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Chapter 11The EM algorithmThe expe
tation-maximization (EM) algorithm provides a general approa
h to the problem of max-imum likelihood parameter estimation in statisti
al models with latent variables. We have alreadyseen two examples of the EM approa
h at work in the previous 
hapter. While these examplesare revealing ones, it is important to understand that EM applies mu
h more widely. Indeed, theEM approa
h goes hand-in-glove with general graphi
al model ma
hinery, taking advantage of the
onditional independen
e stru
ture of graphi
al models in a systemati
 way. As su
h it o

upies a
entral pla
e in the book.While in prin
iple one 
an treat ML parameter estimation as a simple matter of passing alikelihood fun
tion to a bla
k-box numeri
al optimization routine, in pra
ti
e one would like totake advantage of the stru
ture embodied in the model to break the optimization problem intomore manageable pie
es. EM provides a systemati
 way to implement su
h a divide-and-
onquerstrategy. As we will see, in this 
hapter and in later 
hapters, this approa
h leads to 
on
eptual
larity and simpli
ity of algorithmi
 implementation. It also provides a guide to dealing with modelsin whi
h issues of 
omputational 
omplexity begin to arise. Indeed, EM will provide a guide todealing with problems in whi
h the mere 
al
ulation of the likelihood or its derivatives appear tobe intra
table 
omputational 
hallenges.The main goal of this short 
hapter is to present a general formulation of the EM algorithm. Weshow that EM is a rather simple optimization algorithm|it is 
oordinate as
ent on an appropriatelyde�ned fun
tion. Thus, both the E step and the M step 
an be viewed as maximizations in anabstra
t spa
e. We show how the expe
ted 
omplete log likelihood emerges from this perspe
tive;in parti
ular, we show how the maximization operation that de�nes the E step 
an also be viewedas an expe
tation. We also take the 
oordinate as
ent story a bit further, showing that EM 
anbe viewed as an alternating minimization algorithm|a spe
ial form of 
oordinate des
ent in aKullba
k-Leibler divergen
e.Finally, we sket
h how the EM algorithm applies in the general setting of graphi
al models.Subsequent 
hapters will provide many examples of appli
ations to graphi
al models and will �llin the various details appropriate to these spe
ial 
ases.3



4 CHAPTER 11. THE EM ALGORITHM11.1 Latent variables and parameter estimationRe
all that latent or hidden variables are generally introdu
ed into a model in order to simplify themodel in some way. We may observe a 
omplex pattern of dependen
y among a set of variablesx = (x1; : : : ; xm). Rather than modeling this dependen
y dire
tly, via edges linking these variables,we may �nd it simpler to a

ount for their dependen
y via \top-down" dependen
y on a latentvariable z. In the simplest 
ase, we may �nd it possible to assume that the xi are 
onditionallyindependent given z, and thus restri
t our model to edges between the node z and the nodes xi.If the latent variables in the model 
ould be observed, then generally the parameter estimationproblem would be simpli�ed as well. Indeed, this is one way of 
hara
terizing what we mean by thesimpli�
ation a
hieved by introdu
ing latent variables into a model. For example, in the 
ase ofthe mixture of Gaussians model, if we 
ould observe a 
lass label 
orresponding to ea
h data point,then we would break the data into 
lasses and estimate the mean and 
ovarian
e matrix separatelyfor ea
h 
lass. The estimation problem would de
ouple.But the latent variables are not observed, and this implies that the likelihood fun
tion is amarginal probability, obtained by summing or integrating over the latent variables. Marginalization
ouples the parameters and tends to obs
ure the underlying stru
ture in the likelihood fun
tion.The EM algorithm essentially allows us to treat latent variable problems using 
omplete datatools, skirting the fa
t that the likelihood is a marginal probability and exploiting to the fullestthe underlying stru
ture indu
ed by the latent variables. EM is an iterative algorithm, 
onsistingof a linked pair of steps. In the expe
tation step (E step), the values of the unobserved latentvariables are essentially \�lled in," where the �lling-in is a
hieved by 
al
ulating the probability ofthe latent variables, given the observed variables and the 
urrent values of the parameters.1 In themaximization step (M step), the parameters are adjusted based on the �lled-in variables, a problemwhi
h is essentially no more 
omplex than it would be if the latent variables had been observed.11.2 The general settingLet X denote the observable variables, and let Z denote the latent variables. Often, X and Zde
ompose into sets of independent, identi
ally-distributed (IID) pairs, in parti
ular X 
an oftenbe written as X = (X1;X2; : : : ;XN ), where the Xi are IID variables and the observed data,x = (x1; x2; : : : ; xN ), are the observed values of X. We do not need to make this assumption,however, and indeed we will see many non-IID examples in later 
hapters. Thus, X represents thetotality of observable variables and x is the entire observed dataset. Similarly Z represents the setof all latent variables. The probability model is p(x; z j �).If Z 
ould be observed, then the ML estimation problem would amount to maximizing thequantity: l
(�;x; z) , log p(x; z j �); (11.1)1We will see that a better way to express this is that in the E step we 
ompute 
ertain expe
ted suÆ
ient statisti
s,whi
h in the 
ase of multinomial variables redu
es to 
omputing the probability of the latent variables. But let ussti
k with the intuitive and pi
turesque language of \�lling-in" for now.



11.2. THE GENERAL SETTING 5whi
h is referred to in the 
ontext of the EM algorithm as the 
omplete log likelihood. If theprobability p(x; z j �) fa
tors in some way, su
h that separate 
omponents of � o

ur in separatefa
tors, then the operation of the logarithm has the e�e
t of separating the likelihood into termsthat 
an be maximized independently. As we dis
ussed in Chapter 9, this is what we generallymean by \de
oupling" the estimation problem.Given that Z is not in fa
t observed, the probability of the data x is a marginal probability, andthe log likelihood (referred to in this 
ontext as the in
omplete log likelihood) takes the followingform: l(�;x) = log p(x j �) = logXz p(x; z j �); (11.2)where here as in the rest of the 
hapter we utilize summation to stand for marginalization|thederivation goes through without 
hange if we integrate over 
ontinuous z. The logarithm on theright-hand side is separated from p(x; z j �) by the summation sign, and the problem does notde
ouple. It is not 
lear how to exploit the 
onditional independen
e stru
ture that may be presentin the probability model.Let us not give up the hope of working with the 
omplete log likelihood. Given that Z is notobserved, the 
omplete log likelihood is a random quantity, and 
annot be maximized dire
tly. Butsuppose we average over z to remove the randomness, using an \averaging distribution" q(z jx).That is, let us de�ne the expe
ted 
omplete log likelihood :hl
(�;x; z)iq ,Xz q(z jx; �) log p(x; z j �); (11.3)a quantity that is a deterministi
 fun
tion of �. Note that the expe
ted 
omplete log likelihood islinear in the 
omplete log likelihood and thus should inherit its favorable 
omputational properties.Moreover, if q is 
hosen well, then perhaps the expe
ted 
omplete log likelihood will not be toofar from the log likelihood and 
an serve as an e�e
tive surrogate for the log likelihood. While we
annot hope that maximizing this surrogate will yield a value of � that maximizes the likelihood,perhaps it will represent an improvement from an initial value of �. If so then we 
an iterate thepro
ess and hill-
limb. This is the basi
 idea behind the EM algorithm.We begin the derivation of the EM algorithm by showing that an averaging distribution q(z jx)
an be used to provide a lower bound on the log likelihood. Consider the following line of argument:l(�;x) = log p(x j �) (11.4)= logXz p(x; z j �) (11.5)= logXz q(z jx)p(x; z j �)q(z jx) (11.6)� Xz q(z jx) log p(x; z j �)q(z jx) (11.7), L(q; �); (11.8)



6 CHAPTER 11. THE EM ALGORITHMwhere the last line de�nes the fun
tion L(q; �), a fun
tion that we will refer to as an auxiliaryfun
tion.2 In Eq. 11.7 we have used Jensen's inequality, a simple 
onsequen
e of the 
on
avityof the logarithm fun
tion (see Appendix XXX). What we have shown is that|for an arbitrarydistribution q(z jx)|the auxiliary fun
tion L(q; �) is a lower bound for the log likelihood.The EM algorithm is a 
oordinate as
ent algorithm on the fun
tion L(q; �). At the (t + 1)stiteration, we �rst maximize L(q; �(t)) with respe
t to q. For this optimizing 
hoi
e of averagingdistribution q(t+1), we then maximize L(q(t+1); �) with respe
t to �, whi
h yields the updated value�(t+1). Giving these steps their traditional names, we have:(E step) q(t+1) = arg maxq L(q; �(t)) (11.9)(M step) �(t+1) = arg max� L(q(t+1); �): (11.10)We will soon explain why the �rst step 
an be referred to as an \expe
tation step." We will alsoexplain how a pro
edure based on maximizing a lower bound on the likelihood l(�;x) 
an maximizethe likelihood itself.The �rst important point to note is that the M step is equivalently viewed as the maximizationof the expe
ted 
omplete log likelihood. To see this, note that the lower bound L(q; �) breaks intotwo terms: L(q; �) = Xz q(z jx) log p(x; z j �)q(z jx) (11.11)= Xz q(z jx) log p(x; z j �)�Xz q(z jx) log q(z jx) (11.12)= hl
(�;x; z)iq �Xz q(z jx) log q(z jx); (11.13)and that the se
ond term is independent of �. Thus, maximizing L(q; �) with respe
t to � isequivalent to maximizing hl
(�;x; z)iq with respe
t to �.Let us now 
onsider the E step, the maximization of L(q; �(t)) with respe
t to the averagingdistribution q. This maximization problem 
an be solved on
e and for all; indeed, we 
an verifythat the 
hoi
e q(t+1)(z jx) = p(z jx; �(t)) yields the maximum. To see this, evaluate L(q; �(t)) forthis 
hoi
e of q: L(p(z jx; �(t)); �(t)) = Xz p(z jx; �(t)) log p(x; z j �)p(z jx; �(t)) (11.14)= Xz p(z jx; �(t)) log p(x j �(t)) (11.15)= log p(x j �(t)) (11.16)= l(�(t);x): (11.17)Given that l(�;x) is an upper bound for L(q; �(t)), this shows that L(q; �(t)) is maximized by settingq(z jx) equal to p(z jx; �(t)).2Note that L(q; �) is a fun
tion of x as well. We omit this dependen
e, however, to lighten the notation.



11.3. EM AND ALTERNATING MINIMIZATION 7There is slightly di�erent way to show this result. We �rst show that the di�eren
e betweenl(�;x) and L(q; �) is a Kullba
k-Leibler (KL) divergen
e:l(�;x)�L(q; �) = l(�;x)�Xz q(z jx) log p(x; z j �)q(z jx) (11.18)= Xz q(z jx) log p(x j �)�Xz q(z jx) log p(x; z j �)q(z jx) (11.19)= Xz q(z jx) log p(x j �)� log q(z jx)p(z jx; �) (11.20)= D(q(z jx) k p(z jx; �)): (11.21)In Appendix XXX we show that the KL divergen
e is nonnegative (a simple 
onsequen
e of Jensen'sinequality), and that the KL divergen
e is uniquely minimized by letting q(z jx) equal p(z jx; �(t)).Sin
e minimizing the di�eren
e between l(�;x) and L(q; �) is equivalent to maximizing L(q; �), weagain have our result.The 
onditional distribution p(z jx; �(t)) is an intuitively appealing 
hoi
e of averaging distri-bution. Given the model p(x; z j �(t)), a link betwen the observed data and the latent variables,the 
onditional p(z jx; �(t)) is our \best guess" as to the values of the latent variables, 
onditionedon the data x. What the EM algorithm does is to use this \best guess" distribution to 
al
ulatean expe
tation of the 
omplete log likelihood. The M step then maximizes this expe
ted 
ompletelog likelihood with respe
t to the parameters to yield new values �(t+1). We then presumably havean improved model, and we 
an now make a \better guess" p(z jx; �(t+1)), whi
h is used as theaveraging distribution in a subsequent EM iteration.What is the e�e
t of an EM iteration on the log likelihood l(�;x)? In the M step, we 
hoosethe parameters so as to in
rease a lower bound on the likelihood. In
reasing a lower bound ona fun
tion does not ne
essarily in
rease the fun
tion itself, if there is a gap between the fun
tionand the bound. In the E step, however, we have 
losed the gap by an appropriate 
hoi
e of the qdistribution. That is, we have: l(�(t);x) = L(q(t+1); �(t)); (11.22)by Eq. 11.17, and thus an M-step in
rease in L(q(t+1); �) will also in
rease l(�;x).In summary, we have shown that the EM algorithm is a hill-
limbing algorithm in the loglikelihood l(�;x). The algorithm a
hieves this hill-
limbing behavior indire
tly, by 
oordinate as
entin the auxiliary fun
tion L(q; �). The advantage of working with the latter fun
tion is that it involvesmaximization of the expe
ted 
omplete log likelihood rather than the log likelihood itself, and, aswe have seen in examples, this is often a substantial simpli
ation.11.3 EM and alternating minimizationWe 
an put our results in a slightly more elegant form by working with KL divergen
es rather thanlikelihoods.



8 CHAPTER 11. THE EM ALGORITHMRe
all that in Chapter 8 we noted a simple equivalen
e between maximization of the likelihoodand minimization of the KL divergen
e between the empiri
al distribution and the model. Let usreturn to that equivalen
e, and bound the KL divergen
e rather than the log likelihood. We have:D(~p(x) k p(x j �)) = �Xx ~p(x) log p(x j �) +Xx ~p(x) log ~p(x) (11.23)� �Xx ~p(x)L(q; �) +Xx ~p(x) log ~p(x) (11.24)= �Xx ~p(x)Xz q(z jx) log p(x; z j �)q(z jx) +Xx ~p(x) log ~p(x) (11.25)= Xx ~p(x)Xz q(z jx) log ~p(x)q(z jx)p(x; z j �) (11.26)= D(~p(x)q(z jx) k p(x; z j �)): (11.27)We see that the KL divergen
e between the empiri
al distribution and the model|the quantitythat we wish to minimize|is upper bounded by a \
omplete KL divergen
e," a KL divergen
ebetween joint distributions on (x; z).The term Px ~p(x) log ~p(x) is independent of q and � and its in
lusion in the problem thereforedoes not 
hange any of our previous results. In parti
ular, minimizing the 
omplete KL divergen
ewith respe
t to q and � is equivalent to maximizing the auxiliary fun
tion L(q; �) with respe
t tothese variables. We 
an therefore reformulate the EM algorithm in terms of the KL divergen
e.De�ning D(q k�) , D(~p(x)q(z jx) k p(x; z j �)) as a 
onvenient shorthand, we have:(E step) q(t+1)(z jx) = arg minq D(q k �(t)) (11.28)(M step) �(t+1) = arg min� D(q(t+1) k �) (11.29)We see that EM is a spe
ial kind of 
oordinate des
ent algorithm|an alternating minimizationalgorithm. We alternate between minimizing over the arguments of a KL divergen
e.The alternating minimization perspe
tive and the auxiliary fun
tion perspe
tive are essentiallythe same, and the 
hoi
e between the two is largely a matter of taste. We will see, however, inChapter 19, that the alternating minimization view allows us to provide a geometri
 interpretationof EM as a sequen
e of proje
tions between manifolds|a perspe
tive reminis
ent of our presentationof the LMS algorithm in Chapter 6.11.4 EM, suÆ
ient statisti
s and graphi
al models[Se
tion not yet written.℄11.5 Histori
al remarks and bibliography


