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Chapter 10Mixtures and onditional mixturesIn this hapter we begin the study of models with latent or hidden variables. Latent variablesare simply random variables whose values are not spei�ed in the observed data|in the graphialmodel formalism these variables are the unshaded nodes. Our fous in the urrent hapter is thesimple ase of latent variables that an take one of a �nite set of values.Let us take a moment to pose the question of why would one inlude a node in a model if thevalue of that node annot be observed in the data. Shouldn't we inlude variables in our model onlyif their values an be observed? One answer to this question is philosophial|surely muh humanknowledge involves explaining observed data in terms of unobserved onepts.1 For example, weoften introdue distintions into our reasoning in order to simplify relationships between observ-ables. Thus a dotor may group patients into those with a ertain \syndrome" and those without,and this grouping may make it easier to understand the relationships between observed symptoms.A biologist may wish to group animals into distint speies, beause it may be easier to explainbehavioral or physiologial patterns within eah speies than to explain suh patterns without thehelp of the distintion. Although suh distintions may exist only in the mind of the dotor orbiologist, at least at the outset, their utility for modeling the data may provide the motivationfor further study in whih one tries to unover a \real" physial or biologial interpretation of thedistintion.Viewing a \distintion" as a disrete random variable ranging over a �nite, unordered set ofvalues leads to the mixture models studied in the urrent hapter.In Chapter ?? we study ontinuous latent variable models in whih the latent variable pa-rameterizes a k-dimensional subspae of the d-dimensional input spae; here the latent variableahieves a \dimensionality redution." Chapter 12 and Chapter 15 disuss models in whih latentvariables are used in the time series setting to summarize past data; that is, the latent variablesare \state variables." In all of these ases, and in others that we will meet, the general idea is thesame|models with latent variables an often be simpler than models without latent variables. Instatistial terms we often �nd that we an get by with fewer parameters using a latent variablemodel, or we an avail ourselves of simple parametri distributions that have advantageous om-1One should not, however, expet the philosophers to have agreed on this. Indeed, the philosophial shool oflogial positivism expliitly denied the meaningfulness of using unobservable onepts in sienti� reasoning.3



4 CHAPTER 10. MIXTURES AND CONDITIONAL MIXTURESputational or analytial properties. We will not attempt to de�ne \simpliity" more rigorously fornow|that is the task of Chapter 26. Instead we proeed by example, desribing latent variablemodels that have been shown to be useful in pratie.In this hapter we disuss two kinds of models based on disrete latent variables|unonditionalmixture models and onditional mixture models. Roughly speaking, unonditional mixture mod-els are used to solve density estimation problems, whereas onditional mixture models are usedto solve regression and lassi�ation problems. One useful perspetive to take on the latent vari-able methodology in both of these kinds of problems is that it allows us to break problems intosubproblems. Thus, in unonditional mixture modeling, for eah value of the latent variable weobtain a (presumably simpler) density estimation subproblem. In onditional mixture modeling,for eah value of the latent variable we obtain a (presumably simpler) regression or lassi�ationsubproblem. In general, mixture modeling an be viewed as a \divide-and-onquer" approah tostatistial modeling.10.1 Unonditional mixture modelsWe begin by disussing unonditional mixture models. While regression and lassi�ation modelsrequire the observation of (X;Y ) pairs, unonditional mixture models make do with observationsof X alone.As we disussed in Chapter 5, mixture models an be used to solve density estimation problems,allowing us to answer questions about whether query vetors are \typial" or \untypial." Thishas many appliations, inluding the detetion of outliers and the design of algorithms for dataompression. Note that in suh appliations we are not neessarily interested in identifying orinterpreting the struture of the probability distribution generating the data; rather we are simplyinterested in a exible model that allows us to obtain a good estimate of the probability density.In other problems, however, we may have a more \strutural" interest in the mixture model.In partiular, as we disussed in Chapter 5, we may wish to take the point of view that thereare \subpopulations" underlying the data. In this setting, mixture modeling is losely linked tolassi�ation, in partiular to the generative lassi�ation models disussed in Chapter 7. Indeed,treating the lass label of a generative lassi�ation model as a latent variable onverts the modelinto a mixture model. Reserving the term lassi�ation for the setting in whih the labels are infat observed, we use the term lustering for the problem of inferring the labels of data points whensuh labels are absent in the data. Mixture models provide a popular and widely used methodologyfor lustering.In Chapter 5 we presented the following general formulation of an unonditional mixture model(see Figure 10.1). Let Z represent a multinomial random variable with omponents Zi. We have:p(x j �) = Xi p(Zi = 1 j�i)p(x jZi = 1; �i) (10.1)= Xi �ip(x jZi = 1; �i): (10.2)where � = (�1; : : : ; �K ; �1; : : : ; �K) and where the �i are onstrained to sum to one. Reall the
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Figure 10.1: A mixture model represented as a graphial model. The latent variable Z is a multi-nomial node taking on one of K values.terminology|the parameters �i are referred to as mixing proportions and the densities p(x jZi =1; �i) are referred to as mixture omponents.10.1.1 Gaussian mixture modelsLet us begin by disussing the important speial ase of the Gaussian mixture model. In this modelthe mixture omponents are Gaussian distributions with parameters �i , (�i;�i). Note that weallow the ovariane to vary aross the mixture omponents. One an also onsider models in whihthe ovariane matries are onstrained to be equal.From Eq. (10.2) we obtain the following probability model for a Gaussian mixture:p(x j �) = Xi �i 1(2�)m=2j�ij1=2 exp��12(x� �i)T��1i (x� �i)� : (10.3)We will also write this as: p(x j �) =Xi �iN (x j�i;�i) (10.4)to simplify notation.Figure 10.2 shows a simple illustration of a Gaussian mixture model, together with a samplefrom the marginal distribution.Let us alulate the probability of the latent variable Z onditioned on the observed variableX. This alulation is of obvious interest if we wish to use the mixture model in the lusteringsetting|the onditional probability of Z an be used to assign X to one of the lusters. We willalso �nd that this onditional probability plays an important role in parameter estimation.We let � i denote the onditional probability that the ith omponent of Z is equal to one. FromBayes rule we have: � i , p(Zi = 1 jx; �) (10.5)
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(c)Figure 10.2: Illustration of a mixture of 3 Gaussians in a two-dimensional spae showing (a)ontours representing one standard deviation for eah of the mixture omponents, (b) the marginalprobability density of the mixture distribution, and () a sample of 500 points drawn from themarginal distribution. = p(x jZi = 1; �i)p(Zi = 1 j�i)p(x j �) (10.6)= �iN (x; �i j�i)Pj �jN (x; �j j�j) (10.7)Note the relationship to the generative lassi�ation models of Setion 7.2. In partiular, if we letthe �k be equal, then the quadrati terms anel and we obtain the linear-softmax funtion as inthat setion.It is ommon to refer to �i as a \prior probability" and � i as a \posterior probability." Thisis a onvenient terminology that reets the fat that these probabilities are linked via Bayesrule. Please note, however, that the use of this terminology is unrelated to whether or not we useBayesian methods to estimate the parameters �. Indeed, in this hapter our fous will be maximumlikelihood estimation.Let us now onsider the problem of estimating � from an IID set of observations D = fxn : n =1; : : : ; Ng. The model is shown in Figure 10.3, where we see that eah data point xn is aompaniedby a multinomial latent variable Zn that represents the \assignment" of xn to one of the mixtureomponents. We form the log likelihood:l(� j D) = Xn log p(xn j �) (10.8)= Xn logXi �iN (xn j�i;�i) (10.9)by taking the log of the produt of N opies of the probability model in Eq. (10.3). Note thedisonerting fat that the logarithm stops in front of the sum. In all of the models that we haveonsidered up until now, the logarithm ated diretly on the basi probability distributions in ourmodel, whih, given the exponential family distributions that we have worked with, yielded simpleexpressions suh as squared error or ross entropy. Here the likelihood is a marginal probability.
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NFigure 10.3: The mixture model under an IID sampling assumption.This prevents the logarithm from ating diretly on the omponent probability distributions andleaves us with a tangled nonlinear funtion to maximize.One approah to maximizing this likelihood is to hand Eq. (10.9) to a nonlinear optimizationalgorithm suh as onjugate gradient or Newton-Raphson. In Appendix XXX we provide somedetails regarding this approah. Our main fous, however, will be on an alternative approah tomaximizing the likelihood known as the Expetation-Maximization (EM) algorithm. This algorithmis appliable far beyond the Gaussian mixture setting; indeed, it is appliable to arbitrary graphialmodels with latent variables. Its important virtue in the graphial model setting is that it allowsus to take full advantage of the graphial struture underlying the likelihood; in partiular, we willbe able to exploit the inferene algorithms disussed in Chapter 3 and Chapter 17. By relating theproblem of parameter estimation and the problem of eÆient inferene, the EM algorithm bringstogether two of our major themes. It will play an important role throughout the book.In this hapter we provide a heuristi introdution to the EM algorithm for Gaussian mixturemodels. Chapter 11 provides a rigorous derivation of EM, not only for Gaussian mixture models,but for the general ase.10.1.2 The K-means algorithmTo motivate the EM algorithm for Gaussian mixtures, it is useful to step briey outside of theGaussian mixture framework to onsider an even simpler approah to lustering.Reall that we have a set of observations D = fxn : n = 1; : : : ; Ng. Our goal is to group thedata points into a set of K lusters, where we suppose that the value of K is given.The K-means algorithm represents eah luster with a single vetor, whih we refer to as a\luster mean." The basi idea is to assign data points to lusters by �nding the nearest lustermean and assigning the data point to that luster.Note that we do not have a probabilisti model in mind, so \luster mean" is perhaps a poor



8 CHAPTER 10. MIXTURES AND CONDITIONAL MIXTURESterminology. \Cluster entroid" is better; the idea is that if we knew whih data points wereassigned to the ith luster, then the luster mean would be the entroid (the sample average) ofthose data points.We are faed with a \hiken-and-egg" problem|if we knew the assignments we ould �nd themeans, or if we knew the means we ould �nd the assignments. The basi idea of the K-meansalgorithm is to make an initial guess for one of these quantities (the means) and iterate bak andforth.The algorithm maintains two kinds of variables|means and assignments. Let �i denote theluster mean for the ith luster. For eah data point xn let zn be an indiator vetor that representsthe assignment of xn to one of the lusters. Thus, if the xn is assigned to the ith luster, we setthe omponent zin equal to one, and all other omponents of zn equal to zero.The K-means algorithm begins by making some initial assignments for the �i, for exampletaking the �i to be given by a subset of the data vetors themselves. The algorithm then alternatesbetween two phases. In the �rst phase, values for the indiator variables zin are evaluated byassigning eah data point xn to the losest mean �i (where distane is typially measured using asimple Eulidean metri) so that, for eah n,zin = � 1 if i = argminj kxn � �jk20 otherwise. (10.10)In the seond phase, the values of the means are reomputed by taking �i to be equal to the samplemean of those vetors xn whih have been assigned to the ith luster:�i = Pn zinxnPn zin : (10.11)The two phases of re-assigning data points to lusters and re-omputing the luster means arerepeated in turn until there is no further hange in the assignments (or until some maximumnumber of iterations is exeeded). It is easily seen that the K-means algorithm must onverge aftera �nite number of iterations, sine there are only a �nite number of possible assignments for theset of disrete variables zin and for eah suh assignment there is a unique value for the f�ig.Although we have motivated the K-means algorithm heuristially, the algorithm an also bemotivated as the solution to an optimization problem. In partiular, it turns out that the algorithman be viewed as minimizing the distortion measure given by:J = NXn=1 KXi=1 zinkxn � �ik2: (10.12)As we ask the reader to show in Exerise ??, Eq. (10.10) is obtained by minimizing J with respetto zin while keeping �i �xed, while Eq. (10.11) is obtained by minimizing J with respet to �i whilekeeping zin �xed. Thus K-means an be viewed as a oordinate desent algorithm.The K-means algorithm is illustrated using a simple example in Figure 10.4. The data set,shown in plot (a), onsists of 40 data points in two dimensions. We now apply the K-meansalgorithm, with K = 2, using the initial mean vetors shown as the red and blue rosses in plot (b).
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(d) (e) (f)Figure 10.4: Illustration of the K-means algorithm. See the text for a full disussion.Note that this is in fat a partiularly poor initialization and has been hosen in order to provide alear illustration of the operation of the algorithm. A better initialization would involve seletingrandom data points as the initial means, and would typially give faster onvergene. The �rststage of the algorithm involves assigning eah data point to one of the two lusters aording to itsdistane to eah of the means. This results in the partitioning of the data set shown in plot (), inwhih eah data point has been olored aording to the luster (red or blue) to whih it is assigned.Next we re-ompute the mean vetors using the urrent partitioning, so that the blue mean is re-assigned to the mean of the blue-olored data points, and similarly for the red mean, giving the newestimates for the means shown in plot (d). The two phases of the algorithm ontinue alternately,with repartioning shown in plot (e), re-assignment in plot (f). On the next re-partitioning theassignment of data points does not hange and hene the algorithm has onverged.10.1.3 The EM algorithmLet us return to the probabilisti framework of mixture models. Adopting the language of the K-means algorithm, let us view the latent variables Zn as \assignment variables." These are randomvariables in the mixture model setting, reeting our unertainty about the luster assignments.If the Zn were observed we would have a lassi�ation problem in whih eah data point Xn isassigned a \lass label." The estimate of the mean of the ith Gaussian would simply be the samplemean for the data points in the ith lass (f. Eq. (7.20)):�̂i = Pn zinxnPn zin : (10.13)



10 CHAPTER 10. MIXTURES AND CONDITIONAL MIXTURESThis is idential to the K-means update formula, but here we are interpreting the variables zinnot as quantities to be manipulated by our algorithm, but rather as observed values of randomvariables.Of ourse, we do not know the values of the Zn variables. Our approah will be to replae thesevalues with their onditional expetations, onditioning on the data (the xn values). Reall that weuse the notation � in for these onditional expetations.2 We try the following idea|let us replaezin by � in in Eq. (10.13): �̂i = Pn � inxnPn � in : (10.14)Thus, we have replaed a sample mean with a weighted sample mean. Eah data point xn on-tributes to the estimate of the ith mean in proportion to its posterior probability � in. The quantity� in is often referred to as a \soft assignment," a natural terminology both from the point of view ofEq. (10.14) and the de�nition of � in in Eq. (10.7).We still have a hiken-and-egg problem, however. As seen in Eq. (10.7), the posterior prob-abilities � in depend on the parameter estimates, whih, aording to Eq. (10.14), depend on theposterior probabilities.One again, the way out of this hiken-and-egg problem is to start with an initial guess (forthe parameters) and to iterate. Given a set of parameters we alulate the posterior probabilities.Given a set of posterior probabilities, we ompute new parameter estimates. This is the basistruture of the EM algorithm for Gaussian mixtures.To larify, let us augment our notation for � in to inlude referene to the iteration number t:� i(t)n = �(t)i N (xn j�(t)i ;�(t)i )Pj �(t)j N (xn j�(t)j ;�(t)j ) ; (10.15)where we have also indexed the parameter estimates with a supersript to indiate the iterationnumber. We now de�ne update equations for all of the parameters|the mixing proportions, themeans and the ovariane matries. Motivated by the K-means algorithm we have the followingformula for the means: �(t+1)i = Pn � i(t)n xnPn � i(t)n : (10.16)For the ovariane matries we use an analogous formula:�(t+1)i = Pn � i(t)n (xn � �(t+1)i )(xn � �(t+1)i )TPn � i(t)n : (10.17)de�ning the update as a weighted sample ovariane, with the posterior probabilities again servingas weights. Finally, viewing � i(t)n as a \soft assignment" of data point xn to luster i, it is natural to2We use the elementary fat that onditional expetations and onditional probabilities are the same for binary-valued variables: E[Zin jxn℄ = p(Zin = 1 jxn).



10.1. UNCONDITIONAL MIXTURE MODELS 11estimate �i as the sum of these assignments aross the data, divided by the number of data points:�(t+1)i = 1N Xn � i(t)n : (10.18)Note that if we sum these estimates �(t+1)i with respet to i we obtain one; thus our \soft ounting"has not underounted or overounted.Equations 10.15, 10.18, 10.16, and 10.17 de�ne the EM algorithm for Gaussian mixtures.The �rst phase of the algorithm|the alulation of the posterior probability in Eq. (10.15)|isgenerally referred to as the \Expetation step," or \E step." The seond phase of the algorithm|the parameter updates in Equations 10.18, 10.16, and 10.17|is generally referred to as the \Max-imization step," or \M step." The explanation for this hoie of terminology will be provided inChapter 11.In Figure 10.5 we illustrate the EM algorithm applied to a mixture of Gaussians using the samedata set, shown in plot (a), as used to illustrate the K-means algorithm in Figure 10.4. Here amixture of 2 Gaussians is used, with enters initialized using the same values as for the K-meansalgorithm, and with ovariane matries initialized to be proportional to the unit matrix. Contoursof 1 standard deviation for eah of the Gaussian omponents are shown in plot (b). In plot () weshow the result of applying the initial E-step, in whih points have been olored aording to theposterior probabilities for the two omponents, suh that the olor ranges from blue to red as theprobability P (bluejxn) ranges from 1 to 0. We see in plot () that some points have a signi�antprobability for belonging to either luster and so appear purple. Plot (d) shows the result of the�rst M-step. We see that the mean of, say, the blue Gaussian is moved to the mean of the dataset, weighted by the probabilities of eah data point belonging to the blue luster, in other wordsit moves to the mean of the blue ink. Similarly the ovariane of the blue Gaussian beomes thesample ovariane of the blue ink, with analogous results for the red omponent. Subsequent plotsshow the situation after various numbers L of omplete EM yles. In plot (i) the model is loseto the �nal, onverged state. Note that the EM algorithm takes many more iterations to reah(approximate) onvergene ompared with the K-means algorithm, and that eah yle requiressigni�antly more omputation. It is therefore ommon to run the K-means algorithm in order to�nd a suitable initialization for a Gaussian mixture model whih is subsequently adapted using EM.The ovariane matries an onveniently be initialized to the sample ovarianes of the lustersfound by the K-means algorithm, and the mixing proportions an be set to the frations of datapoints assigned to the respetive lusters.10.1.4 Neessary onditionsAlthough we have de�ned a simple, intuitively appealing algorithm, it is not yet lear what rela-tionship this algorithm has to the quantity that we are trying to maximize, the log likelihood inEq. (10.9). In this setion and the following setion, we take initial steps toward working out thisrelationship, and in so doing providing a more rigorous justi�ation of the EM algorithm. The fulljusti�ation will appear in Chapter 11, where we show that the EM algorithm|like the K-meansalgorithm|is a form of oordinate asent.
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Figure 10.5: Illustration of the EM algorithm using the same data set as used for the illustration ofthe K-means algorithm in Figure 10.4. The value of L denotes the number of omplete EM yles.See the text for a full disussion.In this setion we write down a set of equations haraterizing the stationary points of the loglikelihood funtion. We show that the stationary points an be viewed as �xed points of the EMiteration.We need to obtain the derivatives of l with respet to the parameters. Let us �rst take the



10.1. UNCONDITIONAL MIXTURE MODELS 13derivative with respet to �i:�l��i = ���i (Xn logXi �iN (xn j�i;�i)) (10.19)= Xn �iN (xn j�i;�i)Pj �jN (xn j�j ;�j) ���i logN (xn j�i;�i) (10.20)= Xn � in ���i logN (xn j�i;�i) (10.21)= Xn � in��1i (xn � �i): (10.22)Setting to zero yields �i = PNn=1 � inxnPNn=1 � in (10.23)at a stationary point of the log likelihood.A very similar alulation yields the following onditions for the ovariane matries:�i = PNn=1 � in(xn � �i)(xn � �i)TPNn=1 � in (10.24)and the mixing proportions: �i = 1N NXn=1 � in; (10.25)where in the latter ase we use Lagrange multipliers.These equations do not of ourse onstitute an expliit solution sine the posterior probabilitiesare themselves funtions of the parameters, and so Equations 10.25, 10.23 and 10.24 represent a sys-tem of oupled, nonlinear equations. We an, however, attempt to solve these equations iteratively.In partiular, given a parameter vetor �(t), we plug into the right-hand side of Equations 10.25,10.23 and 10.24 and obtain an updated parameter vetor, whih we de�ne to be �(t+1).Comparing to Equations 10.16, 10.17, and 10.18, we see that we have derived the EM updateequations.While this derivation of the EM iterations is perhaps preferable to our earlier heuristi argu-ments, it is still rather heuristi, leaving us with a number of questions regarding onvergene.Moreover, the derivation provides us with little insight|the key quantity, the posterior probability� in, emerges somewhat mysteriously from the algebra. To develop a deeper understanding and toapply the EM algorithm to more general graphial models, we will need some new onepts.10.1.5 The expeted omplete log likelihoodIn this setion we derive the EM equations for the Gaussian mixture model simply and systemat-ially, by introduing a key player in the EM story|the expeted omplete log likelihood. The full



14 CHAPTER 10. MIXTURES AND CONDITIONAL MIXTUREStreatment of the role played by the expeted omplete log likelihood in the EM algorithm will haveto wait for Chapter 11, but we provide some initial intuition in this setion, paving the way for thegeneral presentation in Chapter 11.To introdue the key idea, let us pretend for a moment that we are able to observe the latentvariables Zn. This is a pretense, but it will turn out to be a useful pretense. In partiular, let usde�ne a (�tional) data set D = f(xn; zn) : n = 1; : : : ; Ng that we refer to as the omplete data.If we were to atually have suh a data set, we would de�ne the following likelihood, whih werefer to as the omplete log likelihood :l(� j D) = Xn log p(xn; zn j �) (10.26)= Xn logYi [�iN (xn j�i;�i)℄zin (10.27)= Xn Xi zin log [�iN (xn j�i;�i)℄ (10.28)Note the di�erene between this log likelihood and the original log likelihood for our problem, whihwe repeat here for onveniene:l(� j D) =Xn logXi �iN (xn j�i;�i): (10.29)In the latter log likelihood, the logarithm is outside of the summation over i, whih, as we haveremarked before, reets the fat that the likelihood is a marginal probability. The omplete loglikelihood, on the other hand, is not a marginal probability, and thus the logarithm is inside thesum. This logarithm ats on the probabilities �i and N (xn j�i;�i), leading to the simple maximumlikelihood formulas for generative lassi�ation that we studied in Chapter 7.Of ourse the Zn variables are not observed. The next step is the key one|as in our earlierdisussion let us treat the values zn in the omplete log likelihood as random variables Zn and takeexpetations. In alulating these expetations we ondition on the observed data xn, also �xinga partiular parameter vetor �(t). Using the operator notation h�i�(t) to denote these onditionalexpetations, we de�ne an important quantity known as the expeted omplete log likelihood :hl(� j D)i�(t) = *Xn Xi Zin log [�iN (xn j�i;�i)℄+�(t) (10.30)= Xn Xi 
Zin��(t) log f�iN (xn j�i;�i)g (10.31)= Xn Xi � i(t)n log f�iN (xn j�i;�i)g (10.32)Comparing Eq. (10.28) and Eq. (10.32), we see that the expeted omplete log likelihood is obtainedfrom the omplete log likelihood by replaing the �tional \observations" zin with the posteriorprobabilities � in, where the latter are evaluated using the parameter vetor �(t).



10.1. UNCONDITIONAL MIXTURE MODELS 15In general we de�ne the E step of the EM algorithm to be the \alulation of the expetedomplete log likelihood." In the Gaussian mixture problem this simply redues to alulating theposterior probabilities � in, and it may not be lear why we need the fanier language. In problemswith multiple latent variables, however, there are generally interations to aount for, and thepreferred method for de�ning the E step in the general setting is to alulate the expeted ompletelog likelihood.Moreover, the preferred method for obtaining the M step of an EM algorithm is to maximizethe expeted omplete log likelihood with respet to the parameters. We will explain why this isthe ase in Chapter 11, but in the meantime let us treat it as a reipe and verify that we obtainthe M step updates in Equations 10.18, 10.16, and 10.17 from the expeted omplete log likelihoodin Eq. (10.32).Let us �rst onsider the update for the means. Colleting together the terms in Eq. (10.32)that depend on �i, and denoting the result as J(�i), we obtain:J(�i) = �12Xn � i(t)n (xn � �i)T��1i (xn � �i): (10.33)We see that we have a weighted least-squares problem. Calulating the derivative of J(�i) withrespet to �i and setting to zero yields:�(t+1)i = Pn � i(t)n xnPn � i(t)n ; (10.34)whih is Eq. (10.16).Similarly, olleting together the terms that referene the ovariane matrix �i, we have:J(�i) = �12Xn � i(t)n �log j�ij+ (xn � �i)T��1i (xn � �i)	 : (10.35)This is a weighted variant of the problem of estimating the ovariane matrix of a Gaussian. Takingthe derivative with respet to �i and setting to zero yields:�(t+1)i = Pn � i(t)n (xn � �(t+1)i )(xn � �(t+1)i )TPn � i(t)n : (10.36)whih is Eq. (10.17).Finally, the terms in the expeted omplete log likelihood that referene � are:J(�) =Xn Xi � i(t)n log �i: (10.37)Adding a Lagrangian term to aount for the onstraint that the �i sum to one, taking derivativesand setting to zero yields: �(t+1)i = 1N Xn � i(t)n ; (10.38)



16 CHAPTER 10. MIXTURES AND CONDITIONAL MIXTURESFigure 10.6:Figure 10.7:whih is Eq. (10.18).Although this derivation of the EM equations is no more intuitive than our earlier work, ithas the virtue of yielding a simple algebrai reipe, both for the E step and the M step. It isalso more general than our earlier work; indeed, the derivation that we have arried out here willextend readily to arbitrary graphial models. The key onepts that underly the usefulness of thisapproah are: (1) the deoupled form of the omplete log likelihood, and (2) the linearity of theexpetation operator.This brief disussion suggests an important role for the \expeted omplete log likelihood,"partiularly in providing a simple method for deriving EM update equations, but it still leaves uswith a number of questions. How does the maximization of the expeted omplete log likelihoodrelate to the maximization of the atual log likelihood, whih is after all our goal? We have laimedthat the EM algorithm is a oordinate asent algorithm|how does the expeted omplete loglikelihood emerge in this piture? How general is the algorithm? Will the algorithm onverge?These are the topis of Chapter 11. Before turning to these general onsiderations, however, let usonsider another appliation of mixture model ideas.10.2 Conditional mixture modelsThe \divide-and-onquer" approah to statistial modeling applies equally well in the regressionand lassi�ation domains. In this setion we study onditional mixture models, whih are theanalogs for regression and lassi�ation of the unonditional mixture models studied thus far.3Consider the data set shown in Figure 17.16, where we learly have a nonlinearity in the mappingfrom X to Y . We might utilize a rih set of basis funtions to allow us to apture this nonlinearity,but it may be diÆult to apture the sharp kink in the middle of the �gure without requiring anoverly large number of basis funtions to the left and right of the kink, where the funtion wouldseem to be well modeled as a simple linear funtion.An alternative way to model these data is to utilize a onditional mixture. Within the ondi-tional mixture framework, we in essene split the problem into two subproblems, eah of whih anbe treated as a simple linear regression. We must �nd the parameters of these regressions, and wemust also deide where to split. Assuming that we an model the splitting deision using a simpleparametri model, we may be able to model the overall nonlinear dependene of Y on X using asmall number of parameters.The onditional mixture model is shown as a graphial model in Figure 17.16. The modelinludes nodes for the observed variables X and Y and also inorporates a node for a multinomial3Conditional mixture models are also referred to as \mixture of experts" models; where the term \expert" is usedto designate a regression, lassi�ation, or other generalized regression model.



10.2. CONDITIONAL MIXTURE MODELS 17latent variable Z. The response variable Y is onditioned not only on X but also on the latentvariable Z. This latent variable indexes the set of possible regressions of Y on X|for eah value ofZ, we obtain a possibly di�erent parameterized regression. Note moreover that there is a link fromX to Z. It is this dependeny that allows us to obtain di�erent regressions in di�erent regions ofthe input spae.Let us onsider how to parameterize eah of the nodes in the model. Z is a multinomial variable,and its parent is the input variable X. The fat that the edge between these nodes points fromX to Z suggests using the ideas that we disussed in the setion on disriminative lassi�ation(Setion ??) to parameterize the dependeny. For example, we may use a softmax regression:p(Zi = 1 jx; �) = e�Ti xPj e�Tj x ; (10.39)where � = (�1; �2; : : : ; �M is a parameter vetor.The node Y has X and Z as parents, and thus we have a onditional probability p(Y jX;Zi =1; �i). The mathematial form of this onditional probability depends on the nature of the dataY . Let us not speify a partiular model at this point, but assume that we will bring to bearthe mahinery of generalized linear models (GLIM's). For example we ould onsider a binarylassi�ation model in whih p(Y jX;Zi = 1; �i) is a logisti regression model. Note that we haveone suh model for eah value of Z.As is usual in the regression or disriminative lassi�ation setting we treat the observations ofX as �xed onstants. Thus we do not inorporate a marginal probability for X into our model.Putting together the piees, we obtain the following model for the onditional probability of Ygiven X: p(y jx; �) =Xi p(Zi = 1 jx; �)p(y jZi = 1; x; �i); (10.40)where � = (�1; : : : ; �M ; theta1; : : : ; �M ). This is a onditional mixture model, where both the mix-ing proportions, p(Zi = 1 jx; �), and the mixture omponents, p(y jZi = 1; x; �i), are onditionalprobabilities|both are onditioned on fX = xg.As in the unonditional mixtures, a key quantity in onditional mixture modeling is the posteriorprobability of the latent variable Z. Here the notions of \prior" and \posterior" are relativeto the observation of Y ; the variable X is taken to be always observed. Thus, let us de�ne�i(x; �) , p(Zi = 1 jx; �) as the prior probability of the ith mixture omponent, onditioned solelyon X. We now de�ne the posterior probability � i(x; y; �):� i(x; y; �) , p(Zi = 1 jx; y; �) (10.41)= p(Zi = 1 jx; �)p(y jZi = 1; x; �i)Pj p(Zj = 1 jx; �)p(y jZj = 1; x; �j) (10.42)= �i(x; �)p(y jZi = 1; x; �i)Pj �j(x; �)p(y jZj = 1; x; �j) (10.43)where we see that the prior probability of the ith lass is updated by how probable the observationfY = yg is under the ith model.



18 CHAPTER 10. MIXTURES AND CONDITIONAL MIXTURESFigure 10.8:10.2.1 ExamplesLet us onsider some spei� hoies for the mixture omponents p(y jZi = 1; x; �i).Mixtures of linear regressionsFor ontinuous variables Y it is natural to onsider a mixture of linear regressions:p(y jx; �) =Xi �i(x; �)N (y j�Ti x; �2i ); (10.44)where we have allowed eah linear regression to have a possibly di�erent error variane �2i .Figure 17.16 shows a depition of this model in the ase of two mixture omponents. In thisase the variable Z an be taken to be a binary variable and the mixing proportion �(x; �) ,p(Z = 1 jx; �) an be modeled using logisti regression. The logisti urve shown in the �gure thusmodels the input-dependent probability assoiated with the two mixture omponents. For negativevalues of X, the logisti urve assigns small probability to Z = 1, thus essentially hoosing theregression urve labeled Z = 0. For positive values of X, the logisti urve assigns large probabilityto Z = 1, thus essentially hoosing the regression urve labeled Z = 1. The point at whih thelogisti funtion is equal to 0:5 an be viewed as the \split" point.Let us now onsider the geometri interpretation of the posterior probability. As shown in Fig-ure 17.16, onditioning on a spei� value of X leaves us with two possible onditional expetationsof Y|the onditional expetations assoiated with eah of the two regressions. We have Gaussiandistributions around eah of these onditional expetations, with varianes �21 and �21 , respetively.Thus the onditional distribution of Y given X is bimodal|we have a mixture distribution in theoutput spae for eah point in the input spae. Consider now the point (x; y0) in the �gure. Forthis value of x, the prior �(x; �) is large, orresponding to a hoie of the regression urve labeledZ = 1. Moreover, the value y0 has high probability under this regression model and the orrespond-ing posterior �(x; y0; �) is therefore large. Consider, on the other hand, the point (x; y00). The priorfor this point is the same as before. The value y00, however, has low probability under the regressionmodel labeled Z = 1 and high probability under the regression model labeled Z = 0. The posterior�(x; y0; �) is therefore small, orresponding to a posterior hoie of the regression model labeledZ = 0.We see that the posterior probability has muh the same interpretation as in the unonditionalmixture model setting. That is, we an interpret the posterior probability as a \soft assignment,"but here the assignment proess reets both the prior partitioning of the input spae into regions,modeled by �i(x; �), and the ability of eah of the omponent regressions to aomodate the observedoutput y at that given value of x, modeled by p(y jZi = 1; x; �i).



10.2. CONDITIONAL MIXTURE MODELS 19Mixtures of logisti regressionsWe an readily extend the model of the previous setion to mixtures of generalized linear mod-els, thereby aommodating a wide variety of data types. An example is the mixture of logistiregressions: p(y jx; �) =Xi �i(x; �)�(�Ti x)y(1� �(�Ti x))1�y; (10.45)where �(�Ti x) is the logisti funtion: �(�Ti x) = 1=(1 + e��T x). This model allows us to bring thedivide-and-onquer approah to bear on lassi�ation problems.The interpretation of the prior and posterior probabilities is idential in this model to thelinear regression ase, with the likelihood being a Bernouilli distribution rather than a Gaussiandistribution.10.2.2 Parameter estimation via the EM algorithmAt this point we have parameterized the graphial model in Figure 17.16, and the problem ofmaximum likelihood parameter estimation an be handled straightforwardly using the tools thatwe have developed in Setion 10.1.3 and Setion 10.1.5. Indeed the model is a good exerise of ourskills. In this setion we write down the log likelihood, the expeted omplete log likelihood, andthe EM algorithm for onditional mixtures.We assume an IID data set D = f(xn; yn) : n = 1; : : : ; Ng. The likelihood is obtained as thesum of the logarithm of the probability model in Eq. (10.40):l(� j D) =Xn logXi �i(xn; �)p(yn jZi = 1; xn; �i): (10.46)Note the presene of the logarithm outside of the summation; as in the unonditional ase, thelikelihood is a marginal probability.The \omplete data" is the data set D = f(xn; zn; yn) : n = 1; : : : ; Ng, where as before weimagine that we an observe the latent variable Z. The likelihood for N omplete observations ofthe model is: l(� j D) =Yn Yi ��i(xn; �)p(yn jZi = 1; xn; �i)�zin (10.47)and taking the logarithm yields the omplete log likelihood:l(� j D) =Xn Xi zin log ��i(xn; �)p(yn jZi = 1; xn; �i)� ; (10.48)where we now see the logarithm inside the summation.We take the expetation of the omplete log likelihood, where we now treat the variables Zin asrandom variables. The expetation is taken with respet to the onditional probability distributionp(z jx; y; �(t)). Given that the omplete log likelihood is linear in zin, we see that an obtain theexpetation by simply omputing:hZini�(t) = p(Zin = 1 jxn; yn; �(t)) (10.49)= � i(xn; yn; �(t)): (10.50)



20 CHAPTER 10. MIXTURES AND CONDITIONAL MIXTURESThus we see that the E step of the EM algorithm amounts to omputing the posterior probabilities� i(xn; yn; �(t)). These an be viewed as our \best guess" of the values of the latent variables Zn,onditioned on the observed values xn and yn, and evaluated at the urrent value of the parametervetor �(t).To summarize, the expeted omplete log likelihood takes the following form:l(� j D) =Xn Xi � in(t) log ��i(xn; �)p(yn jZi = 1; xn; �i)� ; (10.51)where we write � i(t)n for the posterior probability � i(xn; yn; �(t)), in order to simplify notation.With the expeted omplete log likelihood in hand, we an now turn to the M step. Let us �rstonsidering maximizing l with respet to the parameters �. Colleting together the terms thatdepend on �, and referring to the result as J(�), we have:J(�) =Xn Xi � in(t) log �i(xn; �): (10.52)This is idential to the log likelihood for the disriminative lassi�ation problem (f. Eq. (??)),where the role of the lass labels in that problem (the zin) is now played by the posterior probabilities(the � i(t)n ). The interpretation is that we \�ll in" the values of the latent variables Zin with our\best guess." Based on these �lled-in values we treat the problem of estimating the parameters ofthe onditional probability p(Z jx; �) as a disriminative lassi�ation problem. In partiular wean use the IRLS algorithm to update these parameters.It is also straightforward to derive an M step for the parameters �i. Colleting together theterms in the expeted omplete log likelihood that depend on �i, and referring to the result asJ(�i), we obtain: J(�i) =Xn � in(t) log p(yn jZi = 1; xn; �i): (10.53)For generalized linear models, the log probability in this expression is the logarithm of an expo-nential family distribution. Eah data point, (xn; yn), has an assoiated \weight," the posteriorprobability � in(t). Thus we have a weighted maximum likelihood problem to solve. In essene, eahdata point is \assigned" to one of the mixture omponents, and the estimation of the parametersof eah mixture omponent is arried out using the data points assigned to that omponent.In the ase of a mixture of linear regressions, we obtain a set of weighted least squares problems,one for eah mixture omponent. For a mixture of logisti regressions, we have a set of weightedross-entropies. In general we an treat all of these problems within the IRLS framework|reallour disussion of weighted IRLS in Setion ??.In summary, the EM algorithm for onditional mixtures takes the following form:� (E step): Calulate the posterior probabilities � i(t)n .� (M step): Use the IRLS algorithm to update the parameters �, based on data pairs (xn; � i(t)n ).� (M step): Use the weighted IRLS algorithm to update the parameters �i, based on data pairs(xn; yn), with weights � i(t)n ).These steps iterate and, as we prove in Chapter 11, limb to a loal maximum of the likelihood.



10.2. CONDITIONAL MIXTURE MODELS 2110.2.3 An on-line algorithmWe an obtain some additional insight into the onditional mixture model by developing an on-lineestimation algorithm. As we disussed in Chapter 6, the problem here is to derive an update forthe parameters based on a single data point.To derive these updates we take the derivative of the log likelihood with respet to the param-eters and delete the summation over n; this yields the \stohasti gradient." We omit the algebra,asking the reader to supply the details in Exerise ??.In the equations below, we use the notation �in(t) to denote the onditional expetation of Ygiven fX = xg, for the ith mixture omponent, the nth data point, and letting the parametervetor equal �(t). We assume that the anonial link funtion has been hosen.Taking the derivative with respet to �i, we obtain the following update equation:�(t+1)i = �(t)i + �� i(t)n (yn � �in(t))xn; (10.54)where � is a step size. Similarly, taking the derivative with respet to �i, we obtain:�(t+1)i = �(t)i + �(� i(t)n � �i(xn; �(t)))xn; (10.55)where � is a step size.Both of these equations have natural interpretations. The update of �i in Eq. (10.54) has theform of the LMS algorithm, but with the additional feature that the step size is modulated by theposterior probability � i(t)n . Thus, if our urrent \best guess" is that the nth data point should beassigned to the ith mixture omponent, then we update the parameters in the normal way. If, onthe other hand, we do not think that the nth data point should be assigned to the ith mixtureomponent, then the step size is near zero and the parameters are not adjusted.The update of �i in Eq. (10.54) also has an appealing interpretation. The update again takes theform of the LMS algorithm, where the error is the di�erene between the posterior probability andthe prior probability. In essene we have a lassi�ation problem in whih the prior probability is apredition of the lass label assoiated with the mixture omponents, and the posterior probabilityis an improved estimate of that label.Figure 17.16 shows a depition of these update equations for the ase of a mixture of linearregressions. In this ase �in(t) = �(tT )i xn, and the error whih drives the update of �i is simplythe di�erene (yn � �(tT )i xn). This di�erene is shown in the �gure for both of the regressions.Although the error is larger for the Z = 0 regression, the posterior probability assoiated with thisregression is vanishingly small (it is proportional to the exponential of the negative of the square ofthe error). Thus, as we show in Figure 17.16(b), the parameters assoiated with the upper (Z = 1)urve hange signi�antly, while the parameters assoiated with the lower (Z = 0) urve hangelittle.Given that the posterior probability assoiated with the upper urve is near one, the errorin Eq. (10.55) has the e�et of shifting the logisti urve towards the left. As we show in Fig-ure 17.16(b), this implies that on future presentations of this data point, the prior predition willbe loser to one.



22 CHAPTER 10. MIXTURES AND CONDITIONAL MIXTURES10.2.4 Hierarhial onditional mixtures and deision trees10.3 Appendix XXXAs an alternative to the EM algorithm, we an use standard nonlinear optimization algorithmssuh as onjugate gradients. In this appendix we disuss this approah for unonditional mixtures,fousing on the problem of implementing the probabilisti onstraints on the parameters.In evaluating the derivatives we must take aount of the requirement for the mixing proportionsto satisfy 0 � �i � 1 and Pi �i = 1. Similarly, the ovariane matries �i must remain symmetriand positive-de�nite.We an allow for the onstraints on the mixing proportions �i by expressing them as a nonlineartransformation of a orresponding set of unonstrained variables �i. Spei�ally, we use the softmaxtransformation: �i = exp(�i)Pj exp(�j) ; (10.56)whih has the property that the mixing proportions will automatially satisfy the required on-straints.In order to impose the required onstraints on the ovariane matrix we an represent theinverse4 ovariane matrix in terms of its Cholesky deomposition:��1 = ATA (10.57)where A is an upper diagonal matrix, so that Aij = 0 if i < j. It is easily seen that there ared(d + 1)=2 remaining independent elements in A, orresponding to the number of independentelements in �. In omputing the expeted omplete-data log likelihood we need the inverse squareroot of the determinant of the ovariane matrix, whih is given by:j�j�1=2 = dYi=1Aii: (10.58)The ovariane matrix will be positive de�nite provided the diagonal elements Aii are positive,whih an be ensured by writing them as the exponentials of real values Aii = exp(�i).In summary, if we treat the values of �i, Aij (for j > i), �i and the omponents of �i asindependent, unonstrained real values, the required onstraints will be met. The required deriva-tives of the log likelihood with respet to these unonstrained variables are then easily obtainedExerise ??.
4The inverse of a positive de�nite symmetri matrix is also positive de�nite and symmetri.


