (17.11), where we de�ne  AB =p(xA; xB),  BC = p(xB ; xC), and �B = p(xB). Thus, making use of the exibility o�ered by theseparator potentials, we are able to ahieve a representation that is a produt of marginals, andyet is also a representation of the joint probability. It turns out that we an always �nd this kindof representation for a given probability distribution. The proof of this fat will emerge during ourdevelopment of the juntion tree algorithm.In our disussion of the Hammersley-Cli�ord theorem in Chapter 16, we showed that the rep-resentation of joint probability in Eq. (17.2) is general, in the sense that it allows us to apture allof the joint probability distributions that respet the onditional independene statements assertedby a graph. Clearly the extended representation inludes all suh joint probability distributions(set the separator potentials to unity). Does it inlude any others? The answer is no. This is seenby noting that the separators are (by de�nition) subsets of one or more liques. Assoiating eahseparator with one suh lique, and dividing that lique potential by the separator potential, weobtain a new set of lique potentials that represent the same joint, but without the separators.Thus the separator potentials do not enlargen the set of joint probability distributions that we anrepresent. They are essentially a onveniene|they allow us to represent the set of joint probabilitydistributions assoiated with a graphial model in a more exible way.An additional issue that we need to onsider is the possibility of division by zero. We allowdivision by zero but only in a onstrained set of irumstanes. In partiular, we de�ne a separator
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Figure 17.9: The basi data strutures underlying the ow of information between liques V andW .potential to be supportive if whenever a on�guration yields a value of zero for the separatorpotential, the lique potentials at both ends of the edge ontaining that separator also evaluate tozero. Thus we an never divide by zero in Eq. (17.11) unless the numerator is also zero. In this asewe de�ne the ratio to be zero. This makes sense|if a lique potential is zero for a on�gurationthen the probability of that on�guration should also be zero.Eah step of the juntion tree algorithm is guaranteed to maintain supportiveness (see Exer-ise ??). Thus, if we have supportive separator potentials at the outset then we maintain support-iveness as the algorithm runs.We initialize the separator potentials to unity. Thus, at the outset, one we have introduedevidene, the set of lique potentials and separator potentials are (as before) a global representationof the joint onditional probability p(xH jxE). The new apability that the extended representationhas provided is the ability (in priniple) to obtain a loal representation of marginal probabilities,while maintaining an overall representation of the joint. We now show how this is ahieved inpratie.17.5 Loal onsistenyNote that liques an overlap, so the same node an appear in multiple liques. Clearly, if thepotentials are to represent marginal probabilities, it is neessary that they be onsistent with eahother; that is, they must give the same marginals for nodes that they have in ommon. Thisseemingly innouous observation is the germ of the juntion tree algorithm. We will �nd thatonsisteny is not only a neessary ondition, but it is also a suÆient ondition for a probabilistiinferene algorithm. Moreover, it turns out not to be neessary to ompare all pairs of liques thatinterset; it will suÆe to arrange the liques into a speial lique tree|a \juntion tree"|andrequire only that liques that are neighbors in the juntion tree agree on the nodes that they havein ommon.Let us postpone the general juntion tree onstrution, and instead fous on the elementalproblem of ahieving onsisteny between a pair of liques. Suppose that we have two liques Vand W and suppose that V and W have a non-empty intersetion S (see Figure 17.9). The liquesV and W have potentials  V and  W , and we also endow S with a potential �S that we initializeto unity. The basi operation of the juntion tree algorithm is an exhange of information betweenV and W , with S serving as a onduit for the ow of information. We �rst update W based on V ,



16 CHAPTER 17. THE JUNCTION TREE ALGORITHMwhere the asterisk means \updated value of":��S = XV nS  V (17.14) �W = ��S�S  W : (17.15)The �rst equationmarginalizes the potential  V with respet to S, storing the result in the separatorpotential. The seond equation resales the potential on W by multiplying by an \update fator"that is the ratio of the new separator potential to its old value.This update has an important invariant: the joint distribution p(xH ; �xE). Note that  V isunhanged during the update. De�ning  �V =  V , we have: �V  �W��S =  V  W��S�S��S (17.16)=  V  W�S ; (17.17)and thus the joint distribution as de�ned in Eq. ?? is unhanged. Whether or not we have ahievedanything useful with the update is as yet unlear; but at least the joint probability has not beenaltered.We now pass information from W bak to V , using the same update rule. In partiular:���S = XWnS  �W (17.18) ��V = ���S��S  �V : (17.19)(Noting that  �W is unhanged during this update, we de�ne  ��W =  �W ).Note that one again the joint probability p(xH ; �xE) remains unaltered by the update.There is another important property that haraterizes the pair of updates. In partiular, thepotentials  ��V and  ��W are onsistent with respet to their intersetion S; that is, they have thesame marginals. This is easily veri�ed:XV nS  ��V = XV nS ���S��S  �V (17.20)= ���S��S XV nS  �V (17.21)= ���S��S ��S (17.22)= ���S (17.23)= XWnS  ��W : (17.24)



17.5. LOCAL CONSISTENCY 17Inspeting this derivation, we see that the key steps for ahieving onsisteny are Eqs. 17.14 and17.19. In the forward pass, from V to W , the algorithm stores the marginal of the V potential inthe separator potential. In the bakward pass, from W to V , the algorithm divides the V potentialby its stored marginal and multiplies the result by the new marginal ���S . This latter marginal isthe marginal of the W potential. The resaling equation essentially substitutes one marginal foranother, thus making the two lique potentials onsistent. This is ahieved in the ontext of asymmetri algorithm that passes information in both diretions, and leaves the joint probabilitydistribution invariant.Consider for example the Markov hain in Figure 17.8. Initially, the lique potential on fX;Y gis p(x; y), and the lique potential on fY;Zg is p(z j y). The �rst pair of update equations resultsin the following update: ��Y = Xx p(x; y) = p(y) (17.25) �Y Z = p(y)1 p(z j y) = p(y; z); (17.26)and we see that the lique potentials have beome marginal probabilities. The bakward phase inthis ase is vauous; marginalizing over p(y; z) yields p(y) again for the separator marginal and theupdate fator is unity.Now onsider the hain in the ase in whih evidene is observed. Suppose for simpliity thatall nodes are binary, and the evidene is X = 1. Inorporating the evidene means taking the slieof the potential on fX;Y g in whih X = 1; i.e., taking the seond row of the potential table. Themarginalization operation is now a vauous operation, and we have:��Y = p(X = 1; y): (17.27)Performing the update of the fY;Zg potential yields: �Y Z = p(X = 1; y)p(z j y) = p(X = 1; y; z): (17.28)Thus our potentials are as follows:  �XY = p(X = 1; y) (17.29)��Y = p(X = 1; y) (17.30) �Y Z = p(X = 1; y; z); (17.31)and we see that we have obtained marginals as before, but these are unnormalized marginals.Normalizing (a loal operation), we an readily read o� the onditionals p(y jX = 1), p(y jX = 1),and p(y; z jX = 1). Note that one again the bakward pass is vauous.The reader may wish to try the ases in whih evidene Z = 1 is available and when both X = 1and Z = 1 are observed.
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Figure 17.10: A lique tree with expliit representation of the separators. The separators are theintersetion of the pair of liques at the ends of the edge. Thus, for example, S = V \W .17.6 Propagation in a lique treeWe now turn to the issue of how to perform loal updates when we have multiple overlappingliques.In Figure 17.10 we show a lique tree. Eah edge in this tree is assoiated with a separator.Cliques that are neighbors in this tree are subjet to the updating proedure desribed in theprevious setion.There are two issues that we must address|how to onstrut an appropriate lique tree andhow to perform the updates so that loal onsisteny obtained between a lique and its neighbor isnot ruined by subsequent updates between the lique and other neighbors. In this setion we fouson the seond issue, returning to the problem of onstruting the tree in Setion 17.10.How do we maintain loal onsisteny in a lique tree? Consider again the lique tree shown inFigure 17.10. Suppose that we were to ahieve loal onsisteny between V and W using the pairof updates disussed in the previous setion, and subsequently we update W based on its otherneighbors. The latter updates would generally ruin the onsisteny that has been ahieved betweenV and W . To ensure that this does not happen, we develop a protool that onstrains the order inwhih updates are performed.3Let us refer to the update of one lique based on another as a \message-passing" operation.That is, we \pass a message" from V to W by evaluating Eqs. 17.14 and 17.15. In general, as wesaw in the previous setion, we require a message in both diretions in order to render a pair ofliques onsistent with eah other.Our problem is to deide when a given lique is allowed to pass a message to one of its neighbors.This problem is solved by the following protool:Message-Passing Protool. A lique an send a message to a neighboring lique only when ithas reeived messages from all of its other neighbors.3In fat the protool is not needed if we are willing to perform redundant steps. If eah node is updated repeatedly(for example in parallel), onsisteny-ruining steps will eventually be orreted (see Exerise ??).



17.6. PROPAGATION IN A CLIQUE TREE 19For example, in Figure 17.10, we an send a message from W to V only when W has reeivedmessages from its other neighbors D1 and D2.An easy argument establishes the orretness of the protool. Consider the moment in time atwhih W has reeived all of the messages from its other neighbors, and is sending a message toV . There are two ases to onsider: either V has not yet sent its message to W , or V has alreadysent its message to W . In the latter ase, we know that V has already reeived messages from allof its other neighbors. The message from W to V renders the liques onsistent. Neither liquereeives any additional messages, thus onsisteny is maintained. In the former ase, W sends amessage to V , storing its marginal on S, and waits. At some later time, V will have reeived allof the messages from its other neighbors and will send a message to W . This message will utilizethe stored marginal and render W onsistent with V . Neither lique will undergo any additionalupdates and onsisteny is maintained.Although our protool is orret, is it realizable? Are there message-passing algorithms thatrealize the protool and ensure that a message is passed in both diretions between every pair ofliques?There are in fat many message-passing algorithms that realize the protool; their existene isa simple onsequene of the reursive de�nition of a tree. One way to obtain suh algorithms isbased on designating one lique in the tree as the root. One a root of the lique tree is designated,the tree beomes an oriented tree with eah leaf having a unique path to the root. Clearly eahleaf an send a message inward at any time. Interior nodes send a message toward the root onethey have reeived messages from all of their hildren. One all messages have arrived at the root,we propagate messages outward to the leaves.More formally, we de�ne the following pair of reursive proedures:ColletEvidene( node )beginfor eah hild of nodebeginUpdate( node, ColletEvidene( hild ) )endreturn( node )endDistributeEvidene( node )beginfor eah hild of nodebeginUpdate( hild, node )DistributeEvidene( hild )endend
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(a) (b)Figure 17.11: (a) The message-passing resulting from a all of ColletEvidene at the root node(the doubly-irled node). (b) The message-passing resulting from a all of DistributeEvideneat the root node.where Update(V;W ) is a routine that invokes the pair of equations Eq. 17.14 and 17.15. CallingColletEvidene(root) followed by DistributeEvidene(root) auses messages to propagateinward to the root and outward to the leaves.Theorem 1 The ColletEvidene and DistributeEvidene reursions respet the Message-Passing Protool.Proof. When ColletEvidene is alled at a node, the node alls all of its other neighbors andwaits on return messages from those nodes before returning a message bak to its aller. ThusColletEvidene obeys the protool.After ColletEvidene has run, eah node has reeived a message from all of its neighborsexept its parent. One it reeives a message from its parent it is free to send messages to anyother node. DistributeEvidene sends a message from a parent to its hild before alling itselfon that hild. Thus DistributeEvidene respets the protool. 2Consider the example shown in Figure 17.11, where the doubly-irled node is designated as
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C,DFigure 17.12: An undireted graphial model and a orresponding lique tree.the root node. A all of ColletEvidene results in messages proeeding inward as shown inFigure 17.11, and a all of DistributeEvidene results in the outward-going messages shownin Figure 17.11. Note that it is lear that one and only one message is passed in both diretionsbetween every pair of liques.17.7 The juntion tree propertyAt this point we have developed most of the mahinery assoiated with the juntion tree algorithm,and we are in the position to desribe reursive inferene algorithms for some non-trivial graphialmodels. In fat the mahinery disussed thus far is suÆient to handle all of the models that weonsidered in Part I. In partiular, an impatient reader ould jump to Chapter 18 to see how thealgorithm speializes to the ase of the HMM and the state-spae model. Both of those ases involvea rather obvious hoie for the tree of liques, and given a partiular hoie of root node, the reur-sive algorithms that we developed in earlier hapters fall out naturally from ColletEvideneand DistributeEvidene.Despite this heady suess, we have as yet no theoretial guarantee that the algorithm is or-ret for general graphial models. In fat it turns out that the algorithm as developed thus far isnot orret for general graphial models. In this setion we identify the (last) problem that mustbe addressed. We should emphasize at the outset that the problem is essentially a data stru-ture problem involving the onstrution of the lique tree. There is in fat no problem with ourmarginalizing and resaling equations, nor with our Message-Passing Protool. It suÆes to getthe data struture right.To see that our labor is not yet �nished, onsider the undireted graphial model shown inFigure 17.12. There are four liques in this graph. A partiular hoie of lique tree is shown inFigure 17.12. Note that this lique tree has a problemati feature. In partiular, the node C appearsin two di�erent liques in the tree and these liques are not neighbors. Given that our algorithmonly enfores loal onsisteny, there is no guarantee that the two liques ontaining C will beonsistent. Indeed, if the leftmost lique that ontains C is hanged (e.g., by the introdution ofevidene), there is no mehanism to insure that this information will ow to the rightmost liquethat ontains C. In general, loal onsisteny does not imply global onsisteny.Note that the lak of global onsisteny does not imply that we have an inorret representation



22 CHAPTER 17. THE JUNCTION TREE ALGORITHMof the joint probability distribution. Indeed, as we saw earlier, the juntion tree algorithm does notalter the joint probability, and thus we maintain a orret representation of the joint throughout.What we fail to ahieve in Figure 17.12 is loality|the lique potentials orretly represent thejoint probability, but they are not loal marginal probabilities.The reader an verify that there is no alternative lique tree that avoids the problem. All liquetrees have a pair of nodes that lie in non-neighboring liques.A lue to understanding the problem omes from observing that the elimination algorithmwould unavoidably reate new links in the graph in Figure 17.12; e.g., eliminating C would onnetA and B. Another way to put the problem is that there is no way to hoose an elimination orderingsuh that the elimination liques are ontained within the liques of the original graph.While this argument based on elimination provides insight, we prefer to restate the problemdiretly in terms of properties of lique trees. To do so, we artiulate a property that rules outthe problemati on�gurations of the kind that we saw in Figure 17.12. The relevant property isknown as the juntion tree property :The juntion tree property. A lique tree possesses the juntion tree property if for every pairof liques V and W , all liques on the (unique) path between V and W ontain V \W .A lique tree that possesses the juntion tree property is referred to as a juntion tree.The onsequenes of the juntion tree property for inferene are as follows. If a node A appearsin two liques in a juntion tree, then A is ontained in every lique along the path between thesetwo liques. If the liques along the path are pairwise onsistent with respet to A then they will bejointly onsistent with respet to A. In a juntion tree, loal onsisteny implies global onsisteny.This argument implies that if we are fortunate enough to have a lique tree that is a juntiontree, and if we run the message-passing proedure as desribed in the previous setion, we ahievenot only loal onsisteny but also global onsisteny. We an get the same answer for any node Aby onsulting any potential that ontains A.Reall however that our goal is to obtain a set of potentials that are not only onsistent, butare also marginals|that is, eah potential represents the marginal probability of the nodes in itslique. It is oneivable that the juntion tree ould be onsistent, but the potentials would not bemarginals. In fat, somewhat surprisingly, this annot be the ase. In a juntion tree, the juntiontree algorithm not only ahieves global onsisteny, but it yields the sought-after lique marginalsas well. To prove this important result we require the following lemma.Lemma 1 Let C be a leaf in a juntion tree for a graph with vertex set V . Let S be the assoiatedseparator (see Figure 17.13). Let R = CnS be the set of nodes in C but not in the separator, andlet U = V nC be the set of nodes in V but not in C. Then:R ?? U jS (17.32)Proof. Suppose, by way of ontradition, that A 2 R has a neighbor N 2 U . Consider themaximal omplete subset ontaining both A and N . This lique is not C beause N 62 C. However,A annot be ontained in any lique other than C beause A would have to belong to S as well, by
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Figure 17.13: The \residual" set R = CnS is the set of nodes in C that are not in S, and, by thejuntion tree property, also not in U .the juntion tree property, and nodes in R are not in S by de�nition. Thus no suh N exists andS must therefore separate A from U . Sine A is arbitrary, S separates R from T . 2We now state and prove our main result.Theorem 2 Let the probability p(xH ; �xE) be represented by the lique potentials  C and separatorpotentials �S of a juntion tree. When the juntion tree algorithm terminates, the lique potentialsand separator potentials are proportional to loal marginal probabilities. In partiular: C = p(xC ; �xE) (17.33)�S = p(xS ; �xE) (17.34)Proof. The separators are subsets of the liques. That the separator potentials are proportional tomarginals therefore follows from the fat that they are onsistent with the lique potentials. Thuswe need only prove the result for the lique potentials.The proof is a proof by indution. The result holds for the base ase of a single lique byde�nition. Let us suppose that the result holds for juntion trees of N or fewer liques, andonsider a juntion tree with N + 1 liques.We hoose a lique ~C that is a leaf in the juntion tree. Let ~S be the orresponding separator,let ~R = ~Cn ~S and let ~T = V n ~C. We also de�ne analogous quantities in whih the evidene variablesare omitted. In partiular, let C = ~CnE, R = ~RnE and T = ~TnE. By Lemma 1 we have:p(xH ; �xE) = p(xR; xS ; xT ; �xE) = p(xR jxS ; �xE)p(xS ; xT ; �xE): (17.35)



24 CHAPTER 17. THE JUNCTION TREE ALGORITHMSumming both sides over R, we obtain:p(xS; xT ; �xE) = XR p(H; �xE) (17.36)= XR QC  C(xC)QS �S(xS) (17.37)= XR  C�S QC0 6=C  C0(C 0)QS 6=S0�S0(x0S) (17.38)= PR  C�S QC0 6=C  C0(C 0)QS 6=S0�S0(x0S) (17.39)= QC0 6=C  C0(C 0)QS 6=S0�S0(x0S) (17.40)where Eq. 17.40 follows from the fat that C and S are onsistent and thus PR  C = �S .Eq. 17.40 shows that p(xS ; xT ; �xE) is represented by the lique potentials and separator poten-tials on the juntion tree over S [ T . By the indution hypothesis, after a full round of messagepassing the lique potentials on this juntion tree are equal to marginals.It remains to show that the lique potential on C is a marginal. Let D be the neighbor of C inthe juntion tree. By onsisteny we have �S(xS) =PDnS  D(xD). We have  D = p(xD; �xE) andthus  S(xS) = p(xS; �xE). Thus: p(xR jxS ; �xE) =  C(xC)�S(xS) (17.41)=  C(xC)p(xS ; �xE) (17.42)whih implies  C(xC) = p(xC ; �xE). 217.8 Triangulated graph ) Juntion treeThe juntion tree property provides a suÆient ondition for the orretness of the juntion treealgorithm. What lass of graphs have a juntion tree? How do we handle graphs that do not havea juntion tree?In this setion we present a suÆient ondition for a graph to have a juntion tree|the onditionis that the graph must be triangulated. It turns out that triangulation is also a neessary onditionfor a graph to have a juntion tree. In the urrent setion, however, we restrit ourselves to the proofof suÆieny, proving neessity in Appendix A. The Appendix also demonstrates that triangulationis equivalent to deomposability ; a haraterization of graphs that we disussed in Setion ??.We begin by de�ning a triangulated graph and then proeed to the proof of suÆieny. Thereader willing to aept the proof on faith an read the de�nition of triangulation in the nextparagraph and then skip to the following setion without loss of ontinuity.



17.8. TRIANGULATED GRAPH ) JUNCTION TREE 25Consider a yle in an undireted graph. A yle is hordless if there are no edges betweennodes that are not suessors in the yle. For example, the yle A�B�D�C�A in Figure 17.12is hordless beause there is no edge between A and C or between B and D. A graph is said to betriangulated if there are no hordless yles in the graph.Our �rst stop in the proof of suÆieny is a simple lemma that shows that triangulated graphsan be deomposed into three subsets with speial properties.Lemma 2 Let G = (V;E) be a nonomplete triangulated graph with at least three nodes. Thenthere exists a deomposition of V into disjoint sets A, B and S suh that S separates A and B andS is omplete.Proof. Choose a pair of nonadjaent nodes � and �. Let S be the minimal set of nodes suh thatany path from � to � passes through S. Let A be the set of nodes reahable from � when S isremoved and similarly let B be the set of nodes reahable from � when S is removed. Clearly thesetwo sets are separated by S. We need only establish that S is omplete.Let C and D be nodes in S. Sine S is minimal, there is a path from � to C and from � to D;thus there is a path from C to D in A[S. Take the shortest suh path. Similarly take the shortestpath joining C to D in B [ S. Link these paths to obtain a yle. This yle must have a hord.This hord must be an edge between C and D, by our hoie of shortest paths. Thus C and D areneighbors. 2We also require the notion of a simpliial node. A node is simpliial if all of its neighborsare onneted. The following lemma guarantees the existene of simpliial nodes in triangulatedgraphs.Lemma 3 Every triangulated graph that ontains at least two nodes has at least two simpliialnodes. If the graph is not omplete, then these nodes an be hosen to be nonadjaent.Proof. We again use indution and again the base ase is trivial. Consider a triangulated graphG with N + 1 nodes. If the graph is omplete then all nodes are simpliial. Otherwise we useLemma 2 to deompose the graph into disjoint sets A, B and S. The subgraphs A [ S and B [ Sannot ontain any hordless yles (beause any suh yles would also be hordless in G), andthus they are both triangulated. The indution hypothesis implies the existene of two simpliialnodes in A[S. If A[S is not omplete these an be taken to be nonadjaent, and, given that S isomplete, one of the two nodes an be taken to be in A. Otherwise, pik any node in A. Similarly,the indution hypothesis implies the existene of two simpliial nodes in B [ S, and one of thesean be taken in B. Given that A and B are separated by S, the two nodes that we have seletedare simpliial in G and they are also nonadjaent. 2We now demonstrate that triangulation implies the existene of a lique tree with the juntiontree property.Theorem 3 All triangulated graphs have a juntion tree.Proof. We one again use indution and one again the base ase is trivial. Consider a graph Gwith N + 1 nodes. By Lemma 3, the graph has at least one simpliial node �.



26 CHAPTER 17. THE JUNCTION TREE ALGORITHMRemoving a simpliial node from a triangulated graph yields a triangulated graph, beause nohordless yles an be reated. Thus by the indution hypothesis, the graph with � removed hasa juntion tree T . We onstrut a juntion tree for G from T .Let C denote the lique formed by � and its neighbors. If Cn� is a lique in T , then simplyadd � to that lique; T with the augmented lique is a juntion tree for G.If Cn� is not a lique D in T , then it is a subset of a lique D in T . Add C as a new leafnode for T , with a link to D and a separator set S = Cn�. The result is a juntion tree. This isestablished by noting that (1) � is ontained only in C and therefore annot violate the juntiontree property; and (2) all other nodes in C are in S and in D and therefore annot violate thejuntion tree property. 217.9 Elimination ) TriangulationIn this setion we show that UndiretedGraphEliminate an be viewed as a proedure forreating a triangulated graph. This result will show us how to deal with nontriangulated graphswithin the juntion tree framework. It also allows us to demonstrate that the elimination algorithmis a speial ase of the juntion tree algorithm.Reall that UndiretedGraphEliminate is a simple iterative algorithm that suessivelyeliminates the nodes in a graph by (1) onneting the (remaining) neighbors of the node and (2)removing the node and its edges from the graph. The input to the algorithm is a graph and anelimination ordering.Theorem 4 UndiretedGraphEliminate yields a triangulated graph.Proof. We prove the theorem by indution. The base ase is a graph with a single node, whih isobviously triangulated. Suppose now that the hypothesis holds for graphs with N or fewer nodesand onsider a graph with N +1 nodes. Eliminating a node results in a graph with N nodes, whihannot ontain a hordless yle by the indution hypothesis. Moreover, it is not possible to forma hordless yle involving the eliminated node, beause the elimination step onnets all of theneighbors of the node. 2Thus the edges added by the UndiretedGraphEliminate algorithm are exatly those thatturn a nontriangulated graph into a triangulated graph.This result suggests the following general approah to dealing with nontriangulated graphs.Given an initial undireted graph (possibly obtained by moralizing a direted graph), we �rst tri-angulate the graph using UndiretedGraphEliminate. We are not onstrained in our hoieof elimination ordering and an use any of a variety of heuristis to hoose a \good" eliminationordering; e.g., one that introdues as few extra edges as possible (see Appendix A). Given a tri-angulation, we onstrut a juntion tree from the triangulated graph and run the message-passingproedure. The algorithm alulates marginal probabilities for all of the liques of the triangulatedgraph. Marginals for subsets of these liques (e.g., individual nodes) an be obtained by furthermarginalization and normalization of individual potentials.The orretness of this approah follows from an argument similar to that used to justifymoralization. Adding edges to a graph an only derease the set of onditional independenies



17.10. CONSTRUCTING THE JUNCTION TREE 27assoiated with the graph and thus expand the set of probability distributions assoiated with thegraph. This implies that the set of probability distributions assoiated with the triangulation of agraph inludes the set of probability distributions assoiated with the original graph. Solving theinferene problem for the triangulated graph solves it for the original graph as well.Our argument also suggests (orretly) that the elimination algorithm is a speial ase of thejuntion tree algorithm. As we ask the reader to show in Exerise ??, applying the juntion treealgorithm to the liques of the triangulated graph resulting from a given elimination ordering wereover exatly the probabilisti alulations of the elimination algorithm.It is possible to prove a onverse to Theorem 4 showing that for any triangulated graph thereexists an ordering suh that elimination using that ordering introdues no new edges.4 Thus,elimination and triangulation are essentially equivalent notions. This does not imply, however, thatpratial algorithms for triangulation are neessarily best viewed as elimination algorithms. Rather,treating triangulation as a ombinatorial optimization problem provides a broader perspetive onthe problem. In Appendix A, we return to these issues and desribe pratial algorithms for graphtriangulation.If our goal is to obtain the marginal probabilities of all of the non-evidene nodes in the graph,then the naive elimination algorithm would require us to hoose di�erent elimination orderings inwhih the target node is the �nal node in the ordering. These di�erent elimination orderings wouldin general produe inommensurate elimination liques, and make it diÆult, if not impossible,to share the intermediate potentials. The juntion tree framework, on the other hand, alulatesa single triangulation, in e�et using a single elimination ordering. While this ordering may notbe optimal for alulating any given individual marginal, the hoie of a single ordering makes itpossible to share intermediate potentials, and thus supports the eÆient alulation of marginalsfor all liques in the graph.17.10 Construting the juntion treeThe results of Setion 17.8 show that every triangulated graph has a juntion tree. This proof|anexistene proof|leaves us just short of our goal. How do we onstrut a juntion tree from atriangulated graph?It is ertainly not the ase that every lique tree obtained from a triangulated graph is a juntiontree. Consider the triangulated graph shown in Figure 17.14(a). The lique tree in Figure 17.14(b)is not a juntion tree (onsider node B). A juntion tree for this graph is shown in Figure 17.14().The separators in Figure 17.14(b) are fC;Dg and fDg, whereas in Figure 17.14() the separatorsare fB;Dg and fC;Dg. The total ardinality of the separator sets is larger in the latter �gure.Intuitively this fat would seem to have something to do with the fat that Figure 17.14() possessesthe juntion tree property while Figure 17.14(b) does not.To eah lique tree T assoiated with a triangulated graph we an assign a weight w(T ) givenby the sum of the ardinalities of the separator sets in the tree. We show in this setion that alique tree is a juntion tree if and only if it has maximal weight, ranging over all possible trees ofliques. There may be several suh trees.4See, e.g., Jensen, (1996).
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(a) (b) (c)Figure 17.14: (a) A triangulated graph. (b) A lique tree based on (a) that does not have thejuntion tree property. () A lique tree based on (a) that does have the juntion tree property.Our problem is an instane of the lassial \maximal spanning tree problem." The problem isreadily solved via one of a number of simple greedy algorithms. One solution is given by Kruskal'salgorithm: Begin with no edges between the liques. At eah step add an edge that has maximalseparator ardinality, ensuring that the resulting graph has no yles. One the graph is fullyonneted (there is a path between any pair of liques), we have a maximal spanning tree.5Consider a node Xk and a lique tree T with liques Ci and separators Sj . Consider further theount of the number of times that Xk appears as an element in one the liques Ci, as well as theount of the number of times that Xk appears as an element in one of the Sj. Clearly these ountsare related, and in partiular the fat that T is a tree implies that the latter ount is no more thanthe former ount less one: M�1Xj=1 1(Xk 2 Sj) � MXi=1 1(Xk 2 Ci)� 1; (17.43)where 1(�) is the indiator funtion and whereM is the number of liques. Moreover, this inequalitybeomes an equality when the subgraph of T indued by Xk is a tree.As we have noted earlier, the statement that the subgraph of T indued by a node Xk is a treeis nothing more than a restatement of the juntion tree property. Thus we have in Eq. 17.43 aninequality whih is indiative of the juntion tree property, at least with respet to a single nodeXk.We are now ready to state the theorem linking juntion trees and maximal spanning trees.Theorem 5 A lique tree T is a juntion tree if and only if it is a maximal spanning tree.Proof. The total weight of a lique tree is equal to the sum of the ardinalities of its separators.5See Cormen, Leisherson, and Rivest (1990) for a proof of this result. Another approah is given by Prim'salgorithm, whih maintains a partial tree at eah step and iteratively adds nodes to this tree.



17.11. THE HUGIN ALGORITHM 29Thus we have: w(T ) = M�1Xj=1 jSj j (17.44)= M�1Xj=1 NXk=1 1(Xk 2 Sj) (17.45)= NXk=1M�1Xj=1 1(Xk 2 Sj) (17.46)� NXk=1 " MXi=1 1(Xk 2 Ci)� 1# (17.47)= MXi=1 NXk=1 1(Xk 2 Ci)�M (17.48)= MXi=1 jCij �M: (17.49)Noting that the right-hand side is independent of T , and that the inequality in Eq. 17.47 is anequality if and only if T is a juntion tree, we obtain the result. 217.11 The Hugin algorithmThe algorithm that we have developed in previous setions is known as the \Hugin algorithm," aninstane of the general juntion tree framework. We summarize the algorithm here. There are �veprinipal steps to the algorithm, the �rst of whih applies only to direted graphs.� Moralization. The moralization step onverts a direted graph into an undireted graph.Nodes that have a ommon hild are linked, and direted edges are onverted to undiretededges. The loal onditional probability of eah node is multiplied onto the potential of alique that ontains the node and its parents.� Introdution of evidene. Evidene is introdued by taking slies of the potentials.� Triangulation. The graph is triangulated, using one of several possible algorithms. Thepotential of eah lique of the original graph is multiplied onto the potential of a lique thatontains the lique.� Constrution of juntion tree. A juntion tree is onstruted by forming a maximalspanning tree from the liques of the triangulated graph. Separators are introdued and theirpotentials are initialized to unity.



30 CHAPTER 17. THE JUNCTION TREE ALGORITHM� Propagation of probabilities. Computation proeeds in the juntion tree via the followingupdate equations: ��S = XV nS  V (17.50) �W = ��S�S  W : (17.51)The updates must respet the Message-Passing Protool. This an be ahieved by designatinga root node and alling ColletEvidene and DistributeEvidene from the root. Onethe algorithm terminates, the lique potentials and separator potentials are proportional tomarginal probabilities. Further marginalization an be performed to obtain the probabilitiesof singleton nodes or other subsets.17.12 The Shafer-Shenoy algorithmThere are a number of variations on the juntion tree theme. All of these variations have at their orethe notion of a triangulated graph and the juntion tree property, but the way that propagationproeeds on the juntion tree an be di�erent. Some of these variations an provide additionalinsights into exat inferene and provide di�erent pathways for generalizations to approximateinferene. Moreover, di�erent variations on juntion tree propagation an have di�erent numerialproperties or time/spae properties. In this setion we disuss one suh variation|the Shafer-Shenoy algorithm.The Shafer-Shenoy algorithm an be viewed as a variation on the juntion tree frameworkin whih no use is made of separator potentials. While the separator potentials have been use-ful in providing a simple mehanism for ahieving onsisteny between neighboring liques, andwhile we will enounter arhitetural examples in whih separator potentials are partiularly useful(f. Setion18.2.4), there is a sense in whih separator potentials are redundant (they are simplymarginals of the lique potentials) and perhaps they an be disposed with.Rather than fousing on separator potentials, let us instead fous on the ratios of separatorpotentials; the quantities that we referred to as \update fators" in our earlier presentation. Reallthat in the seond step of the message-passing alulation (Eq. 17.15), the lique potential ismultiplied by the update fator. What we will show is that a propagation proedure an be basedsolely on the update fators.Consider the pair of liques Ci and Cj in Figure 17.15, with separator Sij = Ci \ Cj . We wishto exhange messages between these liques so as to implement a juntion tree algorithm, and wewish to do so without making use of a potential on the separator Sij . To do so, de�ne �ij(Sij) asthe message sent from Ci to Cj .6 The Shafer-Shenoy algorithm tells us how to alulate �ij(Sij)based on the messages arriving at lique Ci from all liques other than lique Cj :�ij(Sij) = XCinSij  CiYk 6=i�ki(Ski) (17.52)6Note that we are using the term \message" in a slightly more spei� manner than before; for the Shafer-Shenoyalgorithm, we equate \message" with the values �ij(Sij).
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(a) (b)Figure 17.15: (a) A juntion tree showing the messages �ij and �ji that are passed between liquesCi and Cj. Note that both messages are funtions of the separator Sij . (b) A juntion tree showingthe separator expliitly.One lique Ci has reeived messages from all of its neighbors, we ompute the marginal probabilityfor Ci as follows: p(Ci) /  CiYk �ki(Ski): (17.53)Equations 17.52 and 17.53 onstitute the Shafer-Shenoy algorithm. We now derive this algorithmfrom the point of view of our earlier juntion tree algorithm, thereby proving the orretness ofthe impliit assertion in Eq. 17.53|that we do in fat obtain the marginal probabilities via thisalgorithm.Consider now the pair of liques Ci and Cj in Figure 17.15(b) with the expliit separator Sij .The onnetion between the new algorithm and the earlier algorithm is made as follows. De�ne�ij(Sij) to be the update fator assoiated with the update of the link in the diretion from Ci toCj. That is, if the �rst update of this link proeeds in the i-to-j diretion, let:�ij(Sij) , ��Sij�Sij ; (17.54)otherwise, let: �ij(Sij) , ���Sij��Sij : (17.55)In either ase, �ij(Sij) is the update fator arriving at lique Cj from lique Ci. Now note that the�nal potential at a given lique is the produt of its initial potential and all of the update fatorsarriving from its neighbors. This immediately shows that Eq. 17.53 has the orret form. We haveredued our problem to that of establishing the orretness of Eq. 17.52.We onsider two ases. Suppose �rst that the initial update of the link between Ci and Cj oursin the i-to-j diretion. For this update to our it must be the ase that Ci has already reeivedupdates from all of its other neighbors (the Message-Passing Protool). Thus at the moment whenthe update ours, the value of the potential on Ci must be the produt of its initial potential andthe update fators from its neighbors Ck, for k 6= j. Let us assume (as an indutive hypothesis)that these update fators are orretly given by �ki(Ski), and onsider the update fator that Ci



32 CHAPTER 17. THE JUNCTION TREE ALGORITHMsends to Cj. From Eq. 17.14 we have:��Sij = XCinSij  CiYk 6=i�ki(Ski): (17.56)Comparing this with Eq. 17.52, we see that �ij(Sij) = ��Sij and, realling that the initial value ofthe separator potential, �Sij , is unity, we have �ij(Sij) = ��Sij �Sij as required.Now onsider the ase in whih an earlier update has already ourred in the j-to-i diretion.In this ase, at the moment of the update from Ci to Cj, the potential on Ci must be the produtof its initial potential and the update fators from all of its neighbors, inluding Cj. Thus, fromEq. 17.14 we have: ���Sij = XCinSij  CiYk �ki(Ski) (17.57)= XCinSij  Ci�ji(Sji)Yk 6=j �ki(Ski) (17.58)= XCinSij  Ci ��Sij�Sij Yk 6=j �ki(Ski) (17.59)(17.60)and this yields: ���Sij��Sij = XCinSij Yk 6=j �ki(Ski); (17.61)where we again use the fat that �Sij � 1. Comparing this result with Eq. 17.52, we see that�ij(Sij) = ���Sij=��Sij as required.17.13 Computational omplexityIn this setion we disuss the omputational omplexity of the juntion tree algorithm. For on-reteness we fous on the Hugin algorithm and onsider the omputational omplexity of the Shafer-Shenoy algorithm in the exerises.It is important to distinguish between two phases of the juntion tree algorithm. The �rstphase, whih we will refer to as the ompilation phase, involves moralization, triangulation andthe maximal spanning tree algorithm. The seond phase, the propagation phase, involves theintrodution of evidene and message-passing on the juntion tree.The ompilation phase is an \o�-line" phase, ouring one for a given graphial model. Thealgorithms in the propagation phase are \on-line," running eah time a new set of onditionalprobabilities is desired.Moralization is learly a omputationally tratable proedure. Letting N denote the number ofnodes in the graph, and M the number of edges, moralization runs in time O(N +M).



17.13. COMPUTATIONAL COMPLEXITY 33Moreover, the maximal spanning tree problem is omputationally tratable. This is a well-studied problem and the omputational omplexity results are lassial. In partiular, the run timeof Kruskal's algorithm is O(N2) and the run time of Prim's algorithm is O(N2).7Let us turn to the triangulation problem. If we are not onerned with optimality (e.g., �ndinga juntion tree with the smallest maximal lique, or the smallest number of edges), then �nding atriangulation is omputationally tratable. In partiular, the run time of UndiretedGraphE-liminate is easily seen to be O(XXX). The problem of �nding an optimal juntion tree, however,is an NP-hard problem, under any of a number of de�nitions of optimality. We disuss this in-tratability result in more detail in Appendix A.The fat that triangulation is an o�-line phase of the juntion tree algorithm tempers some ofthe onern that aompanies the NP-hardness result. Moreover, as we disuss in Appendix A,there are heuristi algorithms available for triangulation that perform reasonably well in empirialexperiments. One may be willing to pay the ost of allowing one of these algorithms to run for asubstantial time to obtain a good triangulation. Finally, it is important to be aware that for manygraphial models the initial graph is suÆiently dense that even the optimal triangulation, if itould be found, would have a large number of edges or a large maximal lique size. It is the sizeof these liques, whih impats the seond phase of the juntion tree algorithm, whih is generallythe key pratial limitation in using the algorithm.The seond phase of the algorithm involves onditioning and message-passing. Conditioning isa straightforward proedure that simply annotates eah lique with the indies that are to be held�xed in the slie orresponding to the onditioning variables. We therefore turn to the message-passing proedure.Eah step of the message-passing proedure involves the marginalization and resaling of liquepotentials. Let us suppose that these potentials are represented nonparametrially, as tables. Thisis a worst-ase assumption, and spei� parametri representations of the lique potentials maygive more favorable omplexity results. Marginalizing a table requires us to aess eah entryin the table, and thus the number of operations sales as the number of entries in the table.The number of suh entries is exponential in the number of variables in the orresponding lique.This exponentiality is the key determinant of the omputational omplexity of the juntion treealgorithm.Resaling a potential again involves aessing eah entry in the a�eted lique potential, andthus is again exponential in the number of variables in the lique.The number of liques in a juntion tree is no more than N , the number of nodes in theunderlying graph (assuming that we use maximal liques). Thus the number of separators isbounded above by N � 1, and we have at most 2N � 1 messages owing in a run of the Huginalgorithm. Eah message involves two operations on lique potentials|a marginalization operationand a resaling operation. In summary, a omplete run of the Hugin algorithm involves at most4N�2 suh operations. Given that the size of a lique an be as large as the number of nodes N , theexponentiality of an individual marginalization or resaling operation dominates the omputationalomplexity.It is of interest to ompare the number of operations needed to obtain the marginal probabilities7See, e.g., Cormen Leisherson, and Rivest (1990).



34 CHAPTER 17. THE JUNCTION TREE ALGORITHMFigure 17.16: XXXof all of the nodes in the graph|obtained via the juntion tree algorithm|to the number ofoperations needed to obtain the marginal probabilities of a single node in the graph|obtained viathe elimination algorithm. The latter algorithm is speial ase; just run ColletEvidene. Touheseah potential one.17.14 Generalized marginalizationOne of the virtues of the juntion tree framework is its lear distintion between the graph-theoretiand the algebrai mahinery involved in probabilisti inferene. The algebrai mahinery that weutilized in deriving the algorithm was elementary|our proofs reposed on the assoiative, ommu-tative and distributive laws of arithmeti. As we disuss in this setion, if we replae the spei�algebrai operators that we used with other operators that obey these same laws, we �nd thatthe juntion tree framework extends readily to a wide lass of other problems involving fatorizedalgebrai expressions, of whih probabilisti inferene is a speial ase.17.14.1 Maximum probability on�gurationsIn Setion ?? we disussed the Viterbi algorithm for hidden Markov models. Given an observationsequene, this algorithm returns a single on�guration of the hidden states that has maximalprobability. In this setion we desribe a \generalized Viterbi algorithm" that omputes mostprobable on�gurations for arbitrary graphial models.That we need to do essentially no additional work to derive suh an algorithm is suggested byreturning to the example in Figure 17.16. Let us �nd a set of values of the nodes|a on�guration|that maximizes the joint probability p(x1; x2; : : : ; x6).The �rst few steps of the alulation are as follows:maxx p(x) = maxx1 maxx2 maxx3 maxx4 maxx5 maxx6 p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(x6 jx2; x5)= maxx1 p(x1)maxx2 p(x2 jx1)maxx3 p(x3 jx1)maxx4 p(x4 jx2)maxx5 p(x5 jx3)maxx6 p(x6 jx2; x5):Computing the maximum of p(x6 jx2; x5) with respet to x6 yields an intermediate fator that isa funtion of x2 and x5. This fator is then retained until needed in a subsequent maximization,in this ase the maximization over x5.The sequene of steps ontinue in an idential manner to those that we arried out in ourdevelopment of the elimination algorithm in Chapter 3. Clearly, from a symboli point of view, theomputation is the same. In partiular, the graphial onsequenes of the maximization operatorare idential to those of our earlier alulations with the summation operator.In the light of this example, let us onsider replaing \sum" with \max" in the juntion tree al-gorithm. The only step in the algorithm that spei�ally refers to summation is the marginalization



17.14. GENERALIZED MARGINALIZATION 35step in Eq. (17.14). Changing this step to maximization, we have:��S = maxV nS  V (17.62) �W = ��S�S  W ; (17.63)where the resaling step is unhanged.In essene we now obtain an inferene algorithm based on a generalized notion of marginaliza-tion. All of the steps that we took in deriving the juntion tree algorithm go through as before, giventhat the maximization operator has the same ommutativity and assoiativity properties as sum-mation, and given that maximization distributes over multipliation just as summation distributesover multipliation.What do we obtain from this algorithm? Reall that our key result is that ontained in The-orem 2, where we showed that at the end of the juntion tree proedure, eah lique potential isequal to its marginal probability. Here \marginal" means that the random variables not ontainedin the lique have been \summed out." If we replae summation by maximization, we obtain thesame result, but now \marginal" means that the random variables not ontained in the lique havebeen \maximized out." Thus, we must have C(xC) = maxV nC p(x): (17.64)We interpret the resulting entries in the lique potential as ontaining the values of the maximalprobability attainable for eah possible on�guration of the random variables XC . Maximizing overthese values, we obtain the atual on�gurationWe ould also take one or more of the variables to be evidene variables and maximize theonditional probability distribution of the remaining variables; this would simply involve holdingthe evidene variables �xed.17.14.2 Appendix A. Deomposable � Triangulated � Juntion treeIn Setion 17.8 we showed that all triangulated graphs possess a juntion tree. For the purpose ofdevising an inferene algorithm, this result suÆes, fousing our attention on the problem of �ndinga triangulation of a graph. It is of interest to know, however, that in a ertain sense triangulation isnot merely a means to an end, but rather triangulation is fored on us if we wish to avail ourselvesof the juntion tree property. In partiular, in this Appendix we strengthen our earlier result andshow that a graph has a juntion tree if and only if the graph is triangulated.We also show that these two properties are equivalent to a third property|deomposability.Reall from Setion ?? that a graph is deomposable if it an be reursively subdivided into sets A,B and S, where S separates A and B, and where S is omplete. The equivalene of deomposabilityand the juntion tree property provides an appealing interpretation of the juntion tree algorithmas a divide-and-onquer algorithm.Theorem 6 All deomposable graphs are triangulated.



36 CHAPTER 17. THE JUNCTION TREE ALGORITHMProof. We prove the result by indution. The base ase of a single node is trivial. We assumethat the result holds for N or fewer nodes and onsider a graph with N + 1 nodes.If the graph is omplete then it is obviously triangulated. Otherwise, the de�nition of deom-posability implies a deomposition of the graph into sets A, B, and S suh that S is omplete andS separates A and B. Also, both A[S and B [ S are deomposable. By the indution hypothesisthere are no hordless yles in either A [ S or B [ S. The only possible hordless yles musttherefore inlude one or more nodes in both A and B. But suh yles must pass twie through S,and the ompleteness of S implies that they have a hord. 2Theorem 6 and Theorem 3 together show that all deomposable graphs have a juntion tree.We have proved the orretness of the juntion tree algorithm for the lass of deomposable graphs.We now show a stronger result, namely that deomposability, triangulation and the juntiontree property are equivalent. This implies that the juntion tree algorithm is orret only for thelass of deomposable graphs.Theorem 7 The following are equivalent haraterizations of an undireted graph G:(D) G is deomposable.(T) G is triangulated.(J) G has a juntion tree.Proof. We have already shown that (D) implies (T ) implies (J). Thus we an prove the theoremby showing that (J) implies (D).The proof is a proof by indution. In the base ase G has a single lique and is deomposable byde�nition. Suppose that the theorem holds for juntion trees with N or fewer liques and onsidera juntion tree T for G = (X;E) with N + 1 liques.Let C be a leaf node in T with separator S. De�ne R = CnS (reall Figure 17.13). Considerthe disjoint sets R, XnC and S. We show that these sets are a deomposition of G.Lemma 1 implies that S separates R and XnC. That S is omplete follows from the fat thatS is the intersetion of a pair of liques.To show that G is deomposable it remains to show that C = R [ S and XnR = (XnC) [ Sare deomposable. We show that both subsets have juntion trees and onlude by the indutionhypothesis that they are deomposable.That C has a juntion tree follows immediately beause it is a single lique.Consider the e�et on the juntion tree T of the removal of nodes in R. Eah node in R isontained only in C and its neighbors are therefore fully onneted (i.e., nodes in R are simpliial).Removing any suh node therefore leaves the remaining nodes in C fully onneted, and thus Cremains a lique and the juntion tree T is unaltered. When all nodes in R have been removed, allthat remains of C is the separator S, whih is a subset of the neighboring lique in T . By simplypruning the C lique and its separator S from T we therefore obtain a juntion tree for XnR. 217.15 Historial remarks and bibliography


