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Chapter 12Hidden Markov ModelsIn this 
hapter we �nally relax the assumption of independent, identi
ally distributed (IID) sam-pling that we have labored under until now. A hidden Markov model (HMM) is a graphi
al modelthat is appropriate for modeling sequential data; i.e., data sets in whi
h su

essive samples are nolonger assumed to be independent.An HMM is a natural generalization of a mixture model; indeed, it is perhaps best viewed asa \dynami
al" mixture model. To re
e
t this point of view, we adjust our terminology somewhat,referring to the \mixture 
omponents" of the mixture model as \states." To see exa
tly what kindof generalization is involved, let us re
all the pro
ess of generating IID data under a mixture model,using the new language (
f. Figure 12.1(a)):� At ea
h step, a state is sele
ted a

ording to the distribution p(z). This sele
tion is madeindependently of the 
hoi
e of states at other steps.� Given the state, a data ve
tor is 
hosen from a distribution p(xjz).Within the HMM framework we no longer assume that the states are 
hosen independently at ea
hstep, but rather we assume that the 
hoi
e of a state at a given step depends on the 
hoi
e ofthe state at the previous step. Thus we augment the basi
 mixture model to in
lude a matrix oftransition probabilities linking the states at neighboring steps. If there are M states, then this is anM �M matrix, whose (i; j)th entry represents the probability of transitioning from the ith state ata given step to the jth state at the following step. The pro
ess of generating data under the HMMis suggested in Figure 12.1(b), where we have drawn arrows between the probability distributionslabeled by the states to suggest the transition probabilities. Other than the introdu
tion of a statetransition matrix, the HMM is the same as the simpler mixture model|in parti
ular, given thestate at a given step a data ve
tor is generated from a distribution that depends only on that state.As in any mixture model, the states underlying the data generation pro
ess are assumed tobe \hidden" from the learner. We envision an HMM-based learning system observing the patternof data in Figure 12.1(a){one data point at a time{and interpreting the sequen
e in terms of thehypothesized states and state transitions of Figure 12.1(b). Just as in the simpler mixture model,the fa
t that the data form 
lusters is grist for the HMM mill, allowing the learner to di�erentiatethe states. But while the 
lustering of the data is ne
essary for an HMM-based learner to be3
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(b)Figure 12.1: (a). A sample point is generated from a mixture model by �rst sele
ting a mixture
omponent and then generating a data point from that mixture 
omponent. (b) An HMM general-izes the mixture model by allowing the 
hoi
e of the mixture 
omponent at a given step to dependon the 
hoi
e of the mixture 
omponent at the previous step. The arrows in the diagram representthese transitions between the mixture 
omponents.justi�ed in a given problem, it is not suÆ
ient|there should also be regularities in the transitionsbetween 
lusters.The inferen
e problem for HMMs involves taking as input the sequen
e of observed data andyielding as output a probability distribution on the underlying states. Given the dependen
ebetween the states, this problem is substantially more 
omplex than the analogous inferen
e problemfor mixture models. Nonetheless, it is readily solved. Guided by Bayes rule, we will un
over a simplere
ursion that neatly 
omputes the desired posterior probabilities. In fa
t, this algorithm marks animportant milestone for us|it begins to suggest the general ma
hinery for propagating probabilitieson graphs that we will be our fo
us in mu
h of the remainder of the book. With HMMs we beginour study of inferen
e in graphi
al models in earnest.12.1 The graphi
al modelThe graphi
al model representation of an HMM is shown in Figure 12.2. As the diagram makes
lear, the HMM 
an be viewed as a linked sequen
e of mixture models, with the linking o

urringat the level of the mixture 
omponents, or \states." We denote the state at time t as qt, and let ytrepresent the observable \output" at time t.11Throughout the 
hapter we refer to t as a temporal variable for 
on
reteness; the HMM model is of 
ourseappli
able to any kind of sequential data.
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y 1 2 T0 y y yFigure 12.2: The representation of a HMM as a graphi
al model. Ea
h verti
al sli
e represents atime step. The top node in ea
h sli
e represents the multinomial qt variable and the bottom nodein ea
h sli
e represents the observable yt variable.We represent the state at time t as a multinomial random variable qt, with 
omponents qit, fori = 0; : : : ;M . Thus qit is equal to one for a parti
ular value of i and is equal to zero for j 6= i. Asfor the output variables yt, these variables are always observed in the HMM setting and thus theyplay a minimal role in the inferen
e problem. We will a

ordingly leave their type unde�ned fornow (the reader 
an think of them as multinomial or multivariate Gaussian for 
on
reteness).From the graphi
al model we 
an read o� various 
onditional independen
ies. The main 
ondi-tional independen
y of interest is that obtained by 
onditioning on a single state node. Conditioningon qt renders qt�1 and qt+1 independent; moreover it renders qs independent of qu, for s < t andt < u. Thus, \the future is independent of the past, given the present." This statement is also truefor output nodes ys and yu, again 
onditioning on the state node qt.Note that 
onditioning on an output node, on the other hand, does not separate nodes in thegraph and thus does not yield any 
onditional independen
ies. It is not true that the future isindependent of the past, given the present, if by \present" we mean the 
urrent output.Indeed, 
onditioning on all of the output nodes fails to separate any of the remaining nodes.That is, given the observable data, we 
annot expe
t any independen
ies to be indu
ed betweenthe state nodes. Thus we should expe
t that our inferen
e algorithm must take into a

ountpossible dependen
ies between states at arbitrary lo
ations along the 
hain. In parti
ular, learningsomething about the �nal state node in the 
hain, qT (e.g., by observing yT ), 
an 
hange theposterior probability distribution for the �rst node in the 
hain, q0. We expe
t that our inferen
ealgorithm will have to propagate information from one end of the 
hain to the other.12.2 The parameterizationWe now parameterize the HMM by assigning lo
al 
onditional probabilities to ea
h of the nodes.The �rst state node in the sequen
e has no parents; thus we endow this node with an un
onditionaldistribution �, where �i , p(qi0 = 1). Ea
h su

essive state node has the previous state node in the
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hain as its (sole) parent; thus we need a M �M matrix to spe
ify its lo
al 
onditional probability.We de�ne a state transition matrix A, where the (i; j)th entry aij of A is de�ned to be the transitionprobability p(qjt+1 = 1jqit = 1). Note that we assume that this transition probability is independentof t; that is, we assume a homogeneous HMM. (All of the algorithms that we des
ribe are readilygeneralized to the 
ase of a varying A matrix, however this 
ase is less 
ommon in pra
ti
e thanthe homogeneous 
ase).Ea
h of the output nodes has a single state node as a parent, thus we require a probabilitydistribution p(ytjqt). We again assume this distribution to be independent of t. We make nofurther assumptions regarding the form of p(ytjqt) for now; for the purposes of developing theHMM inferen
e algorithms we need only be able to evaluate p(ytjqt) for a �xed value of yt.The joint probability is obtained as always by taking the produ
t over the lo
al 
onditionalprobabilities. Thus, for a parti
ular 
on�guration (q; y) = (q0; q1; : : : ; qT ; y0; y1; : : : ; yT ), we obtainthe following joint probability:p(q; y) = p(q0) T�1Yt=0 p(qt+1jqt) TYt=0 p(ytjqt): (12.1)To introdu
e the A and � parameters into this equation, we adopt a notation in whi
h state variables
an be used as indi
es. Thus, when qt takes on its ith value and qt+1 takes on its jth value, we letaqt;qt+1 denote the (i; j)th entry of the matrix A. Formally, this interpretation is a
hieved via thefollowing de�nition: aqt;qt+1 , MYi;j=1 [aij ℄qitqjt+1 : (12.2)Re
all that only one of the 
omponents of qt is one, and thus only one fa
tor in the produ
t onthe right-hand side is di�erent from one; this pi
ks out the appropriate entry in the matrix A.Similarly, we de�ne �q0 via: �q0 , MYi=1 [�i℄qi0 (12.3)whi
h has the e�e
t of pi
king out the appropriate entry in the � ve
tor. We use the simpleshorthand forms aqt;qt+1 and �q0 throughout the 
hapter, although the expanded forms in Eqs. 12.2and 12.3 will also prove useful when we dis
uss parameter estimation.Plugging the de�nitions into the joint probability, we have:p(q; y) = �q0 T�1Yt=0 aqt;qt+1 TYt=0 p(ytjqt): (12.4)This is the parameterized probability distribution in whi
h we wish to do inferen
e.12.3 The inferen
e problemThere are quite a number of inferen
e problems that are of interest in the setting of the HMM. Thegeneral inferen
e problem involves 
omputing the probability of a hidden state sequen
e q given an



12.4. INFERENCE 7observable output sequen
e y. Various marginal probabilities are also of interest, in parti
ular theprobability of a parti
ular hidden state qt given the output sequen
e.It is also of interest to 
ompute various probabilities 
onditioned on partial output sequen
es.In parti
ular, 
onsider the \on-line" problem in whi
h a sequen
e of outputs yt arrives and it isdesired to 
ompute the probability of the state at time t immediately, without waiting for futuredata. Computing this probability, p(qtjy0; : : : ; yt), is generally 
alled the �ltering problem.2 Anotherinferen
e problem involves the 
al
ulation of p(qtjy0; : : : ; ys), where t > s. This is referred to as thepredi
tion problem. Finally, the problem of 
al
ulating a posterior probability based on data up toand in
luding a future time, i.e., p(qtjy0; : : : ; yu) for t < u, is referred to as the smoothing problem.Let us 
onsider the problem of 
omputing the posterior probability p(qjy) where y = (y0; : : : ; yT )is the entire observed output sequen
e at our disposal. Let q be an arbitrary �xed state sequen
ewhose probability we wish to 
ompute. By de�nition we have p(qjy) = p(q; y)=p(y). The numeratoris readily 
al
ulated by substituting q and y in Eq. 12.4. What about the denominator p(y)?Cal
ulating the denominator involves taking a sum a
ross all possible values of the hiddenstates: p(y) =Xq0 Xq1 � � �XqT �(q0) T�1Yt=0 aqt;qt+1 TYt=0 p(ytjqt; �): (12.5)This sum should give us pause. Ea
h state node qt 
an take on M values, and we have T statenodes. This implies that we must perform MT sums, a wildly intra
table number for reasonablevalues of M and T . Is it possible to perform inferen
e eÆ
iently for HMMs?The way out of our seeming dilemma lies in the fa
torized form of the joint probability distri-bution (Eq. 12.4). Ea
h fa
tor involves only one or two of the state variables, and the fa
tors forma neatly organized 
hain. This suggests that it ought to be possible to move these sums \inside"the produ
t in a systemati
 way. Moving the sums as far as possible ought to redu
e the 
ompu-tational burden signi�
antly. Consider, for example, the sum over qT . This sum 
an be broughtinside until the end of the 
hain and applied to the two fa
tors involving qT . On
e this sum isperformed the result 
an be 
ombined with the two fa
tors involving qT�1 and the sum over qT�1
an be performed. We begin to hope that we 
an organize our 
al
ulation as a re
ursion.12.4 Inferen
eTo reveal the re
ursion behind the HMM inferen
e problem as simply as possible, let us 
onsider aninferen
e problem that is seemingly easier than the full problem. Rather than 
al
ulating p(qjy) forthe entire state sequen
e q, we fo
us on a parti
ular state node qt and ask to 
al
ulate its posteriorprobability, that is, we 
al
ulate p(qtjy). This posterior probability also has p(y) in its denominator,2Why \�ltering"? The terminology arises from the interpretation of the outputs yt as providing \noisy" informationabout the underlying \signal" qt. The inferen
e problem is then one of \�ltering" the noise from the signal. In thelinear sto
hasti
 systems setting in whi
h this terminology originally arose (
f. Chapter 15), the 
al
ulation ofquantities su
h as p(qtjy0; : : : ; yt) often had a frequen
y domain interpretation in whi
h some frequen
ies are passedand not others. In su
h a setting the terminology is rather natural. While re
ognizing the possible unnaturalness ofthe terminology outside of the linear systems setting, we bow to its wide usage and adopt it here.
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t+1Figure 12.3: A fragment of the graphi
al model representation of an HMM.and in fa
t we 
an easily adapt our algorithm for 
omputing p(qtjy) to 
ompute p(qjy) or marginalsover substrings of q (see Exer
ise ??).We thus turn to the 
al
ulation of p(qtjy). To make progress, we need to take advantage of the
onditional independen
ies in our graphi
al model, breaking the problem into pie
es. To do so we
ondition on a state node (see Figure 12.3). We reverse the terms qt and y via an appli
ation ofBayes rule, 
onditioning now on qt, and use 
onditional independen
e:p(qtjy) = p(yjqt)p(qt)p(y) (12.6)= p(y0; : : : ; ytjqt)p(yt+1; : : : ; yT jqt)p(qt)p(y) : (12.7)Finally, we regroup the terms and make a de�nition:p(qtjy) = p(y0; : : : ; yt; qt)p(yt+1; : : : ; yT jqt)p(y) (12.8)= �(qt)�(qt)p(y) ; (12.9)where �(qt) , p(y0; : : : ; yt; qt) (12.10)is the probability of emitting a partial sequen
e of outputs y0; : : : ; yt and ending up in state qt, and�(qt) = p(yt+1; : : : ; yT jqt) (12.11)is the probability of emitting a partial sequen
e of outputs yt+1; : : : ; yT given that the system startsin state qt.



12.4. INFERENCE 9Given that the sum of p(qtjy) over the possible values of qt must equal one, we use Eq. 12.9 toobtain: p(y) =Xqt �(qt)�(qt): (12.12)That is, we 
an obtain the likelihood p(y) by 
al
ulating �(qt) and �(qt) for any t and summingtheir produ
t.We make one additional de�nition: 
(qt) will denote the posterior probability p(qtjy). Thus:
(qt) , �(qt)�(qt)p(y) ; (12.13)where p(y) is 
omputed on
e, as the normalization 
onstant for a parti
ular (arbitrary) 
hoi
e of t.We have redu
ed our problem to that of 
al
ulating the alphas and the betas. This is a usefulredu
tion be
ause, as we now see, these quantities 
an be 
omputed re
ursively.Let us �rst 
onsider the alpha variables. Given that �(qt) depends only on quantities up totime t, and given the Markov properties of our model, we might hope to obtain a re
ursion between�(qt) and �(qt+1). Indeed, referring to Figure 12.3 to justify the 
onditional independen
ies weneed, we obtain: �(qt+1) = p(y0; : : : ; yt+1; qt+1) (12.14)= p(y0; : : : ; yt+1jqt+1)p(qt+1) (12.15)= p(y0; : : : ; ytjqt+1)p(yt+1jqt+1)p(qt+1) (12.16)= p(y0; : : : ; yt; qt+1)p(yt+1jqt+1) (12.17)= Xqt p(y0; : : : ; yt; qt; qt+1)p(yt+1jqt+1) (12.18)= Xqt p(y0; : : : ; yt; qt+1jqt)p(qt)p(yt+1jqt+1) (12.19)= Xqt p(y0; : : : ; ytjqt)p(qt+1jqt)p(qt)p(yt+1jqt+1) (12.20)= Xqt p(y0; : : : ; yt; qt)p(qt+1jqt)p(yt+1jqt+1) (12.21)= Xqt �(qt)aqt;qt+1p(yt+1jqt+1): (12.22)Throughout this derivation the key idea is to 
ondition on a state and then use the 
onditionalindependen
e properties of the model to de
ompose the equation. This is done in Eqs. 12.16 and12.22, both of whi
h 
an be veri�ed via the graphi
al model fragment. The se
ond key idea is tointrodu
e a variable, in this 
ase qt, by marginalizing over it (
f. Eq. 12.18). On
e qt is introdu
edthe re
ursion follows readily.The 
omputational 
omplexity of ea
h step of the alpha re
ursion is O(M2); in parti
ular, forea
h of the M values of qt+1, we require M multipli
ations to 
ompute the inner produ
t of �(qt)



10 CHAPTER 12. HIDDEN MARKOV MODELSwith the appropriate 
olumn of the A matrix. To 
ompute all of the alpha variables from t = 1 tot = T thus requires time O(M2T ).Note that the algorithm pro
eeds \forward" in time. The de�nition of alpha at the �rst timestep yields: �(q0) = p(y0; q0) (12.23)= p(y0jq0)p(q0) (12.24)= p(y0jq0)�q0 : (12.25)and these values are used to initialize the re
ursion.For the beta variables we obtain a \ba
kward" re
ursion in whi
h �(qt) is expressed in termsof �(qt+1), where on
e again the various steps are justi�ed by making referen
e to the graphi
almodel fragment in Figure 12.3:�(qt) = p(yt+1; : : : ; yT jqt) (12.26)= Xqt+1 p(yt+1; : : : ; yT ; qt+1jqt) (12.27)= Xqt+1 p(yt+1; : : : ; yT jqt+1; qt)p(qt+1jqt) (12.28)= Xqt+1 p(yt+2; : : : ; yT jqt+1)p(yt+1jqt+1)p(qt+1jqt) (12.29)= Xqt+1 �(qt+1)aqt;qt+1p(yt+1jqt+1): (12.30)Note that the beta re
ursion is a ba
kwards re
ursion; that is, we start at the �nal time step T andpro
eed ba
kwards to the initial time step.As for the initialization of the beta re
ursion, the de�nition of �(qT ) is unhelpful, given that itmakes referen
e to a non-existent yT+1, but we see from applying the re
ursion on
e to 
ompute�(qT�1) that this value will be 
al
ulated 
orre
tly if we de�ne �(qT ) to be a ve
tor of ones.Alternatively, 
omputing p(y) at time T , we have:p(y) = Xi �(qiT )�(qiT ) (12.31)= Xi �(qiT ) (12.32)= Xi p(y0; : : : ; yT ; qiT ) (12.33)= p(y); (12.34)and we see that the de�nition makes sense.If we need only the likelihood p(y), Eq. 12.31 shows us that it is not ne
essary to 
ompute thebetas; a single forward pass for the alphas will suÆ
e. Moreover, Eq. 12.12 tell us that any partial
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ompute �(qt), a

ompanied by a partial ba
kward pass to 
ompute�(qt), will also suÆ
e. To 
ompute the posterior probabilities for all of the states qt, however,requires us to 
ompute alphas and betas for ea
h time step. Thus we require a forward pass and aba
kward pass for a 
omplete solution to the inferen
e problem.12.5 An alternative inferen
e algorithmThe alpha-beta algorithm is not the only way to 
ompute the posterior probabilities of the states. Inthis se
tion we des
ribe an alternative approa
h in whi
h the ba
kward phase is a re
ursion de�neddire
tly on the 
(qt) variables. An interesting feature of this algorithm is that the ba
kward phasemakes no use of the observations yt; only the forward phase uses the observed data. We 
an throwaway the data as we �lter.The algorithm di�ers from the alpha-beta algorithm only in the ba
kward phase. In the for-ward dire
tion we run the alpha algorithm as before, 
al
ulating the �ltered quantities �(qt) =p(y0; : : : ; yt; qt).To un
over a ba
kward re
ursion linking the 
t variables, we refer on
e again to the graphi
almodel fragment in Figure 12.3. Our goal is to 
ompute 
(qt) = p(qtjy0; : : : ; yT ). As in our earlier
al
ulations, our main tool for 
omputing su
h quantities re
ursively is to 
ondition on a statevariable; su
h 
onditioning breaks the problem into two pie
es. In parti
ular, we 
ondition on qt+1and obtain: p(qtjqt+1; y0; : : : ; yT ) = p(qtjqt+1; y0; : : : ; yt): (12.35)This shows that we 
an get a 
onditional probability that depends on all of the data via a 
onditionalprobability that depends only on the partial sequen
e up to t. Moreover, the left-hand side 
an bereadily 
onverted into 
(qt) by multiplying by p(qt+1jy0; : : : ; yT )|whi
h is 
(qt+1) by de�nition|and summing over qt+1. The details are as follows:
(qt) = Xqt+1 p(qt; qt+1jy0; : : : ; yT ) (12.36)= Xqt+1 p(qtjqt+1y0; : : : ; yT )p(qt+1jy0; : : : ; yT ) (12.37)= Xqt+1 p(qtjqt+1; y0; : : : ; yt)p(qt+1jy0; : : : ; yT ) (12.38)= Xqt+1 p(qt; qt+1; y0; : : : ; yt)Pqt p(qt; qt+1; y0; : : : ; yt)p(qt+1jy0; : : : ; yT ) (12.39)= Xqt+1 p(qt; y0; : : : ; yt)p(qt+1jqt)Pqt p(qt; y0; : : : ; yt)p(qt+1jqt)p(qt+1jy0; : : : ; yT ) (12.40)= Xqt+1 �(qt)aqt;qt+1Pqt �(qt)aqt;qt+1 
(qt+1) (12.41)We see that this re
ursion makes use of the alpha variables, whi
h therefore must be 
omputedbefore the gamma re
ursion begins. The gamma re
ursion is initialized with 
(qT ) = �(qT ).



12 CHAPTER 12. HIDDEN MARKOV MODELSNote that the data yt are not referen
ed in the gamma re
ursion; the alpha re
ursion hasabsorbed all of the ne
essary data likelihoods.12.6 The �(qt; qt+1) variablesThe alpha-beta or the alpha-gamma algorithm provide us with the posterior probability of thehidden states of the HMM. These quantities are the dire
t analogs of the posterior probabilities hithat we studied in the simpler mixture setting. Moreover, they play the same role in estimating theparameters of the output distribution|as we will see in Se
tion 12.8 they are the expe
ted suÆ
ientstatisti
s for these parameters. To estimate the transition probability matrix A, however, we needsomething more. It is 
lear intuitively, and justi�ed in Se
tion 12.8, where we write out the 
ompletelog likelihood, that what is required is the matrix of 
oo

urren
e probabilities p(qt; qt+1jy). In thisse
tion we show how to 
al
ulate these posterior probabilities.Let us de�ne �(qt; qt+1) , p(qt; qt+1jy): (12.42)There are several ways to 
al
ulate this quantity. One way is to return to �rst prin
iples anddevelop re
ursions for the �(qt; qt+1), following mu
h the same pro
edure as we followed for thesingleton probabilities 
(qt). This is indeed a rather useful exer
ise (whi
h we ask the reader to
arry out in Exer
ise ??), not only be
ause it reinfor
es the Markovian 
al
ulations that we haveengaged in, but be
ause it provides a stepping-stone to the general \jun
tion tree algorithm" thatwe dis
uss in Chapter 17. That algorithm provides a general framework from whi
h to derive all ofthe re
ursions that we des
ribe in this 
hapter. Moreover, if we have an algorithm for 
al
ulating�(qt; qt+1) in hand, we 
an also obtain the singleton probabilities via 
(qt) =Pqt+1 �(qt; qt+1).A se
ond approa
h to 
al
ulating �(qt; qt+1) is to build on the re
ursions already developed forthe alphas and betas:�(qt; qt+1) = p(qt; qt+1jy) (12.43)= p(yjqt; qt+1)p(qt+1jqt)p(qt)p(y)= p(y0; : : : ; ytjqt)p(yt+1jqt+1)p(yt+2; : : : ; yT jqt+1)p(qt+1jqt)p(qt)p(y)= �(qt)p(yt+1jqt+1)�(qt+1)aqt;qt+1p(y) : (12.44)This result 
an also be expressed in terms of alphas and gammas:�(qt; qt+1) = �(qt)p(yt+1jqt+1)
(qt+1)aqt;qt+1�(qt+1) : (12.45)In either 
ase we see that we 
an readily 
al
ulate the �(qt; qt+1) variables on
e we have �nishedthe re
ursive 
al
ulation of the singleton probabilities 
(qt).



12.7. NUMERICAL ISSUES 1312.7 Numeri
al issuesTo summarize, we have found that we 
an 
al
ulate all of the ne
essary posterior probabilities forthe HMM re
ursively. Given an observed sequen
e y, we run the alpha re
ursion forward in time.If we require only the likelihood we simply sum the alphas at the �nal time step. If we also requirethe posterior probabilities of the states, we pro
eed to either the beta re
ursion or the gammare
ursion.Before these re
ursions are implemented on the 
omputer, attention must be paid to numeri-
al issues. In parti
ular, the re
ursions involve repeated multipli
ations of small numbers and itis generally not long before the numbers under
ow. To avoid under
ow it suÆ
es to normalize.We outline the basi
 ideas in Exer
ise ??, but in brief the pro
edure is as follows. The alpha vari-ables, p(y0; : : : ; yt; qt), 
an be viewed as unnormalized 
onditional probabilities. Indeed, normalizingmeans division by p(y0; : : : ; yt), whi
h yields 
onditionals p(qtjy0; : : : ; yt). Not only are these 
ondi-tionals s
aled in a numeri
ally sensible manner, but they also have a sensible semanti
s|they arethe �ltered estimates of the states. In sum, one should always 
ompute normalized alphas. In theba
kward dire
tion, if one uses the gamma re
ursion one is already on safe ground|the gammasare 
onditional probabilities and hen
e sum to one. Moreover, it is easy to verify that normalizedalphas 
an be used in Eq. 12.41 in pla
e of the unnormalized alphas. Alternatively, if one usesthe beta re
ursion, it turns out that a numeri
ally sensible solution (although one that is devoidof probabilisti
 interpretation), is to use the normalization fa
tors from the forward re
ursion tores
ale the beta variables (these res
aled betas will not sum to one). It turns out that the res
aledvariables are then used exa
tly as the original alphas and betas are used in the formulas for theposteriors 
(qt) and �(qt; qt+1) (i.e., the normalization fa
tors 
an
el). See Exer
ise ?? for furtherdis
ussion.12.8 Parameter estimationThe parameters of an HMM are the transition matrix A, the initial probability distribution � andthe parameters that are asso
iated with the output probability distribution. In this se
tion wedis
uss the problem of estimating these parameters from data.Let � = (�;A; �) represent all of the parameters of the HMM model, where p(ytjqt; �) is theoutput distribution. The likelihood is given by p(yj�), for a �xed observable sequen
e y. Takingthe logarithm of Eq. 12.5 we have the following log likelihood:p(yj�) = logXq0 Xq1 � � �XqT �(q0) T�1Yt=0 aqt;qt+1 TYt=0 p(ytjqt; �): (12.46)Our goal is to maximize this expression with respe
t to �.As with our earlier models, this is in prin
iple just another optimization problem that 
an besolved via standard numeri
al optimization methods. In pra
ti
e, however, the EM algorithm isgenerally used to estimate HMM parameters.



14 CHAPTER 12. HIDDEN MARKOV MODELS12.8.1 EM algorithmThe EM algorithm for the HMM presents no new diÆ
ulties to surmount and we will make relativelyshort work of the derivation. For 
on
reteness we derive the algorithm for the 
ase in whi
hthe outputs yt are multinomial variables; it should be obvious how to 
hange the derivation toa

ommodate other output types (
f. Exer
ise ??).In the multinomial 
ase, yt is an N -
omponent ve
tor su
h that yjt is equal to one for a parti
ular
omponent and zero for all other 
omponents. We use the symbol �ij to denote the probabilitythat the jth 
omponent of yt is one, given that the ith 
omponent of qt is one; i.e., �ij , p(yjt =1jqit = 1; �). Using this notation we have:p(ytjqt; �) = MYi;j=1 [�ij℄qityjt (12.47)as the general expression for the output distribution.As usual we begin by writing down the 
omplete log likelihood to dis
over the form of the Mstep estimates as well as the suÆ
ient statisti
s that are needed for the E step. We have:log p(q; y) = log(�q0 T�1Yt=0 aqt;qt+1 TYt=0 p(ytjqt; �)) (12.48)= log8<:MYi=1 [�i℄qi0 T�1Yt=0 MYi;j=1 [aij℄qitqjt+1 TYt=0 MYi;j=1 [�ij ℄qityjt9=; (12.49)= MXi=1 qi0 log �i + T�1Xt=0 MXi;j=1 qitqjt+1 log aij + TXt=0 MXi;j=1 qityjt log �ij: (12.50)From this expression, we see that mij , PT�1t=0 qitqjt+1 is the suÆ
ient statisti
 for aij, nij ,PT�1t=0 qityjt is the suÆ
ient statisti
 for �ij, and qi0 is the suÆ
ient statisti
 for �i. The maximumlikelihood estimates for the 
ase of 
omplete data are therefore given by:âij = mijPMk=1mik (12.51)�̂ij = nijPNk=1 nik (12.52)�̂i = qi0: (12.53)All of these estimates have natural interpretations. Note that mij is the 
ount of the numberof times that the pro
ess is in state i and transitions to state j. Dividing by Pkmik yields theproportion of those transitions out of state i that go to state j|a natural estimate of aij . Similarlythe estimate of �ij is given by the proportion of times that the 
hain is in state i and produ
es the



12.8. PARAMETER ESTIMATION 15jth output value. Finally, for the estimate of �i, we obtain a singular distribution that puts all ofthe probability mass at the observed initial state.3We turn to the E step of the EM algorithm. Consider �rst the expe
tation of the suÆ
ientstatisti
 nij =PTt=0 qityjt . We have:E(nij jy; �(p)) = TXt=0 E(qitjy; �(p))yjt (12.54)= TXt=0 p(qit = 1jy; �(p))yjt (12.55), TXt=0 
ityjt ; (12.56)where we introdu
e the notation 
it in the last line. By de�nition 
it is equal to 
(qt), evaluated atthat value of qt su
h that qit = 1. Note �nally that the dependen
e of 
it on �(p) has been suppressed.Similarly, for the suÆ
ient statisti
 mij , we have:E(mij jy; �(p)) = T�1Xt=0 E(qitqjt+1jy; �(p)) (12.57)= T�1Xt=0 p(qitqjt+1jy; �(p)) (12.58), T�1Xt=0 �ijt;t+1; (12.59)where we let �ijt;t+1 denote �(qt; qt+1) for (qt; qt+1) su
h that qit = 1 and qjt+1 = 1.In summary, the suÆ
ient statisti
s are 
al
ulated via the re
ursive forward-ba
kward pro
edurefrom Se
tion 12.4. We 
al
ulate the 
 variables via either Eq.12.13 or Eq.12.41. The � variablesare then 
al
ulated via Eq. 12.44 or Eq. 12.45.With the estimated suÆ
ient statisti
s in hand, we substitute into the maximum likelihoodformulas (Eqs. 12.51, 12.52, and 12.53), to obtain the M step of the EM algorithm (also known, inthe 
ase of HMMs, as the \Baum-Wel
h updates"). We obtain:�̂(p+1)ij = PTt=0 
ityjtPNk=1PTt=0 
itykt = PTt=0 
ityjtPTt=0 
it : (12.60)3In a more general setting, in whi
h we have multiple repeated observations from a single HMM (i.e., data thatare IID at the level of entire sequen
es), the estimate of �i be
omes the proportion of times that the 
hain starts instate i, and indeed the estimates in Eq. 12.51 and Eq. 12.52 also be
ome averages over the multiple repetitions (
f.Exer
ise ??).



16 CHAPTER 12. HIDDEN MARKOV MODELSwhere we use the fa
t that PNk=1 ykt = 1,â(p+1)ij = PT�1t=0 �i;jt;t+1PMk=1PT�1t=0 �i;kt;t+1 = PT�1t=0 �i;jt;t+1PT�1t=0 
it ; (12.61)where by de�nitionPMk=1 �i;kt;t+1 = 
it , and: �̂(p+1)i = 
i0: (12.62)The EM algorithm iterates between performing these updates (the M step) and the forward-ba
kward pass using the updated values (the E step).12.9 Histori
al remarks and bibliography


