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Chapter 15Kalman �ltering and smoothingThus far we have presented two major 
ategories of latent variable models: mixture models, whi
hare based on a dis
rete latent variable, and fa
tor analysis models, whi
h are based on a 
ontinuouslatent variable. The graphs underlying these models are identi
al|two-node graphs in whi
h asingle latent variable is 
onne
ted to a single observable variable.Chapter 12 presented a dynami
al generalization of mixture models|the hidden Markov model(HMM). Graphi
ally, the HMM was obtained by 
opying the two-node mixture model as a spatialarray, 
onne
ting su

essive state nodes in the array. It is natural to wonder if a similar gener-alization of fa
tor analysis might be worth 
onsidering. In fa
t the dynami
al generalization offa
tor analysis is well worth 
onsidering|it yields an interesting and important methodology fortime series analysis known as the Kalman �lter. In fa
t, in an attempt to develop a 
onsistentterminology, we reserve the term \Kalman �lter" for the re
ursive inferen
e algorithm that is theanalog of the \alpha" algorithm in the HMM setting. The underlying model, whi
h we refer to asthe \state spa
e model (SSM)," is stru
turally identi
al to the HMM; only the type of the nodes(real-valued ve
tors) and the probability model (linear-Gaussian) 
hanges. The model has exa
tlythe same Markov properties as the HMM, and its states are hidden in exa
tly the same way as inthe HMM.Histori
ally, the HMM and the Kalman �ltering methodology were developed in separate re-sear
h 
ommunities and their 
lose relationship has not always been widely appre
iated. This ispartly due to the fa
t that the general framework of graphi
al models 
ame later than the HMMand the Kalman �lter. Without the graphi
al framework, the algorithms underlying the inferen
e
al
ulation in the two 
ases look rather di�erent (as we will see). This is, however, simply a re-
e
tion of the di�eren
es between the multinomial distribution and the Gaussian distribution, andit is imperative that we not let these details{important as they may be in pra
ti
e{obs
ure thefundamental similarity between the two models.We will develop the inferen
e pro
edures for the SSM in some detail in this 
hapter. This is notonly to a
knowledge the histori
al importan
e of the Kalman �lter, but also to provide an additional
on
rete example of the solution of the inferen
e problem for a reasonably 
omplex graphi
al model.On
e we develop a general perspe
tive on graphi
al models in Chapter 15, we will return to theSSM and the HMM, not only to provide 
on
rete examples to ground our general theory, but also3
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Figure 15.1: The SSM as a graphi
al model. Ea
h verti
al sli
e represents a time step. The topnode in ea
h sli
e represents the state variable xt and the bottom node in ea
h sli
e represents theobservable output variable yt.to indi
ate that both are best viewed as jumping-o� points for a mu
h larger 
lass of models.15.1 The state spa
e modelAs we have already dis
ussed, the model underlying Kalman �ltering is a graphi
al model in theform of a 
hain (see Figure 15.1). We 
opy the two-node fa
tor analysis model as an array and welink su

essive state nodes.The independen
e relationships that 
hara
terize the SSM are identi
al to those that 
hara
-terize the HMM. In parti
ular, given the state at one moment in time, the states in the futureare 
onditionally independent of those in the past. Moreover, the observation of the output nodesfails to separate any of the state nodes, and in general we expe
t for there to be a probabilisti
relationship in the posterior distribution between all of the state nodes. As in the HMM, we hopethat we 
an 
al
ulate these relationships re
ursively.The state nodes in the fa
tor analysis model are 
ontinuous, ve
tor-valued nodes endowed witha Gaussian probability distribution. To develop a dynami
al generalization of the fa
tor analysismodel we must represent the transition between the nodes at su

essive moments in time. Perhapsthe simplest 
hoi
e that we 
an make is to allow the mean of the state at time t+ 1 to be a linearfun
tion of the state at time t. Thus we write:xt+1 = Axt +Gwt; (15.1)where wt is a \noise" term|a Gaussian random variable that is independent of ws for s < t, andthus independent of xt. We assume that wt has zero mean and 
ovarian
e matrix Q. Given thatthe sum of Gaussian variables is Gaussian, we have that xt+1 is indeed Gaussian. Conditional onxt, its mean is Axt and its 
ovarian
e is GQGT .In the fa
tor analysis model, the output is endowed with a Gaussian distribution having a mean



15.2. THE UNCONDITIONAL DISTRIBUTION 5that is a linear fun
tion of the state. We 
ontinue to use this model for the output of the SSM:yt = Cxt + vt; (15.2)where vt is a Gaussian random variable with zero mean and 
ovarian
e matrix R. Conditional onxt, yt is a Gaussian with mean Cxt and 
ovarian
e R.Finally we endow the initial state, x0, with a Gaussian distribution having mean 0 and 
ovarian
e�0. The assumption of zero mean is without loss of generality (a non-zero mean gives rise to adeterministi
 
omponent that 
an added to the probabilisti
 solution; see Exer
ise XXX for thedetails).15.2 The un
onditional distributionBefore beginning our investigation of the inferen
e problem for the SSM, it is of interest to studythe un
onditional distribution of the states xt.The un
onditional mean of xt is 
learly zero. This follows from the assumption that x0 has zeromean, and via the dynami
al equation (Eq. 15.1) ea
h su

essive state has zero mean.Turning to the un
onditional 
ovarian
e, whi
h we denote �t, we have:�t+1 , E[xt+1xTt+1℄ (15.3)= E[(Axt +Gwt)(Axt +Gwt)T ℄ (15.4)= AE[xtxTt ℄AT +GE[wtwTt ℄GT (15.5)= A�tAT +GQGT ; (15.6)where we have made use of our independen
e assumptions. This equation, a dynami
al equationfor the evolution of the un
onditional 
ovarian
e, is referred to as the Lyapunov equation.It 
an also be veri�ed that the un
onditional 
ovarian
e between neighboring states xt and xt+1is given by �tAT .15.3 Inferen
eThe inferen
e problem for the SSM is the same as it was for the HMM|that of 
al
ulating theposterior probability of the states given an output sequen
e. Based on our experien
e with theHMM, we hope to be able to 
al
ulate su
h posterior probabilities re
ursively.In the 
ase of the HMM, we were able to de
ompose the inferen
e problem into a \forward"problem and a \ba
kward" problem. In the forward problem the eviden
e 
onsisted of a partialsequen
e of outputs|all those outputs up to time t. The ba
kward problem also utilized a partialsequen
e|all those outputs after time t. We will �nd that this same de
omposition will yieldre
ursive algorithms for the SSM.As in the 
ase of the HMM we distinguish between \�ltering" and \smoothing"|two 
lasses ofproblem that arise in this graphi
al model when we introdu
e eviden
e. We develop algorithms forsolving both problems.



6 CHAPTER 15. KALMAN FILTERING AND SMOOTHING15.4 FilteringThe problem is to 
al
ulate an estimate of the state xt based on a partial output sequen
e y0; : : : ; yt.That is, we wish to 
al
ulate P (xtjy0; : : : ; yt).1Sums of Gaussian variables are Gaussian, and thus, 
onsidering all of the variables in the SSMjointly, we have a (large) multivariate Gaussian distribution. Conditionals of Gaussians are Gaus-sian (see Chapter 13) and thus the probability distribution P (xtjy0; : : : ; yt) must be Gaussian. Thisimplies that we need only 
al
ulate a mean ve
tor and a 
ovarian
e matrix (or the 
orresponding
anoni
al parameters). As we will see, inferen
e in the SSM involves �nding a re
ursion linkingthese 
onditional means and 
onditional 
ovarian
es at neighboring moments in time.We use a simpli�ed notation for the 
onditional means and 
onditional 
ovarian
es that em-phasizes the parti
ular output sequen
e being 
onditioned on. We write x̂tjt to denote the meanof xt 
onditioned on the partial sequen
e y0; : : : ; yt. The 
ovarian
e matrix of xt 
onditioned ony0; : : : ; yt is denoted Ptjt; thus:x̂tjt , E[xtjy0; : : : ; yt℄ (15.7)Ptjt , E[(xt � x̂tjt)(xt � x̂tjt)T jy0; : : : ; yt℄: (15.8)In our derivation of the algorithm, we will �nd that it is useful as an intermediate step to 
omputethe probability distribution of xt 
onditioned on y0; : : : ; yt�1. In our new notation, this distributionhas mean x̂tjt�1 and 
ovarian
e matrix Ptjt�1.To un
over the re
ursion behind the Kalman �lter, let us refer to the graphi
al model fragmentsin Figure 15.2. In the fragment on the left, where we 
ondition on the outputs y0; : : : ; yt, we assumethat we have already 
al
ulated P (xtjy0; : : : ; yt); that is, we have 
al
ulated x̂tjt and Ptjt. We wishto 
arry this distribution forward into the fragment on the right, where we 
ondition on y0; : : : ; yt�1.We de
ompose the transformation into two steps:time update: P (xtjy0; : : : ; yt) ! P (xt+1jy0; : : : ; yt)measurement update: P (xt+1jy0; : : : ; yt) ! P (xt+1jy0; : : : ; yt+1)Thus, in the time update step, we simply propagate the distribution forward one step in time,
al
ulating the new mean and 
ovarian
e based on the old mean and 
ovarian
e, but based on nonew measurements (i.e., no new outputs). In the measurement update step, we in
orporate thenew measurement yt+1 and update the probability distribution for xt+1. The overall result is atransformation from x̂tjt and Ptjt to x̂t+1jt+1 and Pt+1jt+1.Let us �rst 
onsider the time update step. Re
all the dynami
 equation (Eq. 15.1):xt+1 = Axt +Gwt: (15.9)1Note that this quantity is analogous to the normalized alpha variable from the HMM|the alpha variablesthemselves are joint probabilities: P (xt; y0; : : : ; yt). The alphas and normalized alphas di�er from ea
h other, however,only by the normalization 
onstant. In the Gaussian 
ase we represent probability distributions by storing only themean and 
ovarian
e matrix (or the 
orresponding 
anoni
al parameters); the normalization fa
tor is impli
it. Thusthere is no di�eren
e between \alphas" and \normalized alphas" in the SSM setting; all probabilities are impli
itlynormalized.



15.4. FILTERING 7
x xt

ty y

(a)

x xt

ty y

(b)

t+1 t+1

t+1t+1

Figure 15.2: (a) A fragment of an SSM before a measurement update and (b) after a measurementupdate.We take the 
onditional expe
tation on both sides of this equation. Given that wt is independentof the 
onditioning variables y0; : : : ; yt, the se
ond term vanishes, and we have:x̂t+1jt = Ax̂tjt: (15.10)Similarly, taking the 
onditional 
ovarian
e of both sides of the dynami
 equation, we have:Pt+1jt = E �(xt+1 � x̂t+1jt)(xt+1 � x̂t+1jt)T jy0; : : : ; yt� (15.11)= E �(Axt +Gwt �Ax̂tjt)(Axt +Gwt �Ax̂tjt)T jy0; : : : ; yt� (15.12)= APtjtAT +GQGT ; (15.13)where we have used the fa
ts that x̂t+1jt is a 
onstant in the 
onditional distribution, wt has zeromean, and wt and xt are independent.Now that we know the 
onditional distribution of xt+1 we pro
eed further in the graphi
almodel fragment and 
al
ulate the 
onditional mean and 
ovarian
e of yt+1, as well as the 
ondi-tional 
ovarian
e of xt+1 and yt+1. These 
al
ulations allow us to write down the joint 
onditionaldistribution of xt+1 and yt+1, at whi
h point the measurement update be
omes a simple matter of\reversing the arrow"|
al
ulating the 
onditional distribution of xt+1 given yt+1.The 
al
ulations are straightforward:E [yt+1jy0; : : : ; yt℄ = E [Cxt+1 + vt+1jy0; : : : ; yt℄ (15.14)= Cx̂t+1jt (15.15)E �(yt+1 � ŷt+1jt)(yt+1 � ŷt+1jt)T jy0; : : : ; yt�



8 CHAPTER 15. KALMAN FILTERING AND SMOOTHING= E �(Cxt+1 + vt+1 � Cx̂t+1jt)(Cxt+1 + vt+1 � Cx̂t+1jt)T jy0; : : : ; yt� (15.16)= CPt+1jtCT +R (15.17)and E �(yt+1 � ŷt+1jt)(xt+1 � x̂t+1jt)T jy0; : : : ; yt�= E �(Cxt+1 + vt+1 � ŷt+1jt)(xt+1 � x̂t+1jt)T jy0; : : : ; yt� (15.18)= CPt+1jt; (15.19)where we have made use of the various independen
e assumptions.We summarize these results as follows. Conditioned on the past outputs y0; : : : ; yt, the variablesxt+1 and yt+1 have a joint Gaussian distribution, with mean and 
ovarian
e matrix:� x̂t+1jtCx̂t+1jt � and � Pt+1jt Pt+1jtCTCPt+1jt CPt+1jtCT +R � (15.20)This leaves us in a situation whi
h is familiar to us from fa
tor analysis. Making referen
e toFigure 15.2(b), we have a Gaussian graphi
al model fragment in whi
h we wish to reverse thearrow; that is, we wish to 
ompute the 
onditional distribution of xt+1 given yt+1, where xt+1 andyt+1 have a joint Gaussian distribution. The only di�eren
e in the 
urrent situation is that thejoint distribution is itself a 
onditional distribution, 
onditioned on the past outputs y0; : : : ; yt.Utilizing Eq. 13.26 and 13.27 from Chapter 13, we obtain:x̂t+1jt+1 = x̂t+1jt + Pt+1jtCT (CPt+1jtCT +R)�1(yt+1 � Cx̂t+1jt) (15.21)Pt+1jt+1 = Pt+1jt � Pt+1jtCT (CPt+1jtCT +R)�1CPt+1jt: (15.22)We summarize the �ltering equations that we have obtained. At time t we assume that wehave available the mean estimate x̂tjt and the 
ovarian
e estimate Ptjt. Based on these estimateswe 
al
ulate x̂t+1jt+1 and Pt+1jt+1 re
ursively as follows:x̂t+1jt = Ax̂tjt (15.23)Pt+1jt = APtjtAT +GQGT (15.24)x̂t+1jt+1 = x̂t+1jt + Pt+1jtCT (CPt+1jtCT +R)�1(yt+1 � Cx̂t+1jt) (15.25)Pt+1jt+1 = Pt+1jt � Pt+1jtCT (CPt+1jtCT +R)�1CPt+1jt: (15.26)These re
ursions 
onstitute the Kalman �lter. They are initialized with x̂0j�1 = 0 and P0j�1 = P0.The update in Eq. 15.25 is often summarized in more a 
ompa
t form by de�ning the Kalmangain matrix : Kt+1 , Pt+1jtCT (CPt+1jtCT +R)�1: (15.27)Using this notation we have: x̂t+1jt+1 = x̂t+1jt +Kt+1(yt+1 � Cx̂t+1jt): (15.28)



15.5. INTERPRETATION AND RELATIONSHIP TO LMS 9Moreover, we 
an use the matrix inversion formulas to write the gain matrix in an alternative form.In parti
ular, using Eq. 13.17 and Eq. 13.18, we obtain:Kt+1 = Pt+1jtCT (CPt+1jtCT +R)�1 (15.29)= (P�1t+1jt + CTRC)�1CTR�1 (15.30)= (Pt+1jt + Pt+1jtCT (CPt+1jtCT +R)�1CPt+1jt)CTR�1 (15.31)= Pt+1jt+1CTR�1; (15.32)whi
h expresses the gain matrix in terms of the updated matrix Pt+1jt+1.15.5 Interpretation and relationship to LMSThe Kalman �ltering equations have an appealing interpretation as an error-
orre
ting algorithm.Let us write a single equation for the update of the mean by 
ombining Eq. 15.23 and Eq. 15.25:x̂t+1jt+1 = Ax̂tjt +Kt+1(yt+1 � CAx̂tjt): (15.33)Eq. 15.33 des
ribes an error-
orre
ting algorithm for estimating the state xt+1. In parti
ular, attime t, our best estimate of the state xt is x̂tjt. Imitating the dynami
al equation we produ
e anestimate Ax̂tjt of the state at time t+ 1. This estimate is then 
orre
ted based on the observationyt+1; in parti
ular, we adjust our estimate by a term (yt+1 � CAx̂tjt) that is proportional to theerror between the observed output and our predi
tion of the output.This error-
orre
tion pro
edure is reminis
ent of the LMS algorithm. To 
larify the relationship,
onsider a simpli�ed situation in whi
h the matrix A is the identity matrix and the noise term wtis zero. In this 
ase, the \dynami
al equation" xt+1 = xt +Gwt redu
es to the statement that the\state" is a 
onstant. Let � denote this 
onstant. Furthermore, let the matrix C in Eq. 15.2 berepla
ed by the (time-varying) ve
tor xTt (as in Se
tion XXX). In this 
ase, Eq. 15.2 redu
es to:yt = xTt � + vt: (15.34)We are ba
k in the world of linear regression, in whi
h the outputs yt are a sequen
e of iid obser-vations that provide information about the parameter ve
tor �. In this 
ase the Kalman �lteringequation be
omes: �̂t+1 = �̂t + Pt+1R�1(yt+1 � xTt �̂)xt; (15.35)where we have used the fa
t that R�1 is a s
alar and have dropped the unne
essary se
ond timesubs
ript on the P matrix.We have derived an equation whi
h, when 
ombined with the update for Pt+1, is referred toas the re
ursive least squares (RLS) algorithm. RLS is a spe
ial 
ase of the Kalman �lter and, assu
h, provides the optimal least-squares estimate of � based on data yt up to and in
luding time t.If we pro
eed further and approximate the matrix Pt+1R�1 with a s
alar multiplier �, Eq. 15.35redu
es to the LMS algorithm (Eq. 6.6). Thus LMS 
an be viewed as an approximation to theKalman �lter. We have gained in simpli
ity|no longer needing to 
arry forward a 
ovarian
e



10 CHAPTER 15. KALMAN FILTERING AND SMOOTHINGmatrix|but we have lost in a

ura
y. The LMS algorithm requires multiple passes through a dataset to 
onverge to the least-squares estimate of the parameter; the Kalman �lter 
onverges in asingle pass.Although this 
onne
tion between the Kalman �lter and the LMS algorithm is a interesting anduseful relationship to be aware of, the approximation of Pt+1R�1 by a s
alar multiplier re
eivesno parti
ular justi�
ation within the theory of Kalman �ltering. Rather it requires a di�erenttheoreti
al framework (that of sto
hasti
 approximation) for its justi�
ation.15.6 Information �lterRe
all that the multivariate Gaussian distribution 
an be des
ribed using either the moment pa-rameterization or the 
anoni
al parameterization. Our derivation of the Kalman �lter used themoment parameterization of the Gaussian, but it is also of interest to de�ne a �ltering algorithmin terms of the 
anoni
al parameterization. The result is an algorithm known as an information�lter.We 
an derive the information �lter either from �rst prin
iples or by transforming the equationsthat we have already obtained. We pursue the former approa
h in Chapter 18, where we re
onsiderthe SSM from the perspe
tive of the jun
tion tree framework. In the 
urrent se
tion we pursue thelatter approa
h. This is essentially an exer
ise in the use of the matrix inversion lemmas (Eq. 13.17and Eq. 13.18).Re
all from Chapter 13 that the 
anoni
al parameters of a Gaussian distribution 
an be obtainedfrom the moment parameters by the following transformation (
f. Eq. 13.5): � = ��1 and � =��1�. De�ne �̂tjt�1 and Stjt�1 to be the 
anoni
al parameters of the distribution of xt 
onditionedon y1;:::;t�1 and let �̂tjt and Stjt to be the 
anoni
al parameters of the distribution of xt 
onditionedon y1;:::;t. We obtain a set of re
ursions for these quantities by substituting from Eqs. 15.23 to15.26.Let us begin with the inverse 
ovarian
e matri
es. De�ningH , GQGT to simplify the notation,we have: St+1jt = P�1t+1jt (15.36)= (APtjtAT +H)�1 (15.37)= H�1 �H�1A(P�1tjt +ATH�1A)�1ATH�1 (15.38)= H�1 �H�1A(Stjt +ATH�1A)�1ATH�1: (15.39)A further appli
ation of the matrix inversion lemma yields:St+1jt+1 = P�1t+1jt+1 (15.40)= (Pt+1jt � Pt+1jtCT (CPt+1jtCT +R)�1CPt+1jt)�1 (15.41)= P�1t+1jt + CTR�1C (15.42)= St+1jt + CTR�1C: (15.43)



15.7. SMOOTHING 11Turning now to the � parameters, we have:�̂t+1jt = P�1t+1jtx̂t+1jt (15.44)= P�1t+1jtAx̂tjt (15.45)= P�1t+1jtAPtjt�̂tjt (15.46)= (APtjtAT +H)�1APtjt�̂tjt (15.47)= H�1A(P�1tjt +ATH�1A)�1�̂tjt (15.48)= H�1A(Stjt +ATH�1A)�1�̂tjt; (15.49)and �̂t+1jt+1 = P�1t+1jt+1x̂t+1jt+1 (15.50)= P�1t+1jt+1(x̂t+1jt + Pt+1jt+1CTR�1(yt+1 � Cx̂t+1jt)) (15.51)= (P�1t+1jt+1 � CTR�1C)P�1t+1jt�̂t+1jt + CTR�1yt+1 (15.52)= (P�1t+1jt + CTR�1C � CTR�1C)P�1t+1jt�̂t+1jt + CTR�1yt+1 (15.53)= �̂t+1jt +CTR�1yt+1: (15.54)We summarize the information �lter equations. At time t we assume that we have available �̂tjtand Stjt. Based on these estimates we 
al
ulate �̂t+1jt+1 and St+1jt+1 re
ursively as follows:�̂t+1jt = H�1A(Stjt +ATHA)�1�̂tjt (15.55)�̂t+1jt+1 = �̂t+1jt + CTR�1yt+1 (15.56)St+1jt = H�1 �H�1A(Stjt +ATH�1A)�1ATH�1 (15.57)St+1jt+1 = St+1jt + CTR�1C: (15.58)These re
ursions are initialized with �̂0j�1 = ��0 and S0j�1 = S0.The Kalman �lter and the information �lter are mathemati
ally equivalent; the major pra
ti
aldi�eren
e between them is essentially numeri
al. Re
all that the 
ondition number of a matrix isthe re
ipro
al of the 
ondition number of its inverse; this implies that poor 
onditioning for oneset of re
ursions generally implies good 
onditioning for the other set. A related issue 
on
erns theinitial 
onditions. If we are quite 
ertain about the initial state, then we would set P0 to zero, inwhi
h 
ase S0 is unde�ned and we would be for
ed to use the Kalman �lter. On the other hand, ifwe are quite un
ertain about the initial state, we would set S0, in whi
h 
ase P0 is unde�ned andwe would be for
ed to use the information �lter.15.7 SmoothingWe now turn to the issue of obtaining estimates of the state at time t based on data up to andin
luding a later time T . As in the 
ase of the HMM, the 
al
ulation of this state estimate requires
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Figure 15.3: (a) A fragment of an SSM in whi
h the observations up to and in
luding yt areavailable, and (b) the same fragment in whi
h observations yt+1 to yT are available.us to 
ombine a forward re
ursion with a ba
kward re
ursion. Furthermore, we on
e again have the
hoi
e between an algorithm that 
omputes ba
kward-�ltered estimates and 
ombines them withthe forward-�ltered estimates (an \alpha-beta algorithm"), or an algorithm that re
urses dire
tlyon the �ltered-and-smoothed estimates (an \alpha-gamma algorithm"). Both kinds of algorithmare available in the literature on state-spa
e models, but the latter approa
h appears to dominate(as opposed to the HMM literature, where the former approa
h dominates). In this se
tion webegin with the \alpha-gamma" approa
h, deriving the the \Rau
h-Tung-Striebel (RTS) smoothingalgorithm," and then turn to an alternative \alpha-beta" approa
h.15.7.1 The Rau
h-Tung-Striebel (RTS) smootherOur approa
h to deriving the RTS smoothing algorithm will on
e again be based on the graphi
almodel fragment shown in Figure 15.2, whi
h we reprodu
e in Figure 15.3. We begin by writingdown the joint distribution of xt and xt+1, 
onditional on y0; : : : ; yt. Re
all that x̂t+1jt = Ax̂tjt,whi
h implies: E[(xt � x̂tjt)(xt+1 � x̂t+1jt)T jy0; : : : ; yt℄ = PtjtAT : (15.59)Thus our distribution has the following mean and 
ovarian
e matrix:� x̂tjtx̂t+1jt � and � Ptjt PtjtATAPtjt Pt+1jt � ; (15.60)where all of the quantities are available to us after a forward Kalman �ltering pass.We now introdu
e a \ba
kwards" 
omputation. In parti
ular, we 
ondition on xt+1 and 
al-
ulate the probability of xt, still 
onditioning on y0; : : : ; yt. Using the by-now familiar Gaussian
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onditioning rule (Eq. 13.26), we obtain:E[xtjxt+1; y0; : : : ; yt℄ = x̂tjt + PtjtATP�1t+1jt(xt+1 � x̂t+1jt) (15.61)= x̂tjt + Lt(xt+1 � x̂t+1jt); (15.62)where we have introdu
ed the notation Lt , PtjtATP�1t+1jt, andVar[xtjxt+1; y0; : : : ; yt℄ = Ptjt � PtjtATP�1t+1jtAPtjt (15.63)= Ptjt � LtPt+1jtLTt : (15.64)The purpose of 
onditioning on xt+1 is to render xt independent of the future observations yt+1; : : : ; yT .That is, we 
an use 
onditional independen
e to write:E[xtjxt+1; y0; : : : ; yT ℄ = E[xtjxt+1; y0; : : : ; yt℄ (15.65)= x̂tjt + Lt(xt+1 � x̂t+1jt) (15.66)and Var[xtjxt+1; y0; : : : ; yT ℄ = Var[xtjxt+1; y0; : : : ; yt℄ (15.67)= Ptjt � LtPt+1jtLTt : (15.68)The quantities on the left-hand side of these equations are almost what we want; indeed, if we
ould drop xt+1 we would have the desired �ltered-and-smoothed quantities.The remainder of the derivation is an exer
ise in 
onditional expe
tation. Re
all from AppendixXXX the following fundamental fa
ts about 
onditional expe
tations:E[XjZ℄ = E[E[XjY;Z℄jZ℄ (15.69)and Var[XjZ℄ = Var[E[XjY;Z℄jZ℄ +E[Var[XjY;Z℄jZ℄ (15.70)whi
h show us how to 
ompute un
onditional expe
tations using 
onditional expe
tations. We willsubstitute xt for X, xt+1 for Y , and y0; : : : ; yT for Z in these equations.Beginning with Eq. 15.66, we take the 
onditional expe
tation on both sides, 
onditioning withrespe
t to y0; : : : ; yT : x̂tjT , E[xtjy0; : : : ; yT ℄ (15.71)= E[E[xtjxt+1; y0; : : : ; yT ℄jy0; : : : ; yT ℄ (15.72)= E[x̂tjt + Lt(xt+1 � x̂t+1jt)jy0; : : : ; yT ℄ (15.73)= x̂tjt + Lt(xt+1jT � x̂t+1jt); (15.74)where we have used the fa
t that all of the quantities in Eq. 15.74 other than xt+1 are 
onstantswhen we 
ondition on y0; : : : ; yT .



14 CHAPTER 15. KALMAN FILTERING AND SMOOTHINGEq. 15.74 is the basi
 update equation in the RTS smoothing algorithm. We see that a estimateof xt based on all of the data 
an be obtained by 
orre
ting the �ltered estimate x̂tjt by an errorterm 
omposed of a smoothed estimate of xT+1 and the �ltered estimate x̂t+1jt. The gain matrixLt is a quantity that depends only on matri
es 
omputed during the forward pass.We now work on the 
onditional varian
e equation (Eq. 15.68). Using Eq. 15.70, we have:PtjT , Var[xtjy0; : : : ; yT ℄ (15.75)= Var[E[xtjxt+1; y0; : : : ; yT ℄jy0; : : : ; yT ℄ +E[Var[xtjxt+1; y0; : : : ; yT ℄jy0; : : : ; yT ℄(15.76)= Var[x̂tjt + Lt(xt+1 � x̂t+1jt)jy0; : : : ; yT ℄ +E[Ptjt � LtPt+1jtLTt jy0; : : : ; yT ℄ (15.77)= LtVar[(xt+1 � x̂t+1jt)jy0; : : : ; yT ℄LTt + Ptjt � LtPt+1jtLTt (15.78)= LtVar[xt+1jy0; : : : ; yT ℄LTt + Ptjt � LtPt+1jtLTt (15.79)= LtPt+1jTLTt + Ptjt � LtPt+1jtLTt (15.80)= Ptjt + Lt(Pt+1jT � Pt+1jt)LTt ; (15.81)where at several jun
tures we have used the fa
t that expe
tations taken with respe
t to y0; : : : ; ytare 
onstant when 
onditioning with respe
t to the larger 
onditioning set y0; : : : ; yT .We summarize the RTS smoothing algorithm. Based on the quantities x̂t+1jt, Ptjt and P�1t+1jtfrom the �ltering algorithm, we 
ompute:x̂tjT = x̂tjt + Lt(xt+1jT � x̂t+1jt); (15.82)PtjT = Ptjt + Lt(Pt+1jT � Pt+1jt)JTt ; (15.83)where Lt , PtjtATP�1t+1jt. The algorithm is initialized by using x̂T jT and PT jT from the �lteringpass.15.7.2 The two-�lter smootherIn this se
tion we des
ribe an alternative approa
h to smoothing in the SSM whi
h is the analogof the alpha-beta algorithm for the HMM. In this approa
h, known as the \two-�lter algorithm,"the idea is to 
ombine the \forward" 
onditional probability P (xtjy0; : : : ; yt) with the \ba
kward"
onditional probability P (xtjyt+1; : : : ; yT ). Note that the latter quantity, like the former quantity,is a \�ltered estimate"; that is, a 
onditional probability of the state given a (partial) outputsequen
e. This di�ers from the traditional beta variable in the HMM, whi
h is the 
onditionalprobability of the output sequen
e given the state. Clearly we 
an move from one to the other,however, by multiplying or dividing by the un
onditional probability of the state, P (xt), whi
h isavailable via the Lyapunov equation. Thus, the di�eren
e is minor and it is appropriate to thinkof the two-�lter algorithm as the analog of the alpha-beta algorithm.Given that we want �ltered estimates in the ba
kward dire
tion, a simple approa
h to derivingthe ba
kward algorithm is to \invert the dynami
s" and apply a forward �ltering algorithm to theinverted dynami
s. In graphi
al model terms, we invert the arrows in the graph. This is in itself auseful exer
ise.
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Figure 15.4: (a) A fragment of an SSM with no observations.In this se
tion we assume that the matrix A is invertible and make use of A�1 in our derivationof the algorithm. In fa
t this assumption is not ne
essary, and a lookahead at the algorithm thatwe derive shows that A�1 does not appear. (In Chapter 18 we present an alternative derivation ofthe algorithm from the point of view of the jun
tion tree algorithm, and in that derivation we donot make use of A�1).The naive approa
h to inverting the dynami
al equation is to simply write:xt = A�1xt+1 �A�1Gwt; (15.84)and let t run ba
kwards in time. This approa
h is not viable, however, be
ause wt is not independentof the \past" values of the state; i.e., xt+1; : : : ; xT . Indeed, these states are all a fun
tion of wt.Thus one of the assumptions that we used in deriving the Kalman �lter is not valid and we 
annotsimply apply the Kalman �lter to Eq. 15.84.To obtain a more useful inverse of the dynami
s, 
onsider the graphi
al model fragment shown inFigure 15.4. The forward dynami
s yields a joint probability distribution on (xt; xt+1) 
hara
terizedby the Lyapunov equation �t+1 = A�tAT +GQGT . Indeed the 
ovarian
e matrix of (xt; xt+1) isgiven by: � �t �tATA�t A�tAT +GQGT � (15.85)We 
an invert the relationship between xt and xt+1 by solving for �t in terms of �t+1 and rewritingthe 
ovarian
e matrix in terms of �t+1. Thus:�t = A�1�t+1A�T �A�1GQGTA�T ; (15.86)where we assume that A is invertible.2 This equation also implies:A�t = �t+1A�T �GQGTA�T ; (15.87)2In fa
t this assumption is not ne
essary, see Exer
ise XXX.



16 CHAPTER 15. KALMAN FILTERING AND SMOOTHINGand we 
an rewrite the 
ovarian
e matrix as follows:� A�1�t+1A�T �A�1GQGTA�T A�1�t+1 �A�1GQGT�t+1A�T �GQGTA�T �t+1 � (15.88)Noting that the upper-right-hand 
orner of this matrix 
an be written as A�1(I�A�1GQGT��1t+1)�t+1,we see that if we de�ne: ~A = A�1(I �A�1GQGT��1t+1) (15.89)then we obtain ~A�t+1 and �t+1 ~AT in the 
orners of the matrix, and the matrix begins to take theform of a forward 
ovarian
e matrix. This suggests that we de�ne the inverse dynami
s via:xt = ~Axt+1 + ~G ~wt+1; (15.90)with ~G and ~wt 
hosen appropriately so as to mat
h the forward dynami
s (Eq. 15.1). Indeed,
hoosing ~G = �A�1G (15.91)~wt+1 = wt �QGT��1t+1xt+1 (15.92)Eq. 15.90 mat
hes Eq. 15.1. Moreover, we have:~Q , E[ ~wt+1 ~wTt+1℄ = Q�QGT��1t+1GQ; (15.93)and substituting Eqs. 15.89, 15.92 and 15.93 in the ba
kward Lyapunov equation:�t = ~A�t+1 ~AT + ~G ~Q ~GT (15.94)we re
over the forward Lyapunov equation.Finally, it 
an also be veri�ed (see Exer
ise XXX) that ~wt+1 is independent of the \past" valuesof the state xt+1; : : : ; xT .We have therefore su

eeded in obtaining a version of the inverse dynami
s to whi
h standard�ltering algorithms 
an be applied. If we use the 
anoni
al parameterization (i.e., the information�lter in Eqs. 15.39, 15.43, 15.49, and 15.54), utilizing the inverse dynami
al equation and notingthat the output equation yt = Cxt + vt has not 
hanged, we obtain:Stjt+1 = ATHA+��1t �ATH�1(St+1jt+1 +H�1 � ��1t+1)�1H�1A (15.95)Stjt = Stjt+1 + CTR�1C (15.96)�̂tjt+1 = ATH�1(St+1jt+1 +H�1 � ��1t+1)�1�̂t+1jt+1 (15.97)�̂tjt = �̂tjt+1 + CTR�1yt; (15.98)where t and t+1 have been inter
hanged to re
e
t the fa
t that we are �ltering ba
kward in time.This �lter 
al
ulates the 
anoni
al representation of P (xtjyt+1; : : : ; yT ). Thus, 
onverting to themoment representation, we have x̂tjt+1 = S�1tjt+1�̂tjt+1 and Ptjt+1 = S�1tjt+1.



15.7. SMOOTHING 17The �nal issue that we must address involves the fusing of the probability distributionsP (xtjy0; : : : ; yt)and P (xtjyt+1; : : : ; yT ) to obtain the posterior probability P (xtjy0; : : : ; yT ). This problem is notunique to the �ltering and smoothing domain, but arises in many other settings as well. It is there-fore worth posing and solving the problem in full generality; this we do in the following se
tion.Anti
ipating the result, we have the following fusion rule for x̂tjT , the estimate of xt based on allof the data: x̂tjT = PtjT (P�1tjt x̂tjt + P�1tjt+1x̂tjt+1); (15.99)where the 
ovarian
e matrix PtjT is 
omputed as follows:PtjT = �P�1tjt + P�1tjt+1 � ��1t ��1 : (15.100)The appearan
e of ��1t in the latter equation should not be a surprise. The �ltering pro
ess andthe smoothing pro
ess both make use of the prior statisti
s on xt; in the latter 
ase this is be
ausewe have inverted the dynami
s. When the 
ovarian
e matri
es of these two pro
esses are 
ombinedwe have in
luded the prior 
ovarian
e twi
e. To avoid double-
ounting ��1t must be subtra
ted inthe 
ombination rule.15.7.3 Fusion of Gaussian posterior probabilitiesLet us 
onsider three sets of random variables: x, z1 and z2. Suppose that these variables are
hara
terized by a multivariate Gaussian distribution and suppose moreover that z1 and z2 are
onditionally independent given x. We wish to fuse the posteriors P (xjz1) and P (xjz2) into anoverall posterior P (xjz1; z2).Let us assume, without loss of generality, that x; z1, and z2 have zero means. Non-zero means
an be subtra
ted away and added ba
k at the end of the analysis.Under the 
onditional independen
e assumption, there are three ways to represent the distri-bution of x; z1, and z2 as a dire
ted graphi
al model. The representation given in Figure 15.5(a) isparti
ularly useful for our purposes. To parameterize the graph, we require the marginal P (x), and
onditionals P (z1jx) and P (z2jx). For the marginal, we endow x with a zero mean and 
ovarian
e�. For the 
onditionals, re
all that Gaussian 
onditionals are linear fun
tions of the 
onditioningvariable (
f. Eq. refeq:Gaussian-
onditional-mean). Thus we 
an write:z1 = M1x+ v1 (15.101)z2 = M2x+ v2; (15.102)for appropriately 
hosen matri
es M1 and M2 and zero-mean Gaussian variables v1 and v2 having
ovarian
e matri
es R1 and R2. Note moreover that v1 and v2 are independent of x and are
onditionally independent of ea
h other given x.Let us now 
onsider a generi
 linear equation z =Mx+ v, where v is independent of x and has
ovarian
e R. To 
al
ulate the 
onditional expe
tation of x given z we �rst obtain the 
ovarian
ematrix of the pair (x; z): � � �MTM� M�MT +R � : (15.103)
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(a) (b)Figure 15.5: A graphi
al model representation of the fusion problem. (a) The observables z1and z2 are assumed 
onditionally independent given x. The 
onditional probabilities of zi areparameterized as linear fun
tions of x with additive, independent noise terms. (b) Conjoining z1and z2 into a single observable ve
tor z.We then apply the usual Gaussian 
onditioning formulas (Eqs. 13.26 and 13.27) to obtain the
onditional distribution of x given z. Denoting the mean of this 
onditional distribution as x̂ andthe 
ovarian
e as P , we have:x̂ = �MT �M�MT +R��1 z (15.104)= �MTR�1M +��1��1MTR�1z; (15.105)where we have used a matrix inversion identity (Eq. 13.18) in the se
ond step, and:P = �� �MT �M�MT +R��1M� (15.106)= ���1 +MTR�1M��1 ; (15.107)where again we use a matrix inversion identity (Eq. 13.17) to simplify the result.The individual 
onditionals of x given z1 and z2 are spe
ial 
ases of the foregoing equations.De�ning x̂i , E(xjzi) and letting Pi denote the 
orresponding 
onditional 
ovarian
e, we have:x̂1 = �MT1 R�11 M1 +��1��1MT1 R�11 z1 (15.108)x̂2 = �MT2 R�12 M2 +��1��1MT2 R�12 z2; (15.109)and P1 = �MT1 R�11 M1 +��1��1 (15.110)P2 = �MT2 R�12 M2 +��1��1 : (15.111)



15.8. PARAMETER ESTIMATION 19Now let us 
onsider the overall posterior of x given both z1 and z2. Grouping z1 and z2 into asingle variable z (
f. Figure 15.5(b)), we 
an apply Eqs. 15.105 and 15.107 where:M , � M1M2 � and R , � R1 00 R2 � : (15.112)From these de�nitions we obtain:x̂ = �� MT1 MT2 � � R�11 00 R�12 � � M1M2 �+��1��1 � MT1 MT2 � � R�11 00 R�12 � � z1z2 �= �MT1 R�11 M1 +MT2 R�12 M2 +��1��1 (MT1 R�11 z1 +MT2 R�12 z2) (15.113)= �P�11 + P�12 � ��1��1 (P�11 x̂1 + P�12 x̂2) (15.114)We 
an similarly expand Eq. 15.107 to obtain the overall 
onditional 
ovarian
e P :P = �P�11 + P�12 � ��1��1 ; (15.115)thus allowing us to rewrite Eq. 15.114 as:x̂ = P (P�11 x̂1 + P�12 x̂2): (15.116)Eqs. 15.116 and 15.115 are our general solution to the Gaussian fusion problem.Let us relate these results ba
k to the two-�lter smoothing problem. We 
olle
t the observationsup to and in
luding time t into a single \past" ve
tor z1 , (y0; : : : ; yt), and 
olle
t the \future"observations into a single ve
tor z2 , (yt+1; : : : ; yT ). Let x , xt. These de�nitions �t the problemspe
i�
ation of the 
urrent se
tion; in parti
ular (x; z1; z2) are 
hara
terized by a multivariateGaussian distribution (a marginal of the larger Gaussian distribution that in
ludes the other statevariables), and moreover z1 and z2 are independent given x. The estimate x̂tjt is the 
onditionalexpe
tation of x given z1, and must therefore have the form in Eq. 15.109, for matri
es M1 andR1 that we do not bother to 
al
ulate. Similarly x̂tjt+1 must be of the form in Eq. 15.109, and the
onditional 
ovarian
es Ptjt and Ptjt+1 must have the form of Eqs. 15.111 and 15.111. Substitutinginto Eqs. 15.116 and 15.115 we obtain the fusion rules at the end of the previous se
tion (Eqs. 15.99and 15.100).15.8 Parameter estimationWe follow the by now familiar re
ipe for developing an EM algorithm for parameter estimationfor the SSM. We write out the expe
ted 
omplete log likelihood, identify the expe
ted suÆ
ientstatisti
s, solve for maximum likelihood estimates in terms of these expe
ted suÆ
ient statisti
s.This latter problem is simply linear regression.[Se
tion not yet �nished℄.15.9 Histori
al remarks and bibliography


