An Introduction to Probabilistic Graphical Models

Michael I. Jordan
Unwversity of California, Berkeley

June 30, 2003






Chapter 15

Kalman filtering and smoothing

Thus far we have presented two major categories of latent variable models: mizture models, which
are based on a discrete latent variable, and factor analysis models, which are based on a continuous
latent variable. The graphs underlying these models are identical—two-node graphs in which a
single latent variable is connected to a single observable variable.

Chapter 12 presented a dynamical generalization of mixture models—the hidden Markov model
(HMM). Graphically, the HMM was obtained by copying the two-node mixture model as a spatial
array, connecting successive state nodes in the array. It is natural to wonder if a similar gener-
alization of factor analysis might be worth considering. In fact the dynamical generalization of
factor analysis is well worth considering—it yields an interesting and important methodology for
time series analysis known as the Kalman filter. In fact, in an attempt to develop a consistent
terminology, we reserve the term “Kalman filter” for the recursive inference algorithm that is the
analog of the “alpha” algorithm in the HMM setting. The underlying model, which we refer to as
the “state space model (SSM),” is structurally identical to the HMM; only the type of the nodes
(real-valued vectors) and the probability model (linear-Gaussian) changes. The model has exactly
the same Markov properties as the HMM, and its states are hidden in exactly the same way as in
the HMM.

Historically, the HMM and the Kalman filtering methodology were developed in separate re-
search communities and their close relationship has not always been widely appreciated. This is
partly due to the fact that the general framework of graphical models came later than the HMM
and the Kalman filter. Without the graphical framework, the algorithms underlying the inference
calculation in the two cases look rather different (as we will see). This is, however, simply a re-
flection of the differences between the multinomial distribution and the Gaussian distribution, and
it is imperative that we not let these details-important as they may be in practice—obscure the
fundamental similarity between the two models.

We will develop the inference procedures for the SSM in some detail in this chapter. This is not
only to acknowledge the historical importance of the Kalman filter, but also to provide an additional
concrete example of the solution of the inference problem for a reasonably complex graphical model.
Once we develop a general perspective on graphical models in Chapter 15, we will return to the
SSM and the HMM, not only to provide concrete examples to ground our general theory, but also
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Figure 15.1: The SSM as a graphical model. Each vertical slice represents a time step. The top
node in each slice represents the state variable z; and the bottom node in each slice represents the
observable output variable y;.

to indicate that both are best viewed as jumping-off points for a much larger class of models.

15.1 The state space model

As we have already discussed, the model underlying Kalman filtering is a graphical model in the
form of a chain (see Figure 15.1). We copy the two-node factor analysis model as an array and we
link successive state nodes.

The independence relationships that characterize the SSM are identical to those that charac-
terize the HMM. In particular, given the state at one moment in time, the states in the future
are conditionally independent of those in the past. Moreover, the observation of the output nodes
fails to separate any of the state nodes, and in general we expect for there to be a probabilistic
relationship in the posterior distribution between all of the state nodes. As in the HMM, we hope
that we can calculate these relationships recursively.

The state nodes in the factor analysis model are continuous, vector-valued nodes endowed with
a Gaussian probability distribution. To develop a dynamical generalization of the factor analysis
model we must represent the transition between the nodes at successive moments in time. Perhaps
the simplest choice that we can make is to allow the mean of the state at time ¢ + 1 to be a linear
function of the state at time ¢. Thus we write:

Ti+1 = A.’L‘t + th, (151)

where w; is a “noise” term—a Gaussian random variable that is independent of w, for s < ¢, and
thus independent of z;. We assume that w; has zero mean and covariance matrix ). Given that
the sum of Gaussian variables is Gaussian, we have that z;,; is indeed Gaussian. Conditional on
x4, its mean is Az; and its covariance is GQG?.

In the factor analysis model, the output is endowed with a Gaussian distribution having a mean
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that is a linear function of the state. We continue to use this model for the output of the SSM:
Yt = C.’L‘t + Ut, (152)

where v; is a Gaussian random variable with zero mean and covariance matrix R. Conditional on
Ty, yp is a Gaussian with mean C'z; and covariance R.

Finally we endow the initial state, xp, with a Gaussian distribution having mean 0 and covariance
Y. The assumption of zero mean is without loss of generality (a non-zero mean gives rise to a
deterministic component that can added to the probabilistic solution; see Exercise XXX for the
details).

15.2 The unconditional distribution

Before beginning our investigation of the inference problem for the SSM, it is of interest to study
the unconditional distribution of the states z;.

The unconditional mean of x; is clearly zero. This follows from the assumption that x( has zero
mean, and via the dynamical equation (Eq. 15.1) each successive state has zero mean.

Turning to the unconditional covariance, which we denote X;, we have:

i1 £ Elmaai]

E[(Az + Guwy) (Azy + Guy)T]
AE[zxl AT + GElww] |G
= A AT + GQGT,

where we have made use of our independence assumptions. This equation, a dynamical equation
for the evolution of the unconditional covariance, is referred to as the Lyapunov equation.

It can also be verified that the unconditional covariance between neighboring states x; and x4y
is given by 3, AT,

15.3 Inference

The inference problem for the SSM is the same as it was for the HMM—that of calculating the
posterior probability of the states given an output sequence. Based on our experience with the
HMM, we hope to be able to calculate such posterior probabilities recursively.

In the case of the HMM, we were able to decompose the inference problem into a “forward”
problem and a “backward” problem. In the forward problem the evidence consisted of a partial
sequence of outputs—all those outputs up to time ¢. The backward problem also utilized a partial
sequence—all those outputs after time ¢t. We will find that this same decomposition will yield
recursive algorithms for the SSM.

As in the case of the HMM we distinguish between “filtering” and “smoothing” —two classes of
problem that arise in this graphical model when we introduce evidence. We develop algorithms for
solving both problems.
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15.4 Filtering

The problem is to calculate an estimate of the state z; based on a partial output sequence vy, . . ., y¢.
That is, we wish to calculate P(z¢|yo,...,y:)."

Sums of Gaussian variables are Gaussian, and thus, considering all of the variables in the SSM
jointly, we have a (large) multivariate Gaussian distribution. Conditionals of Gaussians are Gaus-
sian (see Chapter 13) and thus the probability distribution P(z¢|yo, .. .,y;) must be Gaussian. This
implies that we need only calculate a mean vector and a covariance matrix (or the corresponding
canonical parameters). As we will see, inference in the SSM involves finding a recursion linking
these conditional means and conditional covariances at neighboring moments in time.

We use a simplified notation for the conditional means and conditional covariances that em-
phasizes the particular output sequence being conditioned on. We write Z;; to denote the mean
of x; conditioned on the partial sequence yy,...,y;. The covariance matrix of x; conditioned on
Y0, -- -, Yt 1s denoted Py;; thus:

Zge £ Elzdyo, - (15.7)
Pt|t = El(z — i't\t)(xt - «'i“t\t)T|y0a e Yt (15.8)

In our derivation of the algorithm, we will find that it is useful as an intermediate step to compute
the probability distribution of z; conditioned on yg, ..., y;—1. In our new notation, this distribution
has mean Z;;_; and covariance matrix Fy;_;.

To uncover the recursion behind the Kalman filter, let us refer to the graphical model fragments
in Figure 15.2. In the fragment on the left, where we condition on the outputs vy, ..., y;, we assume
that we have already calculated P(x¢|yo, - .. ,y:); that is, we have calculated Z;; and Py;. We wish
to carry this distribution forward into the fragment on the right, where we condition on yg, ...,y 1.
We decompose the transformation into two steps:

time update: P(zt|yo, - - -, yt) = P(is1lyo,-- -, yt)
measurement update: P(z11|vo,.-.,yt) = P(xir1]yo, - Yes1)

Thus, in the time update step, we simply propagate the distribution forward one step in time,
calculating the new mean and covariance based on the old mean and covariance, but based on no
new measurements (i.e., no new outputs). In the measurement update step, we incorporate the
new measurement y;1 and update the probability distribution for x;,;. The overall result is a
transformation from Z;; and Py to ;11141 and Pyyqjeq1-

Let us first consider the time update step. Recall the dynamic equation (Eq. 15.1):

Ti+1 = A.’L‘t + th. (159)

'Note that this quantity is analogous to the normalized alpha variable from the HMM-—the alpha variables
themselves are joint probabilities: P(z¢, yo,...,y:). The alphas and normalized alphas differ from each other, however,
only by the normalization constant. In the Gaussian case we represent probability distributions by storing only the
mean and covariance matrix (or the corresponding canonical parameters); the normalization factor is implicit. Thus
there is no difference between “alphas” and “normalized alphas” in the SSM setting; all probabilities are implicitly
normalized.
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Figure 15.2: (a) A fragment of an SSM before a measurement update and (b) after a measurement
update.

We take the conditional expectation on both sides of this equation. Given that w; is independent
of the conditioning variables yo, ..., y;, the second term vanishes, and we have:

it+1|t — Aiﬂt' (1510)

Similarly, taking the conditional covariance of both sides of the dynamic equation, we have:

Pryp = B [(@es1 = Tpqa)e) (Tr1 — @t+1|t)T|yo, - (15.11)
= E [(Az + Gy — Adiyy) (Azy + Gy — Adyy) |yo, - - e (15.12)
= AP AT + GQGT, (15.13)

where we have used the facts that #;,; is a constant in the conditional distribution, w; has zero
mean, and w; and z; are independent.

Now that we know the conditional distribution of zy;; we proceed further in the graphical
model fragment and calculate the conditional mean and covariance of y.1, as well as the condi-
tional covariance of x¢+1 and y;41. These calculations allow us to write down the joint conditional
distribution of z;,; and y;;1, at which point the measurement update becomes a simple matter of
“reversing the arrow” —calculating the conditional distribution of z;11 given y;y1.

The calculations are straightforward:

Elyii1lyo, .-yl = E[Czev1 +oe1lyo, -yt (15.14)
= Ciypyy (15.15)

E [(yt+1 - Qt+1|t)(yt+1 - @t+1|t)T|y0a e ,yt]
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= E[(Czii1+ v — Chpyrp) (Cagr + vig1 — Cepap) |yo, - - 5 1] (15.16)
= CPy1,CT +R (15.17)
and
E [(ye41 — Gerrpe) (@1 — Zeerp)” [Wos - - e
= E[(Czrr1+ v — Do) @ern — Bepne) yo, - - 4] (15.18)
= CPy, (15.19)

where we have made use of the various independence assumptions.
We summarize these results as follows. Conditioned on the past outputs yo, . . ., ys, the variables
21 and yep1 have a joint Gaussian distribution, with mean and covariance matrix:

" T
Ty ] and [ Py Py C 15.20
[ Cypyye CPy CPyyCT + R ( )

This leaves us in a situation which is familiar to us from factor analysis. Making reference to

Figure 15.2(b), we have a Gaussian graphical model fragment in which we wish to reverse the

arrow; that is, we wish to compute the conditional distribution of x;; given yy;1, where 21 and

yr+1 have a joint Gaussian distribution. The only difference in the current situation is that the

joint distribution is itself a conditional distribution, conditioned on the past outputs g, ..., ys.
Utilizing Eq. 13.26 and 13.27 from Chapter 13, we obtain:

Eripnr = B+ PoapCT (CPiyyCT + R)  yer — Cliyraye) (15.21)
Pt—|—1|t+1 - Pt+1|t - Pt_l_l‘tCT(CPH_”tCT + R)_ICPH_”t. (1522)
We summarize the filtering equations that we have obtained. At time ¢ we assume that we

have available the mean estimate Z;; and the covariance estimate Py;. Based on these estimates
we calculate Z;11);11 and Py yq)441 recursively as follows:

iat«#].‘t — Aé\;ﬂt (1523)
Py = APyAT +GQGT (15.24)
Epprr = Zpap + PrpCt (CPyaC" + R) ™ i1 — Cigge) (15.25)
Pt+1|t+]. — Pt+].|t - Pt+]_‘tCT(CPt+1|tCT + R)710Pt+1|t' (1526)

These recursions constitute the Kalman filter. They are initialized with Zo_; = 0 and Py, = F.
The update in Eq. 15.25 is often summarized in more a compact form by defining the Kalman

gain matriz:
K1 2 Py G (CPyCF + R)TH (15.27)

Using this notation we have:

Top1)er1 = Toprpe + K1 (Y1 — CZyyapr)- (15.28)
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Moreover, we can use the matrix inversion formulas to write the gain matrix in an alternative form.
In particular, using Eq. 13.17 and Eq. 13.18, we obtain:

Kip1 = PoyCT(CPyCT + R)! 15.29
= (P}, +C"RO)TICTRT 15.30

(Pt + Py C" (CPyyC" + R)'CPyy ) CTR™!
= Pt+1|t+1CTR717

15.31

(
(
(
(15.32

)
)
)
)
which expresses the gain matrix in terms of the updated matrix Py ;1.

15.5 Interpretation and relationship to LMS

The Kalman filtering equations have an appealing interpretation as an error-correcting algorithm.
Let us write a single equation for the update of the mean by combining Eq. 15.23 and Eq. 15.25:

Tpprjer = ALy + Kipr (yep1 — CAZyy). (15.33)

Eq. 15.33 describes an error-correcting algorithm for estimating the state z;y;. In particular, at
time ¢, our best estimate of the state z; is Zy;. Imitating the dynamical equation we produce an
estimate AZy; of the state at time ¢ + 1. This estimate is then corrected based on the observation
Yt+1; in particular, we adjust our estimate by a term (y;11 — CAfy;) that is proportional to the
error between the observed output and our prediction of the output.

This error-correction procedure is reminiscent of the LMS algorithm. To clarify the relationship,
consider a simplified situation in which the matrix A is the identity matrix and the noise term w;
is zero. In this case, the “dynamical equation” z;y; = xy + Gw; reduces to the statement that the
“state” is a constant. Let 6 denote this constant. Furthermore, let the matrix C in Eq. 15.2 be
replaced by the (time-varying) vector z] (as in Section XXX). In this case, Eq. 15.2 reduces to:

ye = x1 0 + vy (15.34)

We are back in the world of linear regression, in which the outputs y; are a sequence of iid obser-
vations that provide information about the parameter vector 8. In this case the Kalman filtering
equation becomes:

ét-i—l = ét + Pt+1R_1(yt+1 - I{é)xt, (15.35)

where we have used the fact that R~! is a scalar and have dropped the unnecessary second time
subscript on the P matrix.

We have derived an equation which, when combined with the update for P, is referred to
as the recursive least squares (RLS) algorithm. RLS is a special case of the Kalman filter and, as
such, provides the optimal least-squares estimate of § based on data y; up to and including time .

If we proceed further and approximate the matrix P, R~ with a scalar multiplier 4, Eq. 15.35
reduces to the LMS algorithm (Eq. 6.6). Thus LMS can be viewed as an approximation to the
Kalman filter. We have gained in simplicity—no longer needing to carry forward a covariance
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matrix—but we have lost in accuracy. The LMS algorithm requires multiple passes through a data
set to converge to the least-squares estimate of the parameter; the Kalman filter converges in a
single pass.

Although this connection between the Kalman filter and the LMS algorithm is a interesting and
useful relationship to be aware of, the approximation of P,y ;R ' by a scalar multiplier receives
no particular justification within the theory of Kalman filtering. Rather it requires a different
theoretical framework (that of stochastic approximation) for its justification.

15.6 Information filter

Recall that the multivariate Gaussian distribution can be described using either the moment pa-
rameterization or the canonical parameterization. Our derivation of the Kalman filter used the
moment parameterization of the Gaussian, but it is also of interest to define a filtering algorithm
in terms of the canonical parameterization. The result is an algorithm known as an information
filter.

We can derive the information filter either from first principles or by transforming the equations
that we have already obtained. We pursue the former approach in Chapter 18, where we reconsider
the SSM from the perspective of the junction tree framework. In the current section we pursue the
latter approach. This is essentially an exercise in the use of the matrix inversion lemmas (Eq. 13.17
and Eq. 13.18).

Recall from Chapter 13 that the canonical parameters of a Gaussian distribution can be obtained
from the moment parameters by the following transformation (cf. Eq. 13.5): A = X! and ¢ =
Y~ 1. Define ét‘t,l and Sy;—1 to be the canonical parameters of the distribution of z; conditioned
on yi,. 1 and let ét‘t and St|t to be the canonical parameters of the distribution of z; conditioned
on yi,. ¢+ We obtain a set of recursions for these quantities by substituting from Eqgs. 15.23 to
15.26.

Let us begin with the inverse covariance matrices. Defining H £ GQG” to simplify the notation,
we have:

Ste1je = Pt_+11\t
= (AP A"+ H)™!

= H™' - H AP+ ATHT AT ATHT

= H'-H'ASy +ATH *A) 'ATH .

15.36

15.37
15.38

(
(
(
(15.39

)
)
)
)

A further application of the matrix inversion lemma yields:

15.40

15.41
15.42

15.43

_ p-1
Sttije+1 = Pite

= (Pe1je = Pry1pCT (CPypCT + R) 1O Pyypy)
_ p-l Tp-1
= S+ C'RTIC

e N N
~— O~ ~—  ~—
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Turning now to the ¢ parameters, we have:

£t+1\t = Pt;l\tzt+1|t (15.44)
= P7Aby, (15.45)
- t+1\tAPt|t§t\t (15.46)
= (APt|tAT + H)_IAPt|t§At|t (15.47)
= H'A(p,}! + ATHT ATy, (15.48)
= H'A(Sy + ATH' ATy, (15.49)
and
ét+1|t+1 = Pt§_11|t+1=’i‘t+1\t+1 (15.50)
= Pt111|t+1(@t+1lt + Pt+1|t+1CTRfl(yt+1 = Ciyyqy)) (15.51)
= (Pt+11\t+1 CTRflC)Ptjrll‘téH”t +CTR 1ty (15.52)
= (P +11\t +CTR'C - CTRflc)Ptjl'téHw +CTR Yy, (15.53)
= &+ CTR My (15.54)

We summarize the information filter equations. At time ¢ we assume that we have available ét‘t

and Sy;. Based on these estimates we calculate £t+1\t+1 and Sy 1341 recursively as follows:
15.55
15.56

15.57
15.58

£t+1\t = HﬁlA(Sﬂt'i‘ATHA)iléﬂt

§eriprr = G+ C R 'y
Sppip = H '—H 'AS, +ATH 'A) 'ATH !

)
)
)
Sprierr = St+1|t+CTR710- )

(
(
(
(

These recursions are initialized with éo|,1 = ¢y and So-1 = So-

The Kalman filter and the information filter are mathematically equivalent; the major practical
difference between them is essentially numerical. Recall that the condition number of a matrix is
the reciprocal of the condition number of its inverse; this implies that poor conditioning for one
set of recursions generally implies good conditioning for the other set. A related issue concerns the
initial conditions. If we are quite certain about the initial state, then we would set Py to zero, in
which case Sy is undefined and we would be forced to use the Kalman filter. On the other hand, if
we are quite uncertain about the initial state, we would set Sp, in which case Fj is undefined and
we would be forced to use the information filter.

15.7 Smoothing

We now turn to the issue of obtaining estimates of the state at time ¢ based on data up to and
including a later time 7. As in the case of the HMM, the calculation of this state estimate requires
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Xt X+ 1 X Xi+ 1

yt yt+ 1 yt yt+ 1
(a) (b)

Figure 15.3: (a) A fragment of an SSM in which the observations up to and including y; are
available, and (b) the same fragment in which observations y;;1 to yr are available.

us to combine a forward recursion with a backward recursion. Furthermore, we once again have the
choice between an algorithm that computes backward-filtered estimates and combines them with
the forward-filtered estimates (an “alpha-beta algorithm”), or an algorithm that recurses directly
on the filtered-and-smoothed estimates (an “alpha-gamma algorithm”). Both kinds of algorithm
are available in the literature on state-space models, but the latter approach appears to dominate
(as opposed to the HMM literature, where the former approach dominates). In this section we
begin with the “alpha-gamma” approach, deriving the the “Rauch-Tung-Striebel (RTS) smoothing
algorithm,” and then turn to an alternative “alpha-beta” approach.

15.7.1 The Rauch-Tung-Striebel (RTS) smoother

Our approach to deriving the RTS smoothing algorithm will once again be based on the graphical
model fragment shown in Figure 15.2, which we reproduce in Figure 15.3. We begin by writing
down the joint distribution of z; and z;41, conditional on yo,...,y;. Recall that 2,1, = AZy,
which implies:

El(z; — &y0) (@1 — Ze010) 190, - 1] = Py AT (15.59)

Thus our distribution has the following mean and covariance matrix:

- T
Lt Pt|t Pt|tA ]
R and , 15.60
[ Tppap ] [ APy Pryap ( )

where all of the quantities are available to us after a forward Kalman filtering pass.
We now introduce a “backwards” computation. In particular, we condition on z;y; and cal-
culate the probability of z;, still conditioning on yg,...,%:. Using the by-now familiar Gaussian
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conditioning rule (Eq. 13.26), we obtain:

Elziziir,yo, .-y = &g+ Pt|tATPt;_11‘t($t+l — &yi1p) (15.61)
= Ty + Le(Te41 — By1pe), (15.62)
where we have introduced the notation L; £ Pt\tATP,;IH ;> and
Var[$t|zt+1, y07 “ e ,yt] — Pt‘t - Pt‘tAT‘Pt;l]_‘tAPﬂt (1563)
= Py — LiPyLf (15.64)
The purpose of conditioning on z;; is to render z; independent of the future observations y441, ..., yr.
That is, we can use conditional independence to write:
E[$t|xt+l7y07"' 7yT] = E[$t|$t+1,y0,--- 7yt] (1565)
= fi‘t\t + Lt($t+1 - jjt«kl\t) (1566)
and
Va‘r[xt|$t+17y07"' JyT] = V&I‘[.’L‘t|$t+1,y0,... Jyt] (1567)
= Py — LiPryLf. (15.68)

The quantities on the left-hand side of these equations are almost what we want; indeed, if we
could drop z;41 we would have the desired filtered-and-smoothed quantities.

The remainder of the derivation is an exercise in conditional expectation. Recall from Appendix
XXX the following fundamental facts about conditional expectations:

E[X|Z] = E[E[X|Y, Z]|Z] (15.69)

and
Var[X|Z] = Var[E[X|Y, Z]|Z] + E[Var[X|Y, Z]| Z] (15.70)

which show us how to compute unconditional expectations using conditional expectations. We will
substitute x; for X, x4 for Y, and yo,...,yr for Z in these equations.

Beginning with Eq. 15.66, we take the conditional expectation on both sides, conditioning with
respect to yo,...,yr:

Zyr = Elzdyo, ..., yr]
= E[E[z¢|zi+1,90,---,97)|Y0, - YT
= By + Li(Te41 — Teg11e) Y0, - - - Y1)
= Ty + Li(Ter1r — Begap),

where we have used the fact that all of the quantities in Eq. 15.74 other than z;,, are constants
when we condition on yq,...,yr.
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Eq. 15.74 is the basic update equation in the RTS smoothing algorithm. We see that a estimate
of z; based on all of the data can be obtained by correcting the filtered estimate Z;; by an error
term composed of a smoothed estimate of zpy; and the filtered estimate Z; ;. The gain matrix
L, is a quantity that depends only on matrices computed during the forward pass.

We now work on the conditional variance equation (Eq. 15.68). Using Eq. 15.70, we have:

Pyr £ Var[z|yo,-- -, y7] (15.75)
= Var[E[z¢|Tit11,Y0,- -, y7]|Y0, - - - y7| + E[Var[zzis1, o, - - - y7]|vo, - - -, yr)(15.76)
= Var[&y, + Li(xi11 — Z4100)1Y0 - - - yr] + E[Pyy — LiPryr L lyo, .- yr]  (15.77)
= LyVar[(zi41 — Zo1)0) Yo, - - - yr) LT + Py — LiPyyr LT (15.78)

LiVar[z|yo, - - - yr)Li + Py — LiPrya Ly (15.79)

LyPyyr LT + Py — Ly Py LY (15.80)

= Py + Li(Pryr — Prap) LY (15.81)

where at several junctures we have used the fact that expectations taken with respect to yg, ...,y
are constant when conditioning with respect to the larger conditioning set yq, ..., yr.

We summarize the RTS smoothing algorithm. Based on the quantities yy;, Py, and P, +1| '

from the filtering algorithm, we compute:
Tyr = Zyge+ L@ — o0, (15.82)
Pyr = Py + Li(Poar — Pap)Ji (15.83)

where Lt Pt|tAT
pass.

f +1| ;- The algorithm is initialized by using Zp7 and Ppjp from the filtering

15.7.2 The two-filter smoother

In this section we describe an alternative approach to smoothing in the SSM which is the analog
of the alpha-beta algorithm for the HMM. In this approach, known as the “two-filter algorithm,”
the idea is to combine the “forward” conditional probability P(x¢|yo,...,y:) with the “backward”
conditional probability P(z¢|yi+1,--.,yr). Note that the latter quantity, like the former quantity,
is a “filtered estimate”; that is, a conditional probability of the state given a (partial) output
sequence. This differs from the traditional beta variable in the HMM, which is the conditional
probability of the output sequence given the state. Clearly we can move from one to the other,
however, by multiplying or dividing by the unconditional probability of the state, P(x;), which is
available via the Lyapunov equation. Thus, the difference is minor and it is appropriate to think
of the two-filter algorithm as the analog of the alpha-beta algorithm.

Given that we want filtered estimates in the backward direction, a simple approach to deriving
the backward algorithm is to “invert the dynamics” and apply a forward filtering algorithm to the
inverted dynamics. In graphical model terms, we invert the arrows in the graph. This is in itself a
useful exercise.
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yt yt+ 1

Figure 15.4: (a) A fragment of an SSM with no observations.

In this section we assume that the matrix A is invertible and make use of A~! in our derivation
of the algorithm. In fact this assumption is not necessary, and a lookahead at the algorithm that
we derive shows that A~! does not appear. (In Chapter 18 we present an alternative derivation of
the algorithm from the point of view of the junction tree algorithm, and in that derivation we do
not make use of A71).

The naive approach to inverting the dynamical equation is to simply write:

zy = A ey — AT Gy, (15.84)

and let £ run backwards in time. This approach is not viable, however, because w; is not independent
of the “past” values of the state; i.e., x¢y1,...,27. Indeed, these states are all a function of w;.
Thus one of the assumptions that we used in deriving the Kalman filter is not valid and we cannot
simply apply the Kalman filter to Eq. 15.84.

To obtain a more useful inverse of the dynamics, consider the graphical model fragment shown in
Figure 15.4. The forward dynamics yields a joint probability distribution on (z;, z;41) characterized
by the Lyapunov equation ;1 = AX; AT + GQG'. Indeed the covariance matrix of (zy, 744 1) is
given by:

o 5 AT

AR, AR AT + GQGT (15.85)

We can invert the relationship between z; and x4+ by solving for 3; in terms of ¥;,; and rewriting
the covariance matrix in terms of ;. Thus:

Y=A'S AT - AGGTATT, (15.86)
where we assume that A is invertible.? This equation also implies:

AYy =S AT —GGT AT, (15.87)

2In fact this assumption is not necessary, see Exercise XXX.
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and we can rewrite the covariance matrix as follows:

A7 AT —ATIGQGT AT ATYY - ATTGQGT
-T T AT (15.88)
YA -GG A DIAR]
Noting that the upper-right-hand corner of this matrix can be written as A~! (I—AilGQGTE;ﬁI)EtH,
we see that if we define:
A=A"NI-A47'GQRG"E ) (15.89)

then we obtain flEtH and ZH_lflT in the corners of the matrix, and the matrix begins to take the
form of a forward covariance matrix. This suggests that we define the inverse dynamics via:

xy = Az + Gy, (15.90)

with G and 4@y chosen appropriately so as to match the forward dynamics (Eq. 15.1). Indeed,
choosing

G = —-A7'G (15.91)
W1 = w— QGTS me (15.92)

Eq. 15.90 matches Eq. 15.1. Moreover, we have:
Q £ Elippdiy,) = Q - QGTE GO, (15.93)
and substituting Eqgs. 15.89, 15.92 and 15.93 in the backward Lyapunov equation:
¥ = A% 1 AT + GQGT (15.94)

we recover the forward Lyapunov equation.

Finally, it can also be verified (see Exercise XXX) that ;4 is independent of the “past” values
of the state x¢41,...,27.

We have therefore succeeded in obtaining a version of the inverse dynamics to which standard
filtering algorithms can be applied. If we use the canonical parameterization (i.e., the information
filter in Eqgs. 15.39, 15.43, 15.49, and 15.54), utilizing the inverse dynamical equation and noting
that the output equation y, = C'xy + v, has not changed, we obtain:

Syrsr = ATHA+S - ATH NSy +H ' =% TH A (15.95)
St = Sy +CTRT'C (15.96)
Sgerr = ATH NSy +H ' =) e (15.97)
§p = S+ CTR™ 'y, (15.98)

where ¢ and ¢+ 1 have been interchanged to reflect the fact that we are filtering backward in time.
This filter calculates the canonical representation of P(z¢|y+1,...,yr). Thus, converting to the

. A _ a-1 R
moment representation, we have Ty, = St\t+1§t|t+1 and Py = St|t+1'
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The final issue that we must address involves the fusing of the probability distributions P(z¢|yo, . . .

and P(x¢|y¢41,...,yr) to obtain the posterior probability P(x¢|yo,...,yr). This problem is not
unique to the filtering and smoothing domain, but arises in many other settings as well. It is there-
fore worth posing and solving the problem in full generality; this we do in the following section.
Anticipating the result, we have the following fusion rule for Z;r, the estimate of z; based on all
of the data:

Guyr = Pyr (P, &g+ Pl @), (15.99)

where the covariance matrix Py 7 is computed as follows:
Pyp= (Pl ept —xt) 15.100
e = \Fye T Ly — 2 . (15.100)

The appearance of ¥, Uin the latter equation should not be a surprise. The filtering process and
the smoothing process both make use of the prior statistics on z;; in the latter case this is because
we have inverted the dynamics. When the covariance matrices of these two processes are combined
we have included the prior covariance twice. To avoid double-counting ;" must be subtracted in
the combination rule.

15.7.3 Fusion of Gaussian posterior probabilities

Let us consider three sets of random variables: z, z; and zo. Suppose that these variables are
characterized by a multivariate Gaussian distribution and suppose moreover that z; and zy are
conditionally independent given z. We wish to fuse the posteriors P(z|z1) and P(z|z2) into an
overall posterior P(z|zy, z2).

Let us assume, without loss of generality, that z, 21, and 2o have zero means. Non-zero means
can be subtracted away and added back at the end of the analysis.

Under the conditional independence assumption, there are three ways to represent the distri-
bution of z, z1, and 2, as a directed graphical model. The representation given in Figure 15.5(a) is
particularly useful for our purposes. To parameterize the graph, we require the marginal P(z), and
conditionals P(z;|z) and P(zy|z). For the marginal, we endow = with a zero mean and covariance
3. For the conditionals, recall that Gaussian conditionals are linear functions of the conditioning
variable (cf. Eq. refeq:Gaussian-conditional-mean). Thus we can write:

zZ1 = M1£E+’Ul (15101)
zZ9 = M2£E+’l)2, (15102)

for appropriately chosen matrices M; and My and zero-mean Gaussian variables vy and v having
covariance matrices Ry and R,. Note moreover that v; and vy, are independent of z and are
conditionally independent of each other given x.

Let us now counsider a generic linear equation z = Mz + v, where v is independent of z and has
covariance R. To calculate the conditional expectation of x given z we first obtain the covariance
matrix of the pair (z, z):

pY sMT

MY MSMT+R |- (15.103)

7yt)
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X
Y4
(a) (b)

Figure 15.5: A graphical model representation of the fusion problem. (a) The observables z;

and z9 are assumed conditionally independent given x. The conditional probabilities of z; are

parameterized as linear functions of z with additive, independent noise terms. (b) Conjoining z;
and zo into a single observable vector z.

X

Z; Z;

We then apply the usual Gaussian conditioning formulas (Eqgs. 13.26 and 13.27) to obtain the
conditional distribution of x given z. Denoting the mean of this conditional distribution as £ and
the covariance as P, we have:

1

i = SMT(MEM"+R) = (15.104)
= (M"R'M+xY) ' M Rz, (15.105)
where we have used a matrix inversion identity (Eq. 13.18) in the second step, and:
P = $-sM"(MSM” +R)" Mx (15.106)
- (@' +MTR M), (15.107)

where again we use a matrix inversion identity (Eq. 13.17) to simplify the result.
The individual conditionals of z given z; and zo are special cases of the foregoing equations.
Defining &; £ E (z]7;) and letting P; denote the corresponding conditional covariance, we have:

#o= (MIBR'My +=7Y)  MIR 5 (15.108)
Bo = (MIR;'Mo+3S )™ MIR; 2, (15.109)

and
P = (MIR'My+x 1) (15.110)

P, = (M{Ry'My+x7")"". (15.111)
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Now let us consider the overall posterior of x given both z; and z9. Grouping z; and z3 into a
single variable z (cf. Figure 15.5(b)), we can apply Eqgs. 15.105 and 15.107 where:

A M]. N R]_ 0
M—[MZ] and R_[ 0 R2]' (15.112)
From these definitions we obtain:
) R0 M, N\ RY 0 2
:v:([MlT Mg][(l) R21HM2}+2> g ) [T 2] [
= (MPRT'My + MIR; "My + 7)) (MP R 21 + MY Ry ) (15.113)
= (P74 Py = n ) TP e + Py ) (15.114)

We can similarly expand Eq. 15.107 to obtain the overall conditional covariance P:

P=(P'+P -2 )7 (15.115)

thus allowing us to rewrite Eq. 15.114 as:
&= P(P &y + Py lis). (15.116)

Eqgs. 15.116 and 15.115 are our general solution to the Gaussian fusion problem.

Let us relate these results back to the two-filter smoothing problem. We collect the observations
up to and including time ¢ into a single “past” vector z; = (yo,...,¥:), and collect the “future”
observations into a single vector zo = (ys41,...,yr). Let © = ;. These definitions fit the problem
specification of the current section; in particular (z,z1,z2) are characterized by a multivariate
Gaussian distribution (a marginal of the larger Gaussian distribution that includes the other state
variables), and moreover z; and zz are independent given z. The estimate Z;; is the conditional
expectation of x given z1, and must therefore have the form in Eq. 15.109, for matrices M; and
R, that we do not bother to calculate. Similarly Z;;, 1 must be of the form in Eq. 15.109, and the
conditional covariances Py; and Py;1 must have the form of Egs. 15.111 and 15.111. Substituting
into Egs. 15.116 and 15.115 we obtain the fusion rules at the end of the previous section (Egs. 15.99
and 15.100).

15.8 Parameter estimation

We follow the by now familiar recipe for developing an EM algorithm for parameter estimation
for the SSM. We write out the expected complete log likelihood, identify the expected sufficient
statistics, solve for maximum likelihood estimates in terms of these expected sufficient statistics.
This latter problem is simply linear regression.

[Section not yet finished].

15.9 Historical remarks and bibliography



