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Chapter 15Kalman �ltering and smoothingThus far we have presented two major ategories of latent variable models: mixture models, whihare based on a disrete latent variable, and fator analysis models, whih are based on a ontinuouslatent variable. The graphs underlying these models are idential|two-node graphs in whih asingle latent variable is onneted to a single observable variable.Chapter 12 presented a dynamial generalization of mixture models|the hidden Markov model(HMM). Graphially, the HMM was obtained by opying the two-node mixture model as a spatialarray, onneting suessive state nodes in the array. It is natural to wonder if a similar gener-alization of fator analysis might be worth onsidering. In fat the dynamial generalization offator analysis is well worth onsidering|it yields an interesting and important methodology fortime series analysis known as the Kalman �lter. In fat, in an attempt to develop a onsistentterminology, we reserve the term \Kalman �lter" for the reursive inferene algorithm that is theanalog of the \alpha" algorithm in the HMM setting. The underlying model, whih we refer to asthe \state spae model (SSM)," is struturally idential to the HMM; only the type of the nodes(real-valued vetors) and the probability model (linear-Gaussian) hanges. The model has exatlythe same Markov properties as the HMM, and its states are hidden in exatly the same way as inthe HMM.Historially, the HMM and the Kalman �ltering methodology were developed in separate re-searh ommunities and their lose relationship has not always been widely appreiated. This ispartly due to the fat that the general framework of graphial models ame later than the HMMand the Kalman �lter. Without the graphial framework, the algorithms underlying the inferenealulation in the two ases look rather di�erent (as we will see). This is, however, simply a re-etion of the di�erenes between the multinomial distribution and the Gaussian distribution, andit is imperative that we not let these details{important as they may be in pratie{obsure thefundamental similarity between the two models.We will develop the inferene proedures for the SSM in some detail in this hapter. This is notonly to aknowledge the historial importane of the Kalman �lter, but also to provide an additionalonrete example of the solution of the inferene problem for a reasonably omplex graphial model.One we develop a general perspetive on graphial models in Chapter 15, we will return to theSSM and the HMM, not only to provide onrete examples to ground our general theory, but also3
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Figure 15.1: The SSM as a graphial model. Eah vertial slie represents a time step. The topnode in eah slie represents the state variable xt and the bottom node in eah slie represents theobservable output variable yt.to indiate that both are best viewed as jumping-o� points for a muh larger lass of models.15.1 The state spae modelAs we have already disussed, the model underlying Kalman �ltering is a graphial model in theform of a hain (see Figure 15.1). We opy the two-node fator analysis model as an array and welink suessive state nodes.The independene relationships that haraterize the SSM are idential to those that hara-terize the HMM. In partiular, given the state at one moment in time, the states in the futureare onditionally independent of those in the past. Moreover, the observation of the output nodesfails to separate any of the state nodes, and in general we expet for there to be a probabilistirelationship in the posterior distribution between all of the state nodes. As in the HMM, we hopethat we an alulate these relationships reursively.The state nodes in the fator analysis model are ontinuous, vetor-valued nodes endowed witha Gaussian probability distribution. To develop a dynamial generalization of the fator analysismodel we must represent the transition between the nodes at suessive moments in time. Perhapsthe simplest hoie that we an make is to allow the mean of the state at time t+ 1 to be a linearfuntion of the state at time t. Thus we write:xt+1 = Axt +Gwt; (15.1)where wt is a \noise" term|a Gaussian random variable that is independent of ws for s < t, andthus independent of xt. We assume that wt has zero mean and ovariane matrix Q. Given thatthe sum of Gaussian variables is Gaussian, we have that xt+1 is indeed Gaussian. Conditional onxt, its mean is Axt and its ovariane is GQGT .In the fator analysis model, the output is endowed with a Gaussian distribution having a mean



15.2. THE UNCONDITIONAL DISTRIBUTION 5that is a linear funtion of the state. We ontinue to use this model for the output of the SSM:yt = Cxt + vt; (15.2)where vt is a Gaussian random variable with zero mean and ovariane matrix R. Conditional onxt, yt is a Gaussian with mean Cxt and ovariane R.Finally we endow the initial state, x0, with a Gaussian distribution having mean 0 and ovariane�0. The assumption of zero mean is without loss of generality (a non-zero mean gives rise to adeterministi omponent that an added to the probabilisti solution; see Exerise XXX for thedetails).15.2 The unonditional distributionBefore beginning our investigation of the inferene problem for the SSM, it is of interest to studythe unonditional distribution of the states xt.The unonditional mean of xt is learly zero. This follows from the assumption that x0 has zeromean, and via the dynamial equation (Eq. 15.1) eah suessive state has zero mean.Turning to the unonditional ovariane, whih we denote �t, we have:�t+1 , E[xt+1xTt+1℄ (15.3)= E[(Axt +Gwt)(Axt +Gwt)T ℄ (15.4)= AE[xtxTt ℄AT +GE[wtwTt ℄GT (15.5)= A�tAT +GQGT ; (15.6)where we have made use of our independene assumptions. This equation, a dynamial equationfor the evolution of the unonditional ovariane, is referred to as the Lyapunov equation.It an also be veri�ed that the unonditional ovariane between neighboring states xt and xt+1is given by �tAT .15.3 InfereneThe inferene problem for the SSM is the same as it was for the HMM|that of alulating theposterior probability of the states given an output sequene. Based on our experiene with theHMM, we hope to be able to alulate suh posterior probabilities reursively.In the ase of the HMM, we were able to deompose the inferene problem into a \forward"problem and a \bakward" problem. In the forward problem the evidene onsisted of a partialsequene of outputs|all those outputs up to time t. The bakward problem also utilized a partialsequene|all those outputs after time t. We will �nd that this same deomposition will yieldreursive algorithms for the SSM.As in the ase of the HMM we distinguish between \�ltering" and \smoothing"|two lasses ofproblem that arise in this graphial model when we introdue evidene. We develop algorithms forsolving both problems.



6 CHAPTER 15. KALMAN FILTERING AND SMOOTHING15.4 FilteringThe problem is to alulate an estimate of the state xt based on a partial output sequene y0; : : : ; yt.That is, we wish to alulate P (xtjy0; : : : ; yt).1Sums of Gaussian variables are Gaussian, and thus, onsidering all of the variables in the SSMjointly, we have a (large) multivariate Gaussian distribution. Conditionals of Gaussians are Gaus-sian (see Chapter 13) and thus the probability distribution P (xtjy0; : : : ; yt) must be Gaussian. Thisimplies that we need only alulate a mean vetor and a ovariane matrix (or the orrespondinganonial parameters). As we will see, inferene in the SSM involves �nding a reursion linkingthese onditional means and onditional ovarianes at neighboring moments in time.We use a simpli�ed notation for the onditional means and onditional ovarianes that em-phasizes the partiular output sequene being onditioned on. We write x̂tjt to denote the meanof xt onditioned on the partial sequene y0; : : : ; yt. The ovariane matrix of xt onditioned ony0; : : : ; yt is denoted Ptjt; thus:x̂tjt , E[xtjy0; : : : ; yt℄ (15.7)Ptjt , E[(xt � x̂tjt)(xt � x̂tjt)T jy0; : : : ; yt℄: (15.8)In our derivation of the algorithm, we will �nd that it is useful as an intermediate step to omputethe probability distribution of xt onditioned on y0; : : : ; yt�1. In our new notation, this distributionhas mean x̂tjt�1 and ovariane matrix Ptjt�1.To unover the reursion behind the Kalman �lter, let us refer to the graphial model fragmentsin Figure 15.2. In the fragment on the left, where we ondition on the outputs y0; : : : ; yt, we assumethat we have already alulated P (xtjy0; : : : ; yt); that is, we have alulated x̂tjt and Ptjt. We wishto arry this distribution forward into the fragment on the right, where we ondition on y0; : : : ; yt�1.We deompose the transformation into two steps:time update: P (xtjy0; : : : ; yt) ! P (xt+1jy0; : : : ; yt)measurement update: P (xt+1jy0; : : : ; yt) ! P (xt+1jy0; : : : ; yt+1)Thus, in the time update step, we simply propagate the distribution forward one step in time,alulating the new mean and ovariane based on the old mean and ovariane, but based on nonew measurements (i.e., no new outputs). In the measurement update step, we inorporate thenew measurement yt+1 and update the probability distribution for xt+1. The overall result is atransformation from x̂tjt and Ptjt to x̂t+1jt+1 and Pt+1jt+1.Let us �rst onsider the time update step. Reall the dynami equation (Eq. 15.1):xt+1 = Axt +Gwt: (15.9)1Note that this quantity is analogous to the normalized alpha variable from the HMM|the alpha variablesthemselves are joint probabilities: P (xt; y0; : : : ; yt). The alphas and normalized alphas di�er from eah other, however,only by the normalization onstant. In the Gaussian ase we represent probability distributions by storing only themean and ovariane matrix (or the orresponding anonial parameters); the normalization fator is impliit. Thusthere is no di�erene between \alphas" and \normalized alphas" in the SSM setting; all probabilities are impliitlynormalized.
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Figure 15.2: (a) A fragment of an SSM before a measurement update and (b) after a measurementupdate.We take the onditional expetation on both sides of this equation. Given that wt is independentof the onditioning variables y0; : : : ; yt, the seond term vanishes, and we have:x̂t+1jt = Ax̂tjt: (15.10)Similarly, taking the onditional ovariane of both sides of the dynami equation, we have:Pt+1jt = E �(xt+1 � x̂t+1jt)(xt+1 � x̂t+1jt)T jy0; : : : ; yt� (15.11)= E �(Axt +Gwt �Ax̂tjt)(Axt +Gwt �Ax̂tjt)T jy0; : : : ; yt� (15.12)= APtjtAT +GQGT ; (15.13)where we have used the fats that x̂t+1jt is a onstant in the onditional distribution, wt has zeromean, and wt and xt are independent.Now that we know the onditional distribution of xt+1 we proeed further in the graphialmodel fragment and alulate the onditional mean and ovariane of yt+1, as well as the ondi-tional ovariane of xt+1 and yt+1. These alulations allow us to write down the joint onditionaldistribution of xt+1 and yt+1, at whih point the measurement update beomes a simple matter of\reversing the arrow"|alulating the onditional distribution of xt+1 given yt+1.The alulations are straightforward:E [yt+1jy0; : : : ; yt℄ = E [Cxt+1 + vt+1jy0; : : : ; yt℄ (15.14)= Cx̂t+1jt (15.15)E �(yt+1 � ŷt+1jt)(yt+1 � ŷt+1jt)T jy0; : : : ; yt�



8 CHAPTER 15. KALMAN FILTERING AND SMOOTHING= E �(Cxt+1 + vt+1 � Cx̂t+1jt)(Cxt+1 + vt+1 � Cx̂t+1jt)T jy0; : : : ; yt� (15.16)= CPt+1jtCT +R (15.17)and E �(yt+1 � ŷt+1jt)(xt+1 � x̂t+1jt)T jy0; : : : ; yt�= E �(Cxt+1 + vt+1 � ŷt+1jt)(xt+1 � x̂t+1jt)T jy0; : : : ; yt� (15.18)= CPt+1jt; (15.19)where we have made use of the various independene assumptions.We summarize these results as follows. Conditioned on the past outputs y0; : : : ; yt, the variablesxt+1 and yt+1 have a joint Gaussian distribution, with mean and ovariane matrix:� x̂t+1jtCx̂t+1jt � and � Pt+1jt Pt+1jtCTCPt+1jt CPt+1jtCT +R � (15.20)This leaves us in a situation whih is familiar to us from fator analysis. Making referene toFigure 15.2(b), we have a Gaussian graphial model fragment in whih we wish to reverse thearrow; that is, we wish to ompute the onditional distribution of xt+1 given yt+1, where xt+1 andyt+1 have a joint Gaussian distribution. The only di�erene in the urrent situation is that thejoint distribution is itself a onditional distribution, onditioned on the past outputs y0; : : : ; yt.Utilizing Eq. 13.26 and 13.27 from Chapter 13, we obtain:x̂t+1jt+1 = x̂t+1jt + Pt+1jtCT (CPt+1jtCT +R)�1(yt+1 � Cx̂t+1jt) (15.21)Pt+1jt+1 = Pt+1jt � Pt+1jtCT (CPt+1jtCT +R)�1CPt+1jt: (15.22)We summarize the �ltering equations that we have obtained. At time t we assume that wehave available the mean estimate x̂tjt and the ovariane estimate Ptjt. Based on these estimateswe alulate x̂t+1jt+1 and Pt+1jt+1 reursively as follows:x̂t+1jt = Ax̂tjt (15.23)Pt+1jt = APtjtAT +GQGT (15.24)x̂t+1jt+1 = x̂t+1jt + Pt+1jtCT (CPt+1jtCT +R)�1(yt+1 � Cx̂t+1jt) (15.25)Pt+1jt+1 = Pt+1jt � Pt+1jtCT (CPt+1jtCT +R)�1CPt+1jt: (15.26)These reursions onstitute the Kalman �lter. They are initialized with x̂0j�1 = 0 and P0j�1 = P0.The update in Eq. 15.25 is often summarized in more a ompat form by de�ning the Kalmangain matrix : Kt+1 , Pt+1jtCT (CPt+1jtCT +R)�1: (15.27)Using this notation we have: x̂t+1jt+1 = x̂t+1jt +Kt+1(yt+1 � Cx̂t+1jt): (15.28)



15.5. INTERPRETATION AND RELATIONSHIP TO LMS 9Moreover, we an use the matrix inversion formulas to write the gain matrix in an alternative form.In partiular, using Eq. 13.17 and Eq. 13.18, we obtain:Kt+1 = Pt+1jtCT (CPt+1jtCT +R)�1 (15.29)= (P�1t+1jt + CTRC)�1CTR�1 (15.30)= (Pt+1jt + Pt+1jtCT (CPt+1jtCT +R)�1CPt+1jt)CTR�1 (15.31)= Pt+1jt+1CTR�1; (15.32)whih expresses the gain matrix in terms of the updated matrix Pt+1jt+1.15.5 Interpretation and relationship to LMSThe Kalman �ltering equations have an appealing interpretation as an error-orreting algorithm.Let us write a single equation for the update of the mean by ombining Eq. 15.23 and Eq. 15.25:x̂t+1jt+1 = Ax̂tjt +Kt+1(yt+1 � CAx̂tjt): (15.33)Eq. 15.33 desribes an error-orreting algorithm for estimating the state xt+1. In partiular, attime t, our best estimate of the state xt is x̂tjt. Imitating the dynamial equation we produe anestimate Ax̂tjt of the state at time t+ 1. This estimate is then orreted based on the observationyt+1; in partiular, we adjust our estimate by a term (yt+1 � CAx̂tjt) that is proportional to theerror between the observed output and our predition of the output.This error-orretion proedure is reminisent of the LMS algorithm. To larify the relationship,onsider a simpli�ed situation in whih the matrix A is the identity matrix and the noise term wtis zero. In this ase, the \dynamial equation" xt+1 = xt +Gwt redues to the statement that the\state" is a onstant. Let � denote this onstant. Furthermore, let the matrix C in Eq. 15.2 bereplaed by the (time-varying) vetor xTt (as in Setion XXX). In this ase, Eq. 15.2 redues to:yt = xTt � + vt: (15.34)We are bak in the world of linear regression, in whih the outputs yt are a sequene of iid obser-vations that provide information about the parameter vetor �. In this ase the Kalman �lteringequation beomes: �̂t+1 = �̂t + Pt+1R�1(yt+1 � xTt �̂)xt; (15.35)where we have used the fat that R�1 is a salar and have dropped the unneessary seond timesubsript on the P matrix.We have derived an equation whih, when ombined with the update for Pt+1, is referred toas the reursive least squares (RLS) algorithm. RLS is a speial ase of the Kalman �lter and, assuh, provides the optimal least-squares estimate of � based on data yt up to and inluding time t.If we proeed further and approximate the matrix Pt+1R�1 with a salar multiplier �, Eq. 15.35redues to the LMS algorithm (Eq. 6.6). Thus LMS an be viewed as an approximation to theKalman �lter. We have gained in simpliity|no longer needing to arry forward a ovariane



10 CHAPTER 15. KALMAN FILTERING AND SMOOTHINGmatrix|but we have lost in auray. The LMS algorithm requires multiple passes through a dataset to onverge to the least-squares estimate of the parameter; the Kalman �lter onverges in asingle pass.Although this onnetion between the Kalman �lter and the LMS algorithm is a interesting anduseful relationship to be aware of, the approximation of Pt+1R�1 by a salar multiplier reeivesno partiular justi�ation within the theory of Kalman �ltering. Rather it requires a di�erenttheoretial framework (that of stohasti approximation) for its justi�ation.15.6 Information �lterReall that the multivariate Gaussian distribution an be desribed using either the moment pa-rameterization or the anonial parameterization. Our derivation of the Kalman �lter used themoment parameterization of the Gaussian, but it is also of interest to de�ne a �ltering algorithmin terms of the anonial parameterization. The result is an algorithm known as an information�lter.We an derive the information �lter either from �rst priniples or by transforming the equationsthat we have already obtained. We pursue the former approah in Chapter 18, where we reonsiderthe SSM from the perspetive of the juntion tree framework. In the urrent setion we pursue thelatter approah. This is essentially an exerise in the use of the matrix inversion lemmas (Eq. 13.17and Eq. 13.18).Reall from Chapter 13 that the anonial parameters of a Gaussian distribution an be obtainedfrom the moment parameters by the following transformation (f. Eq. 13.5): � = ��1 and � =��1�. De�ne �̂tjt�1 and Stjt�1 to be the anonial parameters of the distribution of xt onditionedon y1;:::;t�1 and let �̂tjt and Stjt to be the anonial parameters of the distribution of xt onditionedon y1;:::;t. We obtain a set of reursions for these quantities by substituting from Eqs. 15.23 to15.26.Let us begin with the inverse ovariane matries. De�ningH , GQGT to simplify the notation,we have: St+1jt = P�1t+1jt (15.36)= (APtjtAT +H)�1 (15.37)= H�1 �H�1A(P�1tjt +ATH�1A)�1ATH�1 (15.38)= H�1 �H�1A(Stjt +ATH�1A)�1ATH�1: (15.39)A further appliation of the matrix inversion lemma yields:St+1jt+1 = P�1t+1jt+1 (15.40)= (Pt+1jt � Pt+1jtCT (CPt+1jtCT +R)�1CPt+1jt)�1 (15.41)= P�1t+1jt + CTR�1C (15.42)= St+1jt + CTR�1C: (15.43)



15.7. SMOOTHING 11Turning now to the � parameters, we have:�̂t+1jt = P�1t+1jtx̂t+1jt (15.44)= P�1t+1jtAx̂tjt (15.45)= P�1t+1jtAPtjt�̂tjt (15.46)= (APtjtAT +H)�1APtjt�̂tjt (15.47)= H�1A(P�1tjt +ATH�1A)�1�̂tjt (15.48)= H�1A(Stjt +ATH�1A)�1�̂tjt; (15.49)and �̂t+1jt+1 = P�1t+1jt+1x̂t+1jt+1 (15.50)= P�1t+1jt+1(x̂t+1jt + Pt+1jt+1CTR�1(yt+1 � Cx̂t+1jt)) (15.51)= (P�1t+1jt+1 � CTR�1C)P�1t+1jt�̂t+1jt + CTR�1yt+1 (15.52)= (P�1t+1jt + CTR�1C � CTR�1C)P�1t+1jt�̂t+1jt + CTR�1yt+1 (15.53)= �̂t+1jt +CTR�1yt+1: (15.54)We summarize the information �lter equations. At time t we assume that we have available �̂tjtand Stjt. Based on these estimates we alulate �̂t+1jt+1 and St+1jt+1 reursively as follows:�̂t+1jt = H�1A(Stjt +ATHA)�1�̂tjt (15.55)�̂t+1jt+1 = �̂t+1jt + CTR�1yt+1 (15.56)St+1jt = H�1 �H�1A(Stjt +ATH�1A)�1ATH�1 (15.57)St+1jt+1 = St+1jt + CTR�1C: (15.58)These reursions are initialized with �̂0j�1 = ��0 and S0j�1 = S0.The Kalman �lter and the information �lter are mathematially equivalent; the major pratialdi�erene between them is essentially numerial. Reall that the ondition number of a matrix isthe reiproal of the ondition number of its inverse; this implies that poor onditioning for oneset of reursions generally implies good onditioning for the other set. A related issue onerns theinitial onditions. If we are quite ertain about the initial state, then we would set P0 to zero, inwhih ase S0 is unde�ned and we would be fored to use the Kalman �lter. On the other hand, ifwe are quite unertain about the initial state, we would set S0, in whih ase P0 is unde�ned andwe would be fored to use the information �lter.15.7 SmoothingWe now turn to the issue of obtaining estimates of the state at time t based on data up to andinluding a later time T . As in the ase of the HMM, the alulation of this state estimate requires
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Figure 15.3: (a) A fragment of an SSM in whih the observations up to and inluding yt areavailable, and (b) the same fragment in whih observations yt+1 to yT are available.us to ombine a forward reursion with a bakward reursion. Furthermore, we one again have thehoie between an algorithm that omputes bakward-�ltered estimates and ombines them withthe forward-�ltered estimates (an \alpha-beta algorithm"), or an algorithm that reurses diretlyon the �ltered-and-smoothed estimates (an \alpha-gamma algorithm"). Both kinds of algorithmare available in the literature on state-spae models, but the latter approah appears to dominate(as opposed to the HMM literature, where the former approah dominates). In this setion webegin with the \alpha-gamma" approah, deriving the the \Rauh-Tung-Striebel (RTS) smoothingalgorithm," and then turn to an alternative \alpha-beta" approah.15.7.1 The Rauh-Tung-Striebel (RTS) smootherOur approah to deriving the RTS smoothing algorithm will one again be based on the graphialmodel fragment shown in Figure 15.2, whih we reprodue in Figure 15.3. We begin by writingdown the joint distribution of xt and xt+1, onditional on y0; : : : ; yt. Reall that x̂t+1jt = Ax̂tjt,whih implies: E[(xt � x̂tjt)(xt+1 � x̂t+1jt)T jy0; : : : ; yt℄ = PtjtAT : (15.59)Thus our distribution has the following mean and ovariane matrix:� x̂tjtx̂t+1jt � and � Ptjt PtjtATAPtjt Pt+1jt � ; (15.60)where all of the quantities are available to us after a forward Kalman �ltering pass.We now introdue a \bakwards" omputation. In partiular, we ondition on xt+1 and al-ulate the probability of xt, still onditioning on y0; : : : ; yt. Using the by-now familiar Gaussian



15.7. SMOOTHING 13onditioning rule (Eq. 13.26), we obtain:E[xtjxt+1; y0; : : : ; yt℄ = x̂tjt + PtjtATP�1t+1jt(xt+1 � x̂t+1jt) (15.61)= x̂tjt + Lt(xt+1 � x̂t+1jt); (15.62)where we have introdued the notation Lt , PtjtATP�1t+1jt, andVar[xtjxt+1; y0; : : : ; yt℄ = Ptjt � PtjtATP�1t+1jtAPtjt (15.63)= Ptjt � LtPt+1jtLTt : (15.64)The purpose of onditioning on xt+1 is to render xt independent of the future observations yt+1; : : : ; yT .That is, we an use onditional independene to write:E[xtjxt+1; y0; : : : ; yT ℄ = E[xtjxt+1; y0; : : : ; yt℄ (15.65)= x̂tjt + Lt(xt+1 � x̂t+1jt) (15.66)and Var[xtjxt+1; y0; : : : ; yT ℄ = Var[xtjxt+1; y0; : : : ; yt℄ (15.67)= Ptjt � LtPt+1jtLTt : (15.68)The quantities on the left-hand side of these equations are almost what we want; indeed, if weould drop xt+1 we would have the desired �ltered-and-smoothed quantities.The remainder of the derivation is an exerise in onditional expetation. Reall from AppendixXXX the following fundamental fats about onditional expetations:E[XjZ℄ = E[E[XjY;Z℄jZ℄ (15.69)and Var[XjZ℄ = Var[E[XjY;Z℄jZ℄ +E[Var[XjY;Z℄jZ℄ (15.70)whih show us how to ompute unonditional expetations using onditional expetations. We willsubstitute xt for X, xt+1 for Y , and y0; : : : ; yT for Z in these equations.Beginning with Eq. 15.66, we take the onditional expetation on both sides, onditioning withrespet to y0; : : : ; yT : x̂tjT , E[xtjy0; : : : ; yT ℄ (15.71)= E[E[xtjxt+1; y0; : : : ; yT ℄jy0; : : : ; yT ℄ (15.72)= E[x̂tjt + Lt(xt+1 � x̂t+1jt)jy0; : : : ; yT ℄ (15.73)= x̂tjt + Lt(xt+1jT � x̂t+1jt); (15.74)where we have used the fat that all of the quantities in Eq. 15.74 other than xt+1 are onstantswhen we ondition on y0; : : : ; yT .



14 CHAPTER 15. KALMAN FILTERING AND SMOOTHINGEq. 15.74 is the basi update equation in the RTS smoothing algorithm. We see that a estimateof xt based on all of the data an be obtained by orreting the �ltered estimate x̂tjt by an errorterm omposed of a smoothed estimate of xT+1 and the �ltered estimate x̂t+1jt. The gain matrixLt is a quantity that depends only on matries omputed during the forward pass.We now work on the onditional variane equation (Eq. 15.68). Using Eq. 15.70, we have:PtjT , Var[xtjy0; : : : ; yT ℄ (15.75)= Var[E[xtjxt+1; y0; : : : ; yT ℄jy0; : : : ; yT ℄ +E[Var[xtjxt+1; y0; : : : ; yT ℄jy0; : : : ; yT ℄(15.76)= Var[x̂tjt + Lt(xt+1 � x̂t+1jt)jy0; : : : ; yT ℄ +E[Ptjt � LtPt+1jtLTt jy0; : : : ; yT ℄ (15.77)= LtVar[(xt+1 � x̂t+1jt)jy0; : : : ; yT ℄LTt + Ptjt � LtPt+1jtLTt (15.78)= LtVar[xt+1jy0; : : : ; yT ℄LTt + Ptjt � LtPt+1jtLTt (15.79)= LtPt+1jTLTt + Ptjt � LtPt+1jtLTt (15.80)= Ptjt + Lt(Pt+1jT � Pt+1jt)LTt ; (15.81)where at several juntures we have used the fat that expetations taken with respet to y0; : : : ; ytare onstant when onditioning with respet to the larger onditioning set y0; : : : ; yT .We summarize the RTS smoothing algorithm. Based on the quantities x̂t+1jt, Ptjt and P�1t+1jtfrom the �ltering algorithm, we ompute:x̂tjT = x̂tjt + Lt(xt+1jT � x̂t+1jt); (15.82)PtjT = Ptjt + Lt(Pt+1jT � Pt+1jt)JTt ; (15.83)where Lt , PtjtATP�1t+1jt. The algorithm is initialized by using x̂T jT and PT jT from the �lteringpass.15.7.2 The two-�lter smootherIn this setion we desribe an alternative approah to smoothing in the SSM whih is the analogof the alpha-beta algorithm for the HMM. In this approah, known as the \two-�lter algorithm,"the idea is to ombine the \forward" onditional probability P (xtjy0; : : : ; yt) with the \bakward"onditional probability P (xtjyt+1; : : : ; yT ). Note that the latter quantity, like the former quantity,is a \�ltered estimate"; that is, a onditional probability of the state given a (partial) outputsequene. This di�ers from the traditional beta variable in the HMM, whih is the onditionalprobability of the output sequene given the state. Clearly we an move from one to the other,however, by multiplying or dividing by the unonditional probability of the state, P (xt), whih isavailable via the Lyapunov equation. Thus, the di�erene is minor and it is appropriate to thinkof the two-�lter algorithm as the analog of the alpha-beta algorithm.Given that we want �ltered estimates in the bakward diretion, a simple approah to derivingthe bakward algorithm is to \invert the dynamis" and apply a forward �ltering algorithm to theinverted dynamis. In graphial model terms, we invert the arrows in the graph. This is in itself auseful exerise.
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Figure 15.4: (a) A fragment of an SSM with no observations.In this setion we assume that the matrix A is invertible and make use of A�1 in our derivationof the algorithm. In fat this assumption is not neessary, and a lookahead at the algorithm thatwe derive shows that A�1 does not appear. (In Chapter 18 we present an alternative derivation ofthe algorithm from the point of view of the juntion tree algorithm, and in that derivation we donot make use of A�1).The naive approah to inverting the dynamial equation is to simply write:xt = A�1xt+1 �A�1Gwt; (15.84)and let t run bakwards in time. This approah is not viable, however, beause wt is not independentof the \past" values of the state; i.e., xt+1; : : : ; xT . Indeed, these states are all a funtion of wt.Thus one of the assumptions that we used in deriving the Kalman �lter is not valid and we annotsimply apply the Kalman �lter to Eq. 15.84.To obtain a more useful inverse of the dynamis, onsider the graphial model fragment shown inFigure 15.4. The forward dynamis yields a joint probability distribution on (xt; xt+1) haraterizedby the Lyapunov equation �t+1 = A�tAT +GQGT . Indeed the ovariane matrix of (xt; xt+1) isgiven by: � �t �tATA�t A�tAT +GQGT � (15.85)We an invert the relationship between xt and xt+1 by solving for �t in terms of �t+1 and rewritingthe ovariane matrix in terms of �t+1. Thus:�t = A�1�t+1A�T �A�1GQGTA�T ; (15.86)where we assume that A is invertible.2 This equation also implies:A�t = �t+1A�T �GQGTA�T ; (15.87)2In fat this assumption is not neessary, see Exerise XXX.



16 CHAPTER 15. KALMAN FILTERING AND SMOOTHINGand we an rewrite the ovariane matrix as follows:� A�1�t+1A�T �A�1GQGTA�T A�1�t+1 �A�1GQGT�t+1A�T �GQGTA�T �t+1 � (15.88)Noting that the upper-right-hand orner of this matrix an be written as A�1(I�A�1GQGT��1t+1)�t+1,we see that if we de�ne: ~A = A�1(I �A�1GQGT��1t+1) (15.89)then we obtain ~A�t+1 and �t+1 ~AT in the orners of the matrix, and the matrix begins to take theform of a forward ovariane matrix. This suggests that we de�ne the inverse dynamis via:xt = ~Axt+1 + ~G ~wt+1; (15.90)with ~G and ~wt hosen appropriately so as to math the forward dynamis (Eq. 15.1). Indeed,hoosing ~G = �A�1G (15.91)~wt+1 = wt �QGT��1t+1xt+1 (15.92)Eq. 15.90 mathes Eq. 15.1. Moreover, we have:~Q , E[ ~wt+1 ~wTt+1℄ = Q�QGT��1t+1GQ; (15.93)and substituting Eqs. 15.89, 15.92 and 15.93 in the bakward Lyapunov equation:�t = ~A�t+1 ~AT + ~G ~Q ~GT (15.94)we reover the forward Lyapunov equation.Finally, it an also be veri�ed (see Exerise XXX) that ~wt+1 is independent of the \past" valuesof the state xt+1; : : : ; xT .We have therefore sueeded in obtaining a version of the inverse dynamis to whih standard�ltering algorithms an be applied. If we use the anonial parameterization (i.e., the information�lter in Eqs. 15.39, 15.43, 15.49, and 15.54), utilizing the inverse dynamial equation and notingthat the output equation yt = Cxt + vt has not hanged, we obtain:Stjt+1 = ATHA+��1t �ATH�1(St+1jt+1 +H�1 � ��1t+1)�1H�1A (15.95)Stjt = Stjt+1 + CTR�1C (15.96)�̂tjt+1 = ATH�1(St+1jt+1 +H�1 � ��1t+1)�1�̂t+1jt+1 (15.97)�̂tjt = �̂tjt+1 + CTR�1yt; (15.98)where t and t+1 have been interhanged to reet the fat that we are �ltering bakward in time.This �lter alulates the anonial representation of P (xtjyt+1; : : : ; yT ). Thus, onverting to themoment representation, we have x̂tjt+1 = S�1tjt+1�̂tjt+1 and Ptjt+1 = S�1tjt+1.



15.7. SMOOTHING 17The �nal issue that we must address involves the fusing of the probability distributionsP (xtjy0; : : : ; yt)and P (xtjyt+1; : : : ; yT ) to obtain the posterior probability P (xtjy0; : : : ; yT ). This problem is notunique to the �ltering and smoothing domain, but arises in many other settings as well. It is there-fore worth posing and solving the problem in full generality; this we do in the following setion.Antiipating the result, we have the following fusion rule for x̂tjT , the estimate of xt based on allof the data: x̂tjT = PtjT (P�1tjt x̂tjt + P�1tjt+1x̂tjt+1); (15.99)where the ovariane matrix PtjT is omputed as follows:PtjT = �P�1tjt + P�1tjt+1 � ��1t ��1 : (15.100)The appearane of ��1t in the latter equation should not be a surprise. The �ltering proess andthe smoothing proess both make use of the prior statistis on xt; in the latter ase this is beausewe have inverted the dynamis. When the ovariane matries of these two proesses are ombinedwe have inluded the prior ovariane twie. To avoid double-ounting ��1t must be subtrated inthe ombination rule.15.7.3 Fusion of Gaussian posterior probabilitiesLet us onsider three sets of random variables: x, z1 and z2. Suppose that these variables areharaterized by a multivariate Gaussian distribution and suppose moreover that z1 and z2 areonditionally independent given x. We wish to fuse the posteriors P (xjz1) and P (xjz2) into anoverall posterior P (xjz1; z2).Let us assume, without loss of generality, that x; z1, and z2 have zero means. Non-zero meansan be subtrated away and added bak at the end of the analysis.Under the onditional independene assumption, there are three ways to represent the distri-bution of x; z1, and z2 as a direted graphial model. The representation given in Figure 15.5(a) ispartiularly useful for our purposes. To parameterize the graph, we require the marginal P (x), andonditionals P (z1jx) and P (z2jx). For the marginal, we endow x with a zero mean and ovariane�. For the onditionals, reall that Gaussian onditionals are linear funtions of the onditioningvariable (f. Eq. refeq:Gaussian-onditional-mean). Thus we an write:z1 = M1x+ v1 (15.101)z2 = M2x+ v2; (15.102)for appropriately hosen matries M1 and M2 and zero-mean Gaussian variables v1 and v2 havingovariane matries R1 and R2. Note moreover that v1 and v2 are independent of x and areonditionally independent of eah other given x.Let us now onsider a generi linear equation z =Mx+ v, where v is independent of x and hasovariane R. To alulate the onditional expetation of x given z we �rst obtain the ovarianematrix of the pair (x; z): � � �MTM� M�MT +R � : (15.103)
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(a) (b)Figure 15.5: A graphial model representation of the fusion problem. (a) The observables z1and z2 are assumed onditionally independent given x. The onditional probabilities of zi areparameterized as linear funtions of x with additive, independent noise terms. (b) Conjoining z1and z2 into a single observable vetor z.We then apply the usual Gaussian onditioning formulas (Eqs. 13.26 and 13.27) to obtain theonditional distribution of x given z. Denoting the mean of this onditional distribution as x̂ andthe ovariane as P , we have:x̂ = �MT �M�MT +R��1 z (15.104)= �MTR�1M +��1��1MTR�1z; (15.105)where we have used a matrix inversion identity (Eq. 13.18) in the seond step, and:P = �� �MT �M�MT +R��1M� (15.106)= ���1 +MTR�1M��1 ; (15.107)where again we use a matrix inversion identity (Eq. 13.17) to simplify the result.The individual onditionals of x given z1 and z2 are speial ases of the foregoing equations.De�ning x̂i , E(xjzi) and letting Pi denote the orresponding onditional ovariane, we have:x̂1 = �MT1 R�11 M1 +��1��1MT1 R�11 z1 (15.108)x̂2 = �MT2 R�12 M2 +��1��1MT2 R�12 z2; (15.109)and P1 = �MT1 R�11 M1 +��1��1 (15.110)P2 = �MT2 R�12 M2 +��1��1 : (15.111)



15.8. PARAMETER ESTIMATION 19Now let us onsider the overall posterior of x given both z1 and z2. Grouping z1 and z2 into asingle variable z (f. Figure 15.5(b)), we an apply Eqs. 15.105 and 15.107 where:M , � M1M2 � and R , � R1 00 R2 � : (15.112)From these de�nitions we obtain:x̂ = �� MT1 MT2 � � R�11 00 R�12 � � M1M2 �+��1��1 � MT1 MT2 � � R�11 00 R�12 � � z1z2 �= �MT1 R�11 M1 +MT2 R�12 M2 +��1��1 (MT1 R�11 z1 +MT2 R�12 z2) (15.113)= �P�11 + P�12 � ��1��1 (P�11 x̂1 + P�12 x̂2) (15.114)We an similarly expand Eq. 15.107 to obtain the overall onditional ovariane P :P = �P�11 + P�12 � ��1��1 ; (15.115)thus allowing us to rewrite Eq. 15.114 as:x̂ = P (P�11 x̂1 + P�12 x̂2): (15.116)Eqs. 15.116 and 15.115 are our general solution to the Gaussian fusion problem.Let us relate these results bak to the two-�lter smoothing problem. We ollet the observationsup to and inluding time t into a single \past" vetor z1 , (y0; : : : ; yt), and ollet the \future"observations into a single vetor z2 , (yt+1; : : : ; yT ). Let x , xt. These de�nitions �t the problemspei�ation of the urrent setion; in partiular (x; z1; z2) are haraterized by a multivariateGaussian distribution (a marginal of the larger Gaussian distribution that inludes the other statevariables), and moreover z1 and z2 are independent given x. The estimate x̂tjt is the onditionalexpetation of x given z1, and must therefore have the form in Eq. 15.109, for matries M1 andR1 that we do not bother to alulate. Similarly x̂tjt+1 must be of the form in Eq. 15.109, and theonditional ovarianes Ptjt and Ptjt+1 must have the form of Eqs. 15.111 and 15.111. Substitutinginto Eqs. 15.116 and 15.115 we obtain the fusion rules at the end of the previous setion (Eqs. 15.99and 15.100).15.8 Parameter estimationWe follow the by now familiar reipe for developing an EM algorithm for parameter estimationfor the SSM. We write out the expeted omplete log likelihood, identify the expeted suÆientstatistis, solve for maximum likelihood estimates in terms of these expeted suÆient statistis.This latter problem is simply linear regression.[Setion not yet �nished℄.15.9 Historial remarks and bibliography


