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Chapter 12Hidden Markov ModelsIn this hapter we �nally relax the assumption of independent, identially distributed (IID) sam-pling that we have labored under until now. A hidden Markov model (HMM) is a graphial modelthat is appropriate for modeling sequential data; i.e., data sets in whih suessive samples are nolonger assumed to be independent.An HMM is a natural generalization of a mixture model; indeed, it is perhaps best viewed asa \dynamial" mixture model. To reet this point of view, we adjust our terminology somewhat,referring to the \mixture omponents" of the mixture model as \states." To see exatly what kindof generalization is involved, let us reall the proess of generating IID data under a mixture model,using the new language (f. Figure 12.1(a)):� At eah step, a state is seleted aording to the distribution p(z). This seletion is madeindependently of the hoie of states at other steps.� Given the state, a data vetor is hosen from a distribution p(xjz).Within the HMM framework we no longer assume that the states are hosen independently at eahstep, but rather we assume that the hoie of a state at a given step depends on the hoie ofthe state at the previous step. Thus we augment the basi mixture model to inlude a matrix oftransition probabilities linking the states at neighboring steps. If there are M states, then this is anM �M matrix, whose (i; j)th entry represents the probability of transitioning from the ith state ata given step to the jth state at the following step. The proess of generating data under the HMMis suggested in Figure 12.1(b), where we have drawn arrows between the probability distributionslabeled by the states to suggest the transition probabilities. Other than the introdution of a statetransition matrix, the HMM is the same as the simpler mixture model|in partiular, given thestate at a given step a data vetor is generated from a distribution that depends only on that state.As in any mixture model, the states underlying the data generation proess are assumed tobe \hidden" from the learner. We envision an HMM-based learning system observing the patternof data in Figure 12.1(a){one data point at a time{and interpreting the sequene in terms of thehypothesized states and state transitions of Figure 12.1(b). Just as in the simpler mixture model,the fat that the data form lusters is grist for the HMM mill, allowing the learner to di�erentiatethe states. But while the lustering of the data is neessary for an HMM-based learner to be3
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(b)Figure 12.1: (a). A sample point is generated from a mixture model by �rst seleting a mixtureomponent and then generating a data point from that mixture omponent. (b) An HMM general-izes the mixture model by allowing the hoie of the mixture omponent at a given step to dependon the hoie of the mixture omponent at the previous step. The arrows in the diagram representthese transitions between the mixture omponents.justi�ed in a given problem, it is not suÆient|there should also be regularities in the transitionsbetween lusters.The inferene problem for HMMs involves taking as input the sequene of observed data andyielding as output a probability distribution on the underlying states. Given the dependenebetween the states, this problem is substantially more omplex than the analogous inferene problemfor mixture models. Nonetheless, it is readily solved. Guided by Bayes rule, we will unover a simplereursion that neatly omputes the desired posterior probabilities. In fat, this algorithm marks animportant milestone for us|it begins to suggest the general mahinery for propagating probabilitieson graphs that we will be our fous in muh of the remainder of the book. With HMMs we beginour study of inferene in graphial models in earnest.12.1 The graphial modelThe graphial model representation of an HMM is shown in Figure 12.2. As the diagram makeslear, the HMM an be viewed as a linked sequene of mixture models, with the linking ourringat the level of the mixture omponents, or \states." We denote the state at time t as qt, and let ytrepresent the observable \output" at time t.11Throughout the hapter we refer to t as a temporal variable for onreteness; the HMM model is of ourseappliable to any kind of sequential data.



12.2. THE PARAMETERIZATION 5
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y 1 2 T0 y y yFigure 12.2: The representation of a HMM as a graphial model. Eah vertial slie represents atime step. The top node in eah slie represents the multinomial qt variable and the bottom nodein eah slie represents the observable yt variable.We represent the state at time t as a multinomial random variable qt, with omponents qit, fori = 0; : : : ;M . Thus qit is equal to one for a partiular value of i and is equal to zero for j 6= i. Asfor the output variables yt, these variables are always observed in the HMM setting and thus theyplay a minimal role in the inferene problem. We will aordingly leave their type unde�ned fornow (the reader an think of them as multinomial or multivariate Gaussian for onreteness).From the graphial model we an read o� various onditional independenies. The main ondi-tional independeny of interest is that obtained by onditioning on a single state node. Conditioningon qt renders qt�1 and qt+1 independent; moreover it renders qs independent of qu, for s < t andt < u. Thus, \the future is independent of the past, given the present." This statement is also truefor output nodes ys and yu, again onditioning on the state node qt.Note that onditioning on an output node, on the other hand, does not separate nodes in thegraph and thus does not yield any onditional independenies. It is not true that the future isindependent of the past, given the present, if by \present" we mean the urrent output.Indeed, onditioning on all of the output nodes fails to separate any of the remaining nodes.That is, given the observable data, we annot expet any independenies to be indued betweenthe state nodes. Thus we should expet that our inferene algorithm must take into aountpossible dependenies between states at arbitrary loations along the hain. In partiular, learningsomething about the �nal state node in the hain, qT (e.g., by observing yT ), an hange theposterior probability distribution for the �rst node in the hain, q0. We expet that our inferenealgorithm will have to propagate information from one end of the hain to the other.12.2 The parameterizationWe now parameterize the HMM by assigning loal onditional probabilities to eah of the nodes.The �rst state node in the sequene has no parents; thus we endow this node with an unonditionaldistribution �, where �i , p(qi0 = 1). Eah suessive state node has the previous state node in the



6 CHAPTER 12. HIDDEN MARKOV MODELShain as its (sole) parent; thus we need a M �M matrix to speify its loal onditional probability.We de�ne a state transition matrix A, where the (i; j)th entry aij of A is de�ned to be the transitionprobability p(qjt+1 = 1jqit = 1). Note that we assume that this transition probability is independentof t; that is, we assume a homogeneous HMM. (All of the algorithms that we desribe are readilygeneralized to the ase of a varying A matrix, however this ase is less ommon in pratie thanthe homogeneous ase).Eah of the output nodes has a single state node as a parent, thus we require a probabilitydistribution p(ytjqt). We again assume this distribution to be independent of t. We make nofurther assumptions regarding the form of p(ytjqt) for now; for the purposes of developing theHMM inferene algorithms we need only be able to evaluate p(ytjqt) for a �xed value of yt.The joint probability is obtained as always by taking the produt over the loal onditionalprobabilities. Thus, for a partiular on�guration (q; y) = (q0; q1; : : : ; qT ; y0; y1; : : : ; yT ), we obtainthe following joint probability:p(q; y) = p(q0) T�1Yt=0 p(qt+1jqt) TYt=0 p(ytjqt): (12.1)To introdue the A and � parameters into this equation, we adopt a notation in whih state variablesan be used as indies. Thus, when qt takes on its ith value and qt+1 takes on its jth value, we letaqt;qt+1 denote the (i; j)th entry of the matrix A. Formally, this interpretation is ahieved via thefollowing de�nition: aqt;qt+1 , MYi;j=1 [aij ℄qitqjt+1 : (12.2)Reall that only one of the omponents of qt is one, and thus only one fator in the produt onthe right-hand side is di�erent from one; this piks out the appropriate entry in the matrix A.Similarly, we de�ne �q0 via: �q0 , MYi=1 [�i℄qi0 (12.3)whih has the e�et of piking out the appropriate entry in the � vetor. We use the simpleshorthand forms aqt;qt+1 and �q0 throughout the hapter, although the expanded forms in Eqs. 12.2and 12.3 will also prove useful when we disuss parameter estimation.Plugging the de�nitions into the joint probability, we have:p(q; y) = �q0 T�1Yt=0 aqt;qt+1 TYt=0 p(ytjqt): (12.4)This is the parameterized probability distribution in whih we wish to do inferene.12.3 The inferene problemThere are quite a number of inferene problems that are of interest in the setting of the HMM. Thegeneral inferene problem involves omputing the probability of a hidden state sequene q given an



12.4. INFERENCE 7observable output sequene y. Various marginal probabilities are also of interest, in partiular theprobability of a partiular hidden state qt given the output sequene.It is also of interest to ompute various probabilities onditioned on partial output sequenes.In partiular, onsider the \on-line" problem in whih a sequene of outputs yt arrives and it isdesired to ompute the probability of the state at time t immediately, without waiting for futuredata. Computing this probability, p(qtjy0; : : : ; yt), is generally alled the �ltering problem.2 Anotherinferene problem involves the alulation of p(qtjy0; : : : ; ys), where t > s. This is referred to as thepredition problem. Finally, the problem of alulating a posterior probability based on data up toand inluding a future time, i.e., p(qtjy0; : : : ; yu) for t < u, is referred to as the smoothing problem.Let us onsider the problem of omputing the posterior probability p(qjy) where y = (y0; : : : ; yT )is the entire observed output sequene at our disposal. Let q be an arbitrary �xed state sequenewhose probability we wish to ompute. By de�nition we have p(qjy) = p(q; y)=p(y). The numeratoris readily alulated by substituting q and y in Eq. 12.4. What about the denominator p(y)?Calulating the denominator involves taking a sum aross all possible values of the hiddenstates: p(y) =Xq0 Xq1 � � �XqT �(q0) T�1Yt=0 aqt;qt+1 TYt=0 p(ytjqt; �): (12.5)This sum should give us pause. Eah state node qt an take on M values, and we have T statenodes. This implies that we must perform MT sums, a wildly intratable number for reasonablevalues of M and T . Is it possible to perform inferene eÆiently for HMMs?The way out of our seeming dilemma lies in the fatorized form of the joint probability distri-bution (Eq. 12.4). Eah fator involves only one or two of the state variables, and the fators forma neatly organized hain. This suggests that it ought to be possible to move these sums \inside"the produt in a systemati way. Moving the sums as far as possible ought to redue the ompu-tational burden signi�antly. Consider, for example, the sum over qT . This sum an be broughtinside until the end of the hain and applied to the two fators involving qT . One this sum isperformed the result an be ombined with the two fators involving qT�1 and the sum over qT�1an be performed. We begin to hope that we an organize our alulation as a reursion.12.4 InfereneTo reveal the reursion behind the HMM inferene problem as simply as possible, let us onsider aninferene problem that is seemingly easier than the full problem. Rather than alulating p(qjy) forthe entire state sequene q, we fous on a partiular state node qt and ask to alulate its posteriorprobability, that is, we alulate p(qtjy). This posterior probability also has p(y) in its denominator,2Why \�ltering"? The terminology arises from the interpretation of the outputs yt as providing \noisy" informationabout the underlying \signal" qt. The inferene problem is then one of \�ltering" the noise from the signal. In thelinear stohasti systems setting in whih this terminology originally arose (f. Chapter 15), the alulation ofquantities suh as p(qtjy0; : : : ; yt) often had a frequeny domain interpretation in whih some frequenies are passedand not others. In suh a setting the terminology is rather natural. While reognizing the possible unnaturalness ofthe terminology outside of the linear systems setting, we bow to its wide usage and adopt it here.
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t+1Figure 12.3: A fragment of the graphial model representation of an HMM.and in fat we an easily adapt our algorithm for omputing p(qtjy) to ompute p(qjy) or marginalsover substrings of q (see Exerise ??).We thus turn to the alulation of p(qtjy). To make progress, we need to take advantage of theonditional independenies in our graphial model, breaking the problem into piees. To do so weondition on a state node (see Figure 12.3). We reverse the terms qt and y via an appliation ofBayes rule, onditioning now on qt, and use onditional independene:p(qtjy) = p(yjqt)p(qt)p(y) (12.6)= p(y0; : : : ; ytjqt)p(yt+1; : : : ; yT jqt)p(qt)p(y) : (12.7)Finally, we regroup the terms and make a de�nition:p(qtjy) = p(y0; : : : ; yt; qt)p(yt+1; : : : ; yT jqt)p(y) (12.8)= �(qt)�(qt)p(y) ; (12.9)where �(qt) , p(y0; : : : ; yt; qt) (12.10)is the probability of emitting a partial sequene of outputs y0; : : : ; yt and ending up in state qt, and�(qt) = p(yt+1; : : : ; yT jqt) (12.11)is the probability of emitting a partial sequene of outputs yt+1; : : : ; yT given that the system startsin state qt.



12.4. INFERENCE 9Given that the sum of p(qtjy) over the possible values of qt must equal one, we use Eq. 12.9 toobtain: p(y) =Xqt �(qt)�(qt): (12.12)That is, we an obtain the likelihood p(y) by alulating �(qt) and �(qt) for any t and summingtheir produt.We make one additional de�nition: (qt) will denote the posterior probability p(qtjy). Thus:(qt) , �(qt)�(qt)p(y) ; (12.13)where p(y) is omputed one, as the normalization onstant for a partiular (arbitrary) hoie of t.We have redued our problem to that of alulating the alphas and the betas. This is a usefulredution beause, as we now see, these quantities an be omputed reursively.Let us �rst onsider the alpha variables. Given that �(qt) depends only on quantities up totime t, and given the Markov properties of our model, we might hope to obtain a reursion between�(qt) and �(qt+1). Indeed, referring to Figure 12.3 to justify the onditional independenies weneed, we obtain: �(qt+1) = p(y0; : : : ; yt+1; qt+1) (12.14)= p(y0; : : : ; yt+1jqt+1)p(qt+1) (12.15)= p(y0; : : : ; ytjqt+1)p(yt+1jqt+1)p(qt+1) (12.16)= p(y0; : : : ; yt; qt+1)p(yt+1jqt+1) (12.17)= Xqt p(y0; : : : ; yt; qt; qt+1)p(yt+1jqt+1) (12.18)= Xqt p(y0; : : : ; yt; qt+1jqt)p(qt)p(yt+1jqt+1) (12.19)= Xqt p(y0; : : : ; ytjqt)p(qt+1jqt)p(qt)p(yt+1jqt+1) (12.20)= Xqt p(y0; : : : ; yt; qt)p(qt+1jqt)p(yt+1jqt+1) (12.21)= Xqt �(qt)aqt;qt+1p(yt+1jqt+1): (12.22)Throughout this derivation the key idea is to ondition on a state and then use the onditionalindependene properties of the model to deompose the equation. This is done in Eqs. 12.16 and12.22, both of whih an be veri�ed via the graphial model fragment. The seond key idea is tointrodue a variable, in this ase qt, by marginalizing over it (f. Eq. 12.18). One qt is introduedthe reursion follows readily.The omputational omplexity of eah step of the alpha reursion is O(M2); in partiular, foreah of the M values of qt+1, we require M multipliations to ompute the inner produt of �(qt)



10 CHAPTER 12. HIDDEN MARKOV MODELSwith the appropriate olumn of the A matrix. To ompute all of the alpha variables from t = 1 tot = T thus requires time O(M2T ).Note that the algorithm proeeds \forward" in time. The de�nition of alpha at the �rst timestep yields: �(q0) = p(y0; q0) (12.23)= p(y0jq0)p(q0) (12.24)= p(y0jq0)�q0 : (12.25)and these values are used to initialize the reursion.For the beta variables we obtain a \bakward" reursion in whih �(qt) is expressed in termsof �(qt+1), where one again the various steps are justi�ed by making referene to the graphialmodel fragment in Figure 12.3:�(qt) = p(yt+1; : : : ; yT jqt) (12.26)= Xqt+1 p(yt+1; : : : ; yT ; qt+1jqt) (12.27)= Xqt+1 p(yt+1; : : : ; yT jqt+1; qt)p(qt+1jqt) (12.28)= Xqt+1 p(yt+2; : : : ; yT jqt+1)p(yt+1jqt+1)p(qt+1jqt) (12.29)= Xqt+1 �(qt+1)aqt;qt+1p(yt+1jqt+1): (12.30)Note that the beta reursion is a bakwards reursion; that is, we start at the �nal time step T andproeed bakwards to the initial time step.As for the initialization of the beta reursion, the de�nition of �(qT ) is unhelpful, given that itmakes referene to a non-existent yT+1, but we see from applying the reursion one to ompute�(qT�1) that this value will be alulated orretly if we de�ne �(qT ) to be a vetor of ones.Alternatively, omputing p(y) at time T , we have:p(y) = Xi �(qiT )�(qiT ) (12.31)= Xi �(qiT ) (12.32)= Xi p(y0; : : : ; yT ; qiT ) (12.33)= p(y); (12.34)and we see that the de�nition makes sense.If we need only the likelihood p(y), Eq. 12.31 shows us that it is not neessary to ompute thebetas; a single forward pass for the alphas will suÆe. Moreover, Eq. 12.12 tell us that any partial



12.5. AN ALTERNATIVE INFERENCE ALGORITHM 11forward pass up to time t to ompute �(qt), aompanied by a partial bakward pass to ompute�(qt), will also suÆe. To ompute the posterior probabilities for all of the states qt, however,requires us to ompute alphas and betas for eah time step. Thus we require a forward pass and abakward pass for a omplete solution to the inferene problem.12.5 An alternative inferene algorithmThe alpha-beta algorithm is not the only way to ompute the posterior probabilities of the states. Inthis setion we desribe an alternative approah in whih the bakward phase is a reursion de�neddiretly on the (qt) variables. An interesting feature of this algorithm is that the bakward phasemakes no use of the observations yt; only the forward phase uses the observed data. We an throwaway the data as we �lter.The algorithm di�ers from the alpha-beta algorithm only in the bakward phase. In the for-ward diretion we run the alpha algorithm as before, alulating the �ltered quantities �(qt) =p(y0; : : : ; yt; qt).To unover a bakward reursion linking the t variables, we refer one again to the graphialmodel fragment in Figure 12.3. Our goal is to ompute (qt) = p(qtjy0; : : : ; yT ). As in our earlieralulations, our main tool for omputing suh quantities reursively is to ondition on a statevariable; suh onditioning breaks the problem into two piees. In partiular, we ondition on qt+1and obtain: p(qtjqt+1; y0; : : : ; yT ) = p(qtjqt+1; y0; : : : ; yt): (12.35)This shows that we an get a onditional probability that depends on all of the data via a onditionalprobability that depends only on the partial sequene up to t. Moreover, the left-hand side an bereadily onverted into (qt) by multiplying by p(qt+1jy0; : : : ; yT )|whih is (qt+1) by de�nition|and summing over qt+1. The details are as follows:(qt) = Xqt+1 p(qt; qt+1jy0; : : : ; yT ) (12.36)= Xqt+1 p(qtjqt+1y0; : : : ; yT )p(qt+1jy0; : : : ; yT ) (12.37)= Xqt+1 p(qtjqt+1; y0; : : : ; yt)p(qt+1jy0; : : : ; yT ) (12.38)= Xqt+1 p(qt; qt+1; y0; : : : ; yt)Pqt p(qt; qt+1; y0; : : : ; yt)p(qt+1jy0; : : : ; yT ) (12.39)= Xqt+1 p(qt; y0; : : : ; yt)p(qt+1jqt)Pqt p(qt; y0; : : : ; yt)p(qt+1jqt)p(qt+1jy0; : : : ; yT ) (12.40)= Xqt+1 �(qt)aqt;qt+1Pqt �(qt)aqt;qt+1 (qt+1) (12.41)We see that this reursion makes use of the alpha variables, whih therefore must be omputedbefore the gamma reursion begins. The gamma reursion is initialized with (qT ) = �(qT ).



12 CHAPTER 12. HIDDEN MARKOV MODELSNote that the data yt are not referened in the gamma reursion; the alpha reursion hasabsorbed all of the neessary data likelihoods.12.6 The �(qt; qt+1) variablesThe alpha-beta or the alpha-gamma algorithm provide us with the posterior probability of thehidden states of the HMM. These quantities are the diret analogs of the posterior probabilities hithat we studied in the simpler mixture setting. Moreover, they play the same role in estimating theparameters of the output distribution|as we will see in Setion 12.8 they are the expeted suÆientstatistis for these parameters. To estimate the transition probability matrix A, however, we needsomething more. It is lear intuitively, and justi�ed in Setion 12.8, where we write out the ompletelog likelihood, that what is required is the matrix of oourrene probabilities p(qt; qt+1jy). In thissetion we show how to alulate these posterior probabilities.Let us de�ne �(qt; qt+1) , p(qt; qt+1jy): (12.42)There are several ways to alulate this quantity. One way is to return to �rst priniples anddevelop reursions for the �(qt; qt+1), following muh the same proedure as we followed for thesingleton probabilities (qt). This is indeed a rather useful exerise (whih we ask the reader toarry out in Exerise ??), not only beause it reinfores the Markovian alulations that we haveengaged in, but beause it provides a stepping-stone to the general \juntion tree algorithm" thatwe disuss in Chapter 17. That algorithm provides a general framework from whih to derive all ofthe reursions that we desribe in this hapter. Moreover, if we have an algorithm for alulating�(qt; qt+1) in hand, we an also obtain the singleton probabilities via (qt) =Pqt+1 �(qt; qt+1).A seond approah to alulating �(qt; qt+1) is to build on the reursions already developed forthe alphas and betas:�(qt; qt+1) = p(qt; qt+1jy) (12.43)= p(yjqt; qt+1)p(qt+1jqt)p(qt)p(y)= p(y0; : : : ; ytjqt)p(yt+1jqt+1)p(yt+2; : : : ; yT jqt+1)p(qt+1jqt)p(qt)p(y)= �(qt)p(yt+1jqt+1)�(qt+1)aqt;qt+1p(y) : (12.44)This result an also be expressed in terms of alphas and gammas:�(qt; qt+1) = �(qt)p(yt+1jqt+1)(qt+1)aqt;qt+1�(qt+1) : (12.45)In either ase we see that we an readily alulate the �(qt; qt+1) variables one we have �nishedthe reursive alulation of the singleton probabilities (qt).



12.7. NUMERICAL ISSUES 1312.7 Numerial issuesTo summarize, we have found that we an alulate all of the neessary posterior probabilities forthe HMM reursively. Given an observed sequene y, we run the alpha reursion forward in time.If we require only the likelihood we simply sum the alphas at the �nal time step. If we also requirethe posterior probabilities of the states, we proeed to either the beta reursion or the gammareursion.Before these reursions are implemented on the omputer, attention must be paid to numeri-al issues. In partiular, the reursions involve repeated multipliations of small numbers and itis generally not long before the numbers underow. To avoid underow it suÆes to normalize.We outline the basi ideas in Exerise ??, but in brief the proedure is as follows. The alpha vari-ables, p(y0; : : : ; yt; qt), an be viewed as unnormalized onditional probabilities. Indeed, normalizingmeans division by p(y0; : : : ; yt), whih yields onditionals p(qtjy0; : : : ; yt). Not only are these ondi-tionals saled in a numerially sensible manner, but they also have a sensible semantis|they arethe �ltered estimates of the states. In sum, one should always ompute normalized alphas. In thebakward diretion, if one uses the gamma reursion one is already on safe ground|the gammasare onditional probabilities and hene sum to one. Moreover, it is easy to verify that normalizedalphas an be used in Eq. 12.41 in plae of the unnormalized alphas. Alternatively, if one usesthe beta reursion, it turns out that a numerially sensible solution (although one that is devoidof probabilisti interpretation), is to use the normalization fators from the forward reursion toresale the beta variables (these resaled betas will not sum to one). It turns out that the resaledvariables are then used exatly as the original alphas and betas are used in the formulas for theposteriors (qt) and �(qt; qt+1) (i.e., the normalization fators anel). See Exerise ?? for furtherdisussion.12.8 Parameter estimationThe parameters of an HMM are the transition matrix A, the initial probability distribution � andthe parameters that are assoiated with the output probability distribution. In this setion wedisuss the problem of estimating these parameters from data.Let � = (�;A; �) represent all of the parameters of the HMM model, where p(ytjqt; �) is theoutput distribution. The likelihood is given by p(yj�), for a �xed observable sequene y. Takingthe logarithm of Eq. 12.5 we have the following log likelihood:p(yj�) = logXq0 Xq1 � � �XqT �(q0) T�1Yt=0 aqt;qt+1 TYt=0 p(ytjqt; �): (12.46)Our goal is to maximize this expression with respet to �.As with our earlier models, this is in priniple just another optimization problem that an besolved via standard numerial optimization methods. In pratie, however, the EM algorithm isgenerally used to estimate HMM parameters.



14 CHAPTER 12. HIDDEN MARKOV MODELS12.8.1 EM algorithmThe EM algorithm for the HMM presents no new diÆulties to surmount and we will make relativelyshort work of the derivation. For onreteness we derive the algorithm for the ase in whihthe outputs yt are multinomial variables; it should be obvious how to hange the derivation toaommodate other output types (f. Exerise ??).In the multinomial ase, yt is an N -omponent vetor suh that yjt is equal to one for a partiularomponent and zero for all other omponents. We use the symbol �ij to denote the probabilitythat the jth omponent of yt is one, given that the ith omponent of qt is one; i.e., �ij , p(yjt =1jqit = 1; �). Using this notation we have:p(ytjqt; �) = MYi;j=1 [�ij℄qityjt (12.47)as the general expression for the output distribution.As usual we begin by writing down the omplete log likelihood to disover the form of the Mstep estimates as well as the suÆient statistis that are needed for the E step. We have:log p(q; y) = log(�q0 T�1Yt=0 aqt;qt+1 TYt=0 p(ytjqt; �)) (12.48)= log8<:MYi=1 [�i℄qi0 T�1Yt=0 MYi;j=1 [aij℄qitqjt+1 TYt=0 MYi;j=1 [�ij ℄qityjt9=; (12.49)= MXi=1 qi0 log �i + T�1Xt=0 MXi;j=1 qitqjt+1 log aij + TXt=0 MXi;j=1 qityjt log �ij: (12.50)From this expression, we see that mij , PT�1t=0 qitqjt+1 is the suÆient statisti for aij, nij ,PT�1t=0 qityjt is the suÆient statisti for �ij, and qi0 is the suÆient statisti for �i. The maximumlikelihood estimates for the ase of omplete data are therefore given by:âij = mijPMk=1mik (12.51)�̂ij = nijPNk=1 nik (12.52)�̂i = qi0: (12.53)All of these estimates have natural interpretations. Note that mij is the ount of the numberof times that the proess is in state i and transitions to state j. Dividing by Pkmik yields theproportion of those transitions out of state i that go to state j|a natural estimate of aij . Similarlythe estimate of �ij is given by the proportion of times that the hain is in state i and produes the



12.8. PARAMETER ESTIMATION 15jth output value. Finally, for the estimate of �i, we obtain a singular distribution that puts all ofthe probability mass at the observed initial state.3We turn to the E step of the EM algorithm. Consider �rst the expetation of the suÆientstatisti nij =PTt=0 qityjt . We have:E(nij jy; �(p)) = TXt=0 E(qitjy; �(p))yjt (12.54)= TXt=0 p(qit = 1jy; �(p))yjt (12.55), TXt=0 ityjt ; (12.56)where we introdue the notation it in the last line. By de�nition it is equal to (qt), evaluated atthat value of qt suh that qit = 1. Note �nally that the dependene of it on �(p) has been suppressed.Similarly, for the suÆient statisti mij , we have:E(mij jy; �(p)) = T�1Xt=0 E(qitqjt+1jy; �(p)) (12.57)= T�1Xt=0 p(qitqjt+1jy; �(p)) (12.58), T�1Xt=0 �ijt;t+1; (12.59)where we let �ijt;t+1 denote �(qt; qt+1) for (qt; qt+1) suh that qit = 1 and qjt+1 = 1.In summary, the suÆient statistis are alulated via the reursive forward-bakward proedurefrom Setion 12.4. We alulate the  variables via either Eq.12.13 or Eq.12.41. The � variablesare then alulated via Eq. 12.44 or Eq. 12.45.With the estimated suÆient statistis in hand, we substitute into the maximum likelihoodformulas (Eqs. 12.51, 12.52, and 12.53), to obtain the M step of the EM algorithm (also known, inthe ase of HMMs, as the \Baum-Welh updates"). We obtain:�̂(p+1)ij = PTt=0 ityjtPNk=1PTt=0 itykt = PTt=0 ityjtPTt=0 it : (12.60)3In a more general setting, in whih we have multiple repeated observations from a single HMM (i.e., data thatare IID at the level of entire sequenes), the estimate of �i beomes the proportion of times that the hain starts instate i, and indeed the estimates in Eq. 12.51 and Eq. 12.52 also beome averages over the multiple repetitions (f.Exerise ??).



16 CHAPTER 12. HIDDEN MARKOV MODELSwhere we use the fat that PNk=1 ykt = 1,â(p+1)ij = PT�1t=0 �i;jt;t+1PMk=1PT�1t=0 �i;kt;t+1 = PT�1t=0 �i;jt;t+1PT�1t=0 it ; (12.61)where by de�nitionPMk=1 �i;kt;t+1 = it , and: �̂(p+1)i = i0: (12.62)The EM algorithm iterates between performing these updates (the M step) and the forward-bakward pass using the updated values (the E step).12.9 Historial remarks and bibliography


