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Chapter 10Mixtures and 
onditional mixturesIn this 
hapter we begin the study of models with latent or hidden variables. Latent variablesare simply random variables whose values are not spe
i�ed in the observed data|in the graphi
almodel formalism these variables are the unshaded nodes. Our fo
us in the 
urrent 
hapter is thesimple 
ase of latent variables that 
an take one of a �nite set of values.Let us take a moment to pose the question of why would one in
lude a node in a model if thevalue of that node 
annot be observed in the data. Shouldn't we in
lude variables in our model onlyif their values 
an be observed? One answer to this question is philosophi
al|surely mu
h humanknowledge involves explaining observed data in terms of unobserved 
on
epts.1 For example, weoften introdu
e distin
tions into our reasoning in order to simplify relationships between observ-ables. Thus a do
tor may group patients into those with a 
ertain \syndrome" and those without,and this grouping may make it easier to understand the relationships between observed symptoms.A biologist may wish to group animals into distin
t spe
ies, be
ause it may be easier to explainbehavioral or physiologi
al patterns within ea
h spe
ies than to explain su
h patterns without thehelp of the distin
tion. Although su
h distin
tions may exist only in the mind of the do
tor orbiologist, at least at the outset, their utility for modeling the data may provide the motivationfor further study in whi
h one tries to un
over a \real" physi
al or biologi
al interpretation of thedistin
tion.Viewing a \distin
tion" as a dis
rete random variable ranging over a �nite, unordered set ofvalues leads to the mixture models studied in the 
urrent 
hapter.In Chapter ?? we study 
ontinuous latent variable models in whi
h the latent variable pa-rameterizes a k-dimensional subspa
e of the d-dimensional input spa
e; here the latent variablea
hieves a \dimensionality redu
tion." Chapter 12 and Chapter 15 dis
uss models in whi
h latentvariables are used in the time series setting to summarize past data; that is, the latent variablesare \state variables." In all of these 
ases, and in others that we will meet, the general idea is thesame|models with latent variables 
an often be simpler than models without latent variables. Instatisti
al terms we often �nd that we 
an get by with fewer parameters using a latent variablemodel, or we 
an avail ourselves of simple parametri
 distributions that have advantageous 
om-1One should not, however, expe
t the philosophers to have agreed on this. Indeed, the philosophi
al s
hool oflogi
al positivism expli
itly denied the meaningfulness of using unobservable 
on
epts in s
ienti�
 reasoning.3



4 CHAPTER 10. MIXTURES AND CONDITIONAL MIXTURESputational or analyti
al properties. We will not attempt to de�ne \simpli
ity" more rigorously fornow|that is the task of Chapter 26. Instead we pro
eed by example, des
ribing latent variablemodels that have been shown to be useful in pra
ti
e.In this 
hapter we dis
uss two kinds of models based on dis
rete latent variables|un
onditionalmixture models and 
onditional mixture models. Roughly speaking, un
onditional mixture mod-els are used to solve density estimation problems, whereas 
onditional mixture models are usedto solve regression and 
lassi�
ation problems. One useful perspe
tive to take on the latent vari-able methodology in both of these kinds of problems is that it allows us to break problems intosubproblems. Thus, in un
onditional mixture modeling, for ea
h value of the latent variable weobtain a (presumably simpler) density estimation subproblem. In 
onditional mixture modeling,for ea
h value of the latent variable we obtain a (presumably simpler) regression or 
lassi�
ationsubproblem. In general, mixture modeling 
an be viewed as a \divide-and-
onquer" approa
h tostatisti
al modeling.10.1 Un
onditional mixture modelsWe begin by dis
ussing un
onditional mixture models. While regression and 
lassi�
ation modelsrequire the observation of (X;Y ) pairs, un
onditional mixture models make do with observationsof X alone.As we dis
ussed in Chapter 5, mixture models 
an be used to solve density estimation problems,allowing us to answer questions about whether query ve
tors are \typi
al" or \untypi
al." Thishas many appli
ations, in
luding the dete
tion of outliers and the design of algorithms for data
ompression. Note that in su
h appli
ations we are not ne
essarily interested in identifying orinterpreting the stru
ture of the probability distribution generating the data; rather we are simplyinterested in a 
exible model that allows us to obtain a good estimate of the probability density.In other problems, however, we may have a more \stru
tural" interest in the mixture model.In parti
ular, as we dis
ussed in Chapter 5, we may wish to take the point of view that thereare \subpopulations" underlying the data. In this setting, mixture modeling is 
losely linked to
lassi�
ation, in parti
ular to the generative 
lassi�
ation models dis
ussed in Chapter 7. Indeed,treating the 
lass label of a generative 
lassi�
ation model as a latent variable 
onverts the modelinto a mixture model. Reserving the term 
lassi�
ation for the setting in whi
h the labels are infa
t observed, we use the term 
lustering for the problem of inferring the labels of data points whensu
h labels are absent in the data. Mixture models provide a popular and widely used methodologyfor 
lustering.In Chapter 5 we presented the following general formulation of an un
onditional mixture model(see Figure 10.1). Let Z represent a multinomial random variable with 
omponents Zi. We have:p(x j �) = Xi p(Zi = 1 j�i)p(x jZi = 1; �i) (10.1)= Xi �ip(x jZi = 1; �i): (10.2)where � = (�1; : : : ; �K ; �1; : : : ; �K) and where the �i are 
onstrained to sum to one. Re
all the
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Figure 10.1: A mixture model represented as a graphi
al model. The latent variable Z is a multi-nomial node taking on one of K values.terminology|the parameters �i are referred to as mixing proportions and the densities p(x jZi =1; �i) are referred to as mixture 
omponents.10.1.1 Gaussian mixture modelsLet us begin by dis
ussing the important spe
ial 
ase of the Gaussian mixture model. In this modelthe mixture 
omponents are Gaussian distributions with parameters �i , (�i;�i). Note that weallow the 
ovarian
e to vary a
ross the mixture 
omponents. One 
an also 
onsider models in whi
hthe 
ovarian
e matri
es are 
onstrained to be equal.From Eq. (10.2) we obtain the following probability model for a Gaussian mixture:p(x j �) = Xi �i 1(2�)m=2j�ij1=2 exp��12(x� �i)T��1i (x� �i)� : (10.3)We will also write this as: p(x j �) =Xi �iN (x j�i;�i) (10.4)to simplify notation.Figure 10.2 shows a simple illustration of a Gaussian mixture model, together with a samplefrom the marginal distribution.Let us 
al
ulate the probability of the latent variable Z 
onditioned on the observed variableX. This 
al
ulation is of obvious interest if we wish to use the mixture model in the 
lusteringsetting|the 
onditional probability of Z 
an be used to assign X to one of the 
lusters. We willalso �nd that this 
onditional probability plays an important role in parameter estimation.We let � i denote the 
onditional probability that the ith 
omponent of Z is equal to one. FromBayes rule we have: � i , p(Zi = 1 jx; �) (10.5)
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(c)Figure 10.2: Illustration of a mixture of 3 Gaussians in a two-dimensional spa
e showing (a)
ontours representing one standard deviation for ea
h of the mixture 
omponents, (b) the marginalprobability density of the mixture distribution, and (
) a sample of 500 points drawn from themarginal distribution. = p(x jZi = 1; �i)p(Zi = 1 j�i)p(x j �) (10.6)= �iN (x; �i j�i)Pj �jN (x; �j j�j) (10.7)Note the relationship to the generative 
lassi�
ation models of Se
tion 7.2. In parti
ular, if we letthe �k be equal, then the quadrati
 terms 
an
el and we obtain the linear-softmax fun
tion as inthat se
tion.It is 
ommon to refer to �i as a \prior probability" and � i as a \posterior probability." Thisis a 
onvenient terminology that re
e
ts the fa
t that these probabilities are linked via Bayesrule. Please note, however, that the use of this terminology is unrelated to whether or not we useBayesian methods to estimate the parameters �. Indeed, in this 
hapter our fo
us will be maximumlikelihood estimation.Let us now 
onsider the problem of estimating � from an IID set of observations D = fxn : n =1; : : : ; Ng. The model is shown in Figure 10.3, where we see that ea
h data point xn is a

ompaniedby a multinomial latent variable Zn that represents the \assignment" of xn to one of the mixture
omponents. We form the log likelihood:l(� j D) = Xn log p(xn j �) (10.8)= Xn logXi �iN (xn j�i;�i) (10.9)by taking the log of the produ
t of N 
opies of the probability model in Eq. (10.3). Note thedis
on
erting fa
t that the logarithm stops in front of the sum. In all of the models that we have
onsidered up until now, the logarithm a
ted dire
tly on the basi
 probability distributions in ourmodel, whi
h, given the exponential family distributions that we have worked with, yielded simpleexpressions su
h as squared error or 
ross entropy. Here the likelihood is a marginal probability.
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NFigure 10.3: The mixture model under an IID sampling assumption.This prevents the logarithm from a
ting dire
tly on the 
omponent probability distributions andleaves us with a tangled nonlinear fun
tion to maximize.One approa
h to maximizing this likelihood is to hand Eq. (10.9) to a nonlinear optimizationalgorithm su
h as 
onjugate gradient or Newton-Raphson. In Appendix XXX we provide somedetails regarding this approa
h. Our main fo
us, however, will be on an alternative approa
h tomaximizing the likelihood known as the Expe
tation-Maximization (EM) algorithm. This algorithmis appli
able far beyond the Gaussian mixture setting; indeed, it is appli
able to arbitrary graphi
almodels with latent variables. Its important virtue in the graphi
al model setting is that it allowsus to take full advantage of the graphi
al stru
ture underlying the likelihood; in parti
ular, we willbe able to exploit the inferen
e algorithms dis
ussed in Chapter 3 and Chapter 17. By relating theproblem of parameter estimation and the problem of eÆ
ient inferen
e, the EM algorithm bringstogether two of our major themes. It will play an important role throughout the book.In this 
hapter we provide a heuristi
 introdu
tion to the EM algorithm for Gaussian mixturemodels. Chapter 11 provides a rigorous derivation of EM, not only for Gaussian mixture models,but for the general 
ase.10.1.2 The K-means algorithmTo motivate the EM algorithm for Gaussian mixtures, it is useful to step brie
y outside of theGaussian mixture framework to 
onsider an even simpler approa
h to 
lustering.Re
all that we have a set of observations D = fxn : n = 1; : : : ; Ng. Our goal is to group thedata points into a set of K 
lusters, where we suppose that the value of K is given.The K-means algorithm represents ea
h 
luster with a single ve
tor, whi
h we refer to as a\
luster mean." The basi
 idea is to assign data points to 
lusters by �nding the nearest 
lustermean and assigning the data point to that 
luster.Note that we do not have a probabilisti
 model in mind, so \
luster mean" is perhaps a poor
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entroid" is better; the idea is that if we knew whi
h data points wereassigned to the ith 
luster, then the 
luster mean would be the 
entroid (the sample average) ofthose data points.We are fa
ed with a \
hi
ken-and-egg" problem|if we knew the assignments we 
ould �nd themeans, or if we knew the means we 
ould �nd the assignments. The basi
 idea of the K-meansalgorithm is to make an initial guess for one of these quantities (the means) and iterate ba
k andforth.The algorithm maintains two kinds of variables|means and assignments. Let �i denote the
luster mean for the ith 
luster. For ea
h data point xn let zn be an indi
ator ve
tor that representsthe assignment of xn to one of the 
lusters. Thus, if the xn is assigned to the ith 
luster, we setthe 
omponent zin equal to one, and all other 
omponents of zn equal to zero.The K-means algorithm begins by making some initial assignments for the �i, for exampletaking the �i to be given by a subset of the data ve
tors themselves. The algorithm then alternatesbetween two phases. In the �rst phase, values for the indi
ator variables zin are evaluated byassigning ea
h data point xn to the 
losest mean �i (where distan
e is typi
ally measured using asimple Eu
lidean metri
) so that, for ea
h n,zin = � 1 if i = argminj kxn � �jk20 otherwise. (10.10)In the se
ond phase, the values of the means are re
omputed by taking �i to be equal to the samplemean of those ve
tors xn whi
h have been assigned to the ith 
luster:�i = Pn zinxnPn zin : (10.11)The two phases of re-assigning data points to 
lusters and re-
omputing the 
luster means arerepeated in turn until there is no further 
hange in the assignments (or until some maximumnumber of iterations is ex
eeded). It is easily seen that the K-means algorithm must 
onverge aftera �nite number of iterations, sin
e there are only a �nite number of possible assignments for theset of dis
rete variables zin and for ea
h su
h assignment there is a unique value for the f�ig.Although we have motivated the K-means algorithm heuristi
ally, the algorithm 
an also bemotivated as the solution to an optimization problem. In parti
ular, it turns out that the algorithm
an be viewed as minimizing the distortion measure given by:J = NXn=1 KXi=1 zinkxn � �ik2: (10.12)As we ask the reader to show in Exer
ise ??, Eq. (10.10) is obtained by minimizing J with respe
tto zin while keeping �i �xed, while Eq. (10.11) is obtained by minimizing J with respe
t to �i whilekeeping zin �xed. Thus K-means 
an be viewed as a 
oordinate des
ent algorithm.The K-means algorithm is illustrated using a simple example in Figure 10.4. The data set,shown in plot (a), 
onsists of 40 data points in two dimensions. We now apply the K-meansalgorithm, with K = 2, using the initial mean ve
tors shown as the red and blue 
rosses in plot (b).
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(a) (b) (c)

(d) (e) (f)Figure 10.4: Illustration of the K-means algorithm. See the text for a full dis
ussion.Note that this is in fa
t a parti
ularly poor initialization and has been 
hosen in order to provide a
lear illustration of the operation of the algorithm. A better initialization would involve sele
tingrandom data points as the initial means, and would typi
ally give faster 
onvergen
e. The �rststage of the algorithm involves assigning ea
h data point to one of the two 
lusters a

ording to itsdistan
e to ea
h of the means. This results in the partitioning of the data set shown in plot (
), inwhi
h ea
h data point has been 
olored a

ording to the 
luster (red or blue) to whi
h it is assigned.Next we re-
ompute the mean ve
tors using the 
urrent partitioning, so that the blue mean is re-assigned to the mean of the blue-
olored data points, and similarly for the red mean, giving the newestimates for the means shown in plot (d). The two phases of the algorithm 
ontinue alternately,with repartioning shown in plot (e), re-assignment in plot (f). On the next re-partitioning theassignment of data points does not 
hange and hen
e the algorithm has 
onverged.10.1.3 The EM algorithmLet us return to the probabilisti
 framework of mixture models. Adopting the language of the K-means algorithm, let us view the latent variables Zn as \assignment variables." These are randomvariables in the mixture model setting, re
e
ting our un
ertainty about the 
luster assignments.If the Zn were observed we would have a 
lassi�
ation problem in whi
h ea
h data point Xn isassigned a \
lass label." The estimate of the mean of the ith Gaussian would simply be the samplemean for the data points in the ith 
lass (
f. Eq. (7.20)):�̂i = Pn zinxnPn zin : (10.13)
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al to the K-means update formula, but here we are interpreting the variables zinnot as quantities to be manipulated by our algorithm, but rather as observed values of randomvariables.Of 
ourse, we do not know the values of the Zn variables. Our approa
h will be to repla
e thesevalues with their 
onditional expe
tations, 
onditioning on the data (the xn values). Re
all that weuse the notation � in for these 
onditional expe
tations.2 We try the following idea|let us repla
ezin by � in in Eq. (10.13): �̂i = Pn � inxnPn � in : (10.14)Thus, we have repla
ed a sample mean with a weighted sample mean. Ea
h data point xn 
on-tributes to the estimate of the ith mean in proportion to its posterior probability � in. The quantity� in is often referred to as a \soft assignment," a natural terminology both from the point of view ofEq. (10.14) and the de�nition of � in in Eq. (10.7).We still have a 
hi
ken-and-egg problem, however. As seen in Eq. (10.7), the posterior prob-abilities � in depend on the parameter estimates, whi
h, a

ording to Eq. (10.14), depend on theposterior probabilities.On
e again, the way out of this 
hi
ken-and-egg problem is to start with an initial guess (forthe parameters) and to iterate. Given a set of parameters we 
al
ulate the posterior probabilities.Given a set of posterior probabilities, we 
ompute new parameter estimates. This is the basi
stru
ture of the EM algorithm for Gaussian mixtures.To 
larify, let us augment our notation for � in to in
lude referen
e to the iteration number t:� i(t)n = �(t)i N (xn j�(t)i ;�(t)i )Pj �(t)j N (xn j�(t)j ;�(t)j ) ; (10.15)where we have also indexed the parameter estimates with a supers
ript to indi
ate the iterationnumber. We now de�ne update equations for all of the parameters|the mixing proportions, themeans and the 
ovarian
e matri
es. Motivated by the K-means algorithm we have the followingformula for the means: �(t+1)i = Pn � i(t)n xnPn � i(t)n : (10.16)For the 
ovarian
e matri
es we use an analogous formula:�(t+1)i = Pn � i(t)n (xn � �(t+1)i )(xn � �(t+1)i )TPn � i(t)n : (10.17)de�ning the update as a weighted sample 
ovarian
e, with the posterior probabilities again servingas weights. Finally, viewing � i(t)n as a \soft assignment" of data point xn to 
luster i, it is natural to2We use the elementary fa
t that 
onditional expe
tations and 
onditional probabilities are the same for binary-valued variables: E[Zin jxn℄ = p(Zin = 1 jxn).



10.1. UNCONDITIONAL MIXTURE MODELS 11estimate �i as the sum of these assignments a
ross the data, divided by the number of data points:�(t+1)i = 1N Xn � i(t)n : (10.18)Note that if we sum these estimates �(t+1)i with respe
t to i we obtain one; thus our \soft 
ounting"has not under
ounted or over
ounted.Equations 10.15, 10.18, 10.16, and 10.17 de�ne the EM algorithm for Gaussian mixtures.The �rst phase of the algorithm|the 
al
ulation of the posterior probability in Eq. (10.15)|isgenerally referred to as the \Expe
tation step," or \E step." The se
ond phase of the algorithm|the parameter updates in Equations 10.18, 10.16, and 10.17|is generally referred to as the \Max-imization step," or \M step." The explanation for this 
hoi
e of terminology will be provided inChapter 11.In Figure 10.5 we illustrate the EM algorithm applied to a mixture of Gaussians using the samedata set, shown in plot (a), as used to illustrate the K-means algorithm in Figure 10.4. Here amixture of 2 Gaussians is used, with 
enters initialized using the same values as for the K-meansalgorithm, and with 
ovarian
e matri
es initialized to be proportional to the unit matrix. Contoursof 1 standard deviation for ea
h of the Gaussian 
omponents are shown in plot (b). In plot (
) weshow the result of applying the initial E-step, in whi
h points have been 
olored a

ording to theposterior probabilities for the two 
omponents, su
h that the 
olor ranges from blue to red as theprobability P (bluejxn) ranges from 1 to 0. We see in plot (
) that some points have a signi�
antprobability for belonging to either 
luster and so appear purple. Plot (d) shows the result of the�rst M-step. We see that the mean of, say, the blue Gaussian is moved to the mean of the dataset, weighted by the probabilities of ea
h data point belonging to the blue 
luster, in other wordsit moves to the mean of the blue ink. Similarly the 
ovarian
e of the blue Gaussian be
omes thesample 
ovarian
e of the blue ink, with analogous results for the red 
omponent. Subsequent plotsshow the situation after various numbers L of 
omplete EM 
y
les. In plot (i) the model is 
loseto the �nal, 
onverged state. Note that the EM algorithm takes many more iterations to rea
h(approximate) 
onvergen
e 
ompared with the K-means algorithm, and that ea
h 
y
le requiressigni�
antly more 
omputation. It is therefore 
ommon to run the K-means algorithm in order to�nd a suitable initialization for a Gaussian mixture model whi
h is subsequently adapted using EM.The 
ovarian
e matri
es 
an 
onveniently be initialized to the sample 
ovarian
es of the 
lustersfound by the K-means algorithm, and the mixing proportions 
an be set to the fra
tions of datapoints assigned to the respe
tive 
lusters.10.1.4 Ne
essary 
onditionsAlthough we have de�ned a simple, intuitively appealing algorithm, it is not yet 
lear what rela-tionship this algorithm has to the quantity that we are trying to maximize, the log likelihood inEq. (10.9). In this se
tion and the following se
tion, we take initial steps toward working out thisrelationship, and in so doing providing a more rigorous justi�
ation of the EM algorithm. The fulljusti�
ation will appear in Chapter 11, where we show that the EM algorithm|like the K-meansalgorithm|is a form of 
oordinate as
ent.
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Figure 10.5: Illustration of the EM algorithm using the same data set as used for the illustration ofthe K-means algorithm in Figure 10.4. The value of L denotes the number of 
omplete EM 
y
les.See the text for a full dis
ussion.In this se
tion we write down a set of equations 
hara
terizing the stationary points of the loglikelihood fun
tion. We show that the stationary points 
an be viewed as �xed points of the EMiteration.We need to obtain the derivatives of l with respe
t to the parameters. Let us �rst take the
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t to �i:�l��i = ���i (Xn logXi �iN (xn j�i;�i)) (10.19)= Xn �iN (xn j�i;�i)Pj �jN (xn j�j ;�j) ���i logN (xn j�i;�i) (10.20)= Xn � in ���i logN (xn j�i;�i) (10.21)= Xn � in��1i (xn � �i): (10.22)Setting to zero yields �i = PNn=1 � inxnPNn=1 � in (10.23)at a stationary point of the log likelihood.A very similar 
al
ulation yields the following 
onditions for the 
ovarian
e matri
es:�i = PNn=1 � in(xn � �i)(xn � �i)TPNn=1 � in (10.24)and the mixing proportions: �i = 1N NXn=1 � in; (10.25)where in the latter 
ase we use Lagrange multipliers.These equations do not of 
ourse 
onstitute an expli
it solution sin
e the posterior probabilitiesare themselves fun
tions of the parameters, and so Equations 10.25, 10.23 and 10.24 represent a sys-tem of 
oupled, nonlinear equations. We 
an, however, attempt to solve these equations iteratively.In parti
ular, given a parameter ve
tor �(t), we plug into the right-hand side of Equations 10.25,10.23 and 10.24 and obtain an updated parameter ve
tor, whi
h we de�ne to be �(t+1).Comparing to Equations 10.16, 10.17, and 10.18, we see that we have derived the EM updateequations.While this derivation of the EM iterations is perhaps preferable to our earlier heuristi
 argu-ments, it is still rather heuristi
, leaving us with a number of questions regarding 
onvergen
e.Moreover, the derivation provides us with little insight|the key quantity, the posterior probability� in, emerges somewhat mysteriously from the algebra. To develop a deeper understanding and toapply the EM algorithm to more general graphi
al models, we will need some new 
on
epts.10.1.5 The expe
ted 
omplete log likelihoodIn this se
tion we derive the EM equations for the Gaussian mixture model simply and systemat-i
ally, by introdu
ing a key player in the EM story|the expe
ted 
omplete log likelihood. The full



14 CHAPTER 10. MIXTURES AND CONDITIONAL MIXTUREStreatment of the role played by the expe
ted 
omplete log likelihood in the EM algorithm will haveto wait for Chapter 11, but we provide some initial intuition in this se
tion, paving the way for thegeneral presentation in Chapter 11.To introdu
e the key idea, let us pretend for a moment that we are able to observe the latentvariables Zn. This is a pretense, but it will turn out to be a useful pretense. In parti
ular, let usde�ne a (�
tional) data set D
 = f(xn; zn) : n = 1; : : : ; Ng that we refer to as the 
omplete data.If we were to a
tually have su
h a data set, we would de�ne the following likelihood, whi
h werefer to as the 
omplete log likelihood :l
(� j D
) = Xn log p(xn; zn j �) (10.26)= Xn logYi [�iN (xn j�i;�i)℄zin (10.27)= Xn Xi zin log [�iN (xn j�i;�i)℄ (10.28)Note the di�eren
e between this log likelihood and the original log likelihood for our problem, whi
hwe repeat here for 
onvenien
e:l(� j D) =Xn logXi �iN (xn j�i;�i): (10.29)In the latter log likelihood, the logarithm is outside of the summation over i, whi
h, as we haveremarked before, re
e
ts the fa
t that the likelihood is a marginal probability. The 
omplete loglikelihood, on the other hand, is not a marginal probability, and thus the logarithm is inside thesum. This logarithm a
ts on the probabilities �i and N (xn j�i;�i), leading to the simple maximumlikelihood formulas for generative 
lassi�
ation that we studied in Chapter 7.Of 
ourse the Zn variables are not observed. The next step is the key one|as in our earlierdis
ussion let us treat the values zn in the 
omplete log likelihood as random variables Zn and takeexpe
tations. In 
al
ulating these expe
tations we 
ondition on the observed data xn, also �xinga parti
ular parameter ve
tor �(t). Using the operator notation h�i�(t) to denote these 
onditionalexpe
tations, we de�ne an important quantity known as the expe
ted 
omplete log likelihood :hl
(� j D
)i�(t) = *Xn Xi Zin log [�iN (xn j�i;�i)℄+�(t) (10.30)= Xn Xi 
Zin��(t) log f�iN (xn j�i;�i)g (10.31)= Xn Xi � i(t)n log f�iN (xn j�i;�i)g (10.32)Comparing Eq. (10.28) and Eq. (10.32), we see that the expe
ted 
omplete log likelihood is obtainedfrom the 
omplete log likelihood by repla
ing the �
tional \observations" zin with the posteriorprobabilities � in, where the latter are evaluated using the parameter ve
tor �(t).



10.1. UNCONDITIONAL MIXTURE MODELS 15In general we de�ne the E step of the EM algorithm to be the \
al
ulation of the expe
ted
omplete log likelihood." In the Gaussian mixture problem this simply redu
es to 
al
ulating theposterior probabilities � in, and it may not be 
lear why we need the fan
ier language. In problemswith multiple latent variables, however, there are generally intera
tions to a

ount for, and thepreferred method for de�ning the E step in the general setting is to 
al
ulate the expe
ted 
ompletelog likelihood.Moreover, the preferred method for obtaining the M step of an EM algorithm is to maximizethe expe
ted 
omplete log likelihood with respe
t to the parameters. We will explain why this isthe 
ase in Chapter 11, but in the meantime let us treat it as a re
ipe and verify that we obtainthe M step updates in Equations 10.18, 10.16, and 10.17 from the expe
ted 
omplete log likelihoodin Eq. (10.32).Let us �rst 
onsider the update for the means. Colle
ting together the terms in Eq. (10.32)that depend on �i, and denoting the result as J(�i), we obtain:J(�i) = �12Xn � i(t)n (xn � �i)T��1i (xn � �i): (10.33)We see that we have a weighted least-squares problem. Cal
ulating the derivative of J(�i) withrespe
t to �i and setting to zero yields:�(t+1)i = Pn � i(t)n xnPn � i(t)n ; (10.34)whi
h is Eq. (10.16).Similarly, 
olle
ting together the terms that referen
e the 
ovarian
e matrix �i, we have:J(�i) = �12Xn � i(t)n �log j�ij+ (xn � �i)T��1i (xn � �i)	 : (10.35)This is a weighted variant of the problem of estimating the 
ovarian
e matrix of a Gaussian. Takingthe derivative with respe
t to �i and setting to zero yields:�(t+1)i = Pn � i(t)n (xn � �(t+1)i )(xn � �(t+1)i )TPn � i(t)n : (10.36)whi
h is Eq. (10.17).Finally, the terms in the expe
ted 
omplete log likelihood that referen
e � are:J(�) =Xn Xi � i(t)n log �i: (10.37)Adding a Lagrangian term to a

ount for the 
onstraint that the �i sum to one, taking derivativesand setting to zero yields: �(t+1)i = 1N Xn � i(t)n ; (10.38)



16 CHAPTER 10. MIXTURES AND CONDITIONAL MIXTURESFigure 10.6:Figure 10.7:whi
h is Eq. (10.18).Although this derivation of the EM equations is no more intuitive than our earlier work, ithas the virtue of yielding a simple algebrai
 re
ipe, both for the E step and the M step. It isalso more general than our earlier work; indeed, the derivation that we have 
arried out here willextend readily to arbitrary graphi
al models. The key 
on
epts that underly the usefulness of thisapproa
h are: (1) the de
oupled form of the 
omplete log likelihood, and (2) the linearity of theexpe
tation operator.This brief dis
ussion suggests an important role for the \expe
ted 
omplete log likelihood,"parti
ularly in providing a simple method for deriving EM update equations, but it still leaves uswith a number of questions. How does the maximization of the expe
ted 
omplete log likelihoodrelate to the maximization of the a
tual log likelihood, whi
h is after all our goal? We have 
laimedthat the EM algorithm is a 
oordinate as
ent algorithm|how does the expe
ted 
omplete loglikelihood emerge in this pi
ture? How general is the algorithm? Will the algorithm 
onverge?These are the topi
s of Chapter 11. Before turning to these general 
onsiderations, however, let us
onsider another appli
ation of mixture model ideas.10.2 Conditional mixture modelsThe \divide-and-
onquer" approa
h to statisti
al modeling applies equally well in the regressionand 
lassi�
ation domains. In this se
tion we study 
onditional mixture models, whi
h are theanalogs for regression and 
lassi�
ation of the un
onditional mixture models studied thus far.3Consider the data set shown in Figure 17.16, where we 
learly have a nonlinearity in the mappingfrom X to Y . We might utilize a ri
h set of basis fun
tions to allow us to 
apture this nonlinearity,but it may be diÆ
ult to 
apture the sharp kink in the middle of the �gure without requiring anoverly large number of basis fun
tions to the left and right of the kink, where the fun
tion wouldseem to be well modeled as a simple linear fun
tion.An alternative way to model these data is to utilize a 
onditional mixture. Within the 
ondi-tional mixture framework, we in essen
e split the problem into two subproblems, ea
h of whi
h 
anbe treated as a simple linear regression. We must �nd the parameters of these regressions, and wemust also de
ide where to split. Assuming that we 
an model the splitting de
ision using a simpleparametri
 model, we may be able to model the overall nonlinear dependen
e of Y on X using asmall number of parameters.The 
onditional mixture model is shown as a graphi
al model in Figure 17.16. The modelin
ludes nodes for the observed variables X and Y and also in
orporates a node for a multinomial3Conditional mixture models are also referred to as \mixture of experts" models; where the term \expert" is usedto designate a regression, 
lassi�
ation, or other generalized regression model.



10.2. CONDITIONAL MIXTURE MODELS 17latent variable Z. The response variable Y is 
onditioned not only on X but also on the latentvariable Z. This latent variable indexes the set of possible regressions of Y on X|for ea
h value ofZ, we obtain a possibly di�erent parameterized regression. Note moreover that there is a link fromX to Z. It is this dependen
y that allows us to obtain di�erent regressions in di�erent regions ofthe input spa
e.Let us 
onsider how to parameterize ea
h of the nodes in the model. Z is a multinomial variable,and its parent is the input variable X. The fa
t that the edge between these nodes points fromX to Z suggests using the ideas that we dis
ussed in the se
tion on dis
riminative 
lassi�
ation(Se
tion ??) to parameterize the dependen
y. For example, we may use a softmax regression:p(Zi = 1 jx; �) = e�Ti xPj e�Tj x ; (10.39)where � = (�1; �2; : : : ; �M is a parameter ve
tor.The node Y has X and Z as parents, and thus we have a 
onditional probability p(Y jX;Zi =1; �i). The mathemati
al form of this 
onditional probability depends on the nature of the dataY . Let us not spe
ify a parti
ular model at this point, but assume that we will bring to bearthe ma
hinery of generalized linear models (GLIM's). For example we 
ould 
onsider a binary
lassi�
ation model in whi
h p(Y jX;Zi = 1; �i) is a logisti
 regression model. Note that we haveone su
h model for ea
h value of Z.As is usual in the regression or dis
riminative 
lassi�
ation setting we treat the observations ofX as �xed 
onstants. Thus we do not in
orporate a marginal probability for X into our model.Putting together the pie
es, we obtain the following model for the 
onditional probability of Ygiven X: p(y jx; �) =Xi p(Zi = 1 jx; �)p(y jZi = 1; x; �i); (10.40)where � = (�1; : : : ; �M ; theta1; : : : ; �M ). This is a 
onditional mixture model, where both the mix-ing proportions, p(Zi = 1 jx; �), and the mixture 
omponents, p(y jZi = 1; x; �i), are 
onditionalprobabilities|both are 
onditioned on fX = xg.As in the un
onditional mixtures, a key quantity in 
onditional mixture modeling is the posteriorprobability of the latent variable Z. Here the notions of \prior" and \posterior" are relativeto the observation of Y ; the variable X is taken to be always observed. Thus, let us de�ne�i(x; �) , p(Zi = 1 jx; �) as the prior probability of the ith mixture 
omponent, 
onditioned solelyon X. We now de�ne the posterior probability � i(x; y; �):� i(x; y; �) , p(Zi = 1 jx; y; �) (10.41)= p(Zi = 1 jx; �)p(y jZi = 1; x; �i)Pj p(Zj = 1 jx; �)p(y jZj = 1; x; �j) (10.42)= �i(x; �)p(y jZi = 1; x; �i)Pj �j(x; �)p(y jZj = 1; x; �j) (10.43)where we see that the prior probability of the ith 
lass is updated by how probable the observationfY = yg is under the ith model.



18 CHAPTER 10. MIXTURES AND CONDITIONAL MIXTURESFigure 10.8:10.2.1 ExamplesLet us 
onsider some spe
i�
 
hoi
es for the mixture 
omponents p(y jZi = 1; x; �i).Mixtures of linear regressionsFor 
ontinuous variables Y it is natural to 
onsider a mixture of linear regressions:p(y jx; �) =Xi �i(x; �)N (y j�Ti x; �2i ); (10.44)where we have allowed ea
h linear regression to have a possibly di�erent error varian
e �2i .Figure 17.16 shows a depi
tion of this model in the 
ase of two mixture 
omponents. In this
ase the variable Z 
an be taken to be a binary variable and the mixing proportion �(x; �) ,p(Z = 1 jx; �) 
an be modeled using logisti
 regression. The logisti
 
urve shown in the �gure thusmodels the input-dependent probability asso
iated with the two mixture 
omponents. For negativevalues of X, the logisti
 
urve assigns small probability to Z = 1, thus essentially 
hoosing theregression 
urve labeled Z = 0. For positive values of X, the logisti
 
urve assigns large probabilityto Z = 1, thus essentially 
hoosing the regression 
urve labeled Z = 1. The point at whi
h thelogisti
 fun
tion is equal to 0:5 
an be viewed as the \split" point.Let us now 
onsider the geometri
 interpretation of the posterior probability. As shown in Fig-ure 17.16, 
onditioning on a spe
i�
 value of X leaves us with two possible 
onditional expe
tationsof Y|the 
onditional expe
tations asso
iated with ea
h of the two regressions. We have Gaussiandistributions around ea
h of these 
onditional expe
tations, with varian
es �21 and �21 , respe
tively.Thus the 
onditional distribution of Y given X is bimodal|we have a mixture distribution in theoutput spa
e for ea
h point in the input spa
e. Consider now the point (x; y0) in the �gure. Forthis value of x, the prior �(x; �) is large, 
orresponding to a 
hoi
e of the regression 
urve labeledZ = 1. Moreover, the value y0 has high probability under this regression model and the 
orrespond-ing posterior �(x; y0; �) is therefore large. Consider, on the other hand, the point (x; y00). The priorfor this point is the same as before. The value y00, however, has low probability under the regressionmodel labeled Z = 1 and high probability under the regression model labeled Z = 0. The posterior�(x; y0; �) is therefore small, 
orresponding to a posterior 
hoi
e of the regression model labeledZ = 0.We see that the posterior probability has mu
h the same interpretation as in the un
onditionalmixture model setting. That is, we 
an interpret the posterior probability as a \soft assignment,"but here the assignment pro
ess re
e
ts both the prior partitioning of the input spa
e into regions,modeled by �i(x; �), and the ability of ea
h of the 
omponent regressions to a

omodate the observedoutput y at that given value of x, modeled by p(y jZi = 1; x; �i).



10.2. CONDITIONAL MIXTURE MODELS 19Mixtures of logisti
 regressionsWe 
an readily extend the model of the previous se
tion to mixtures of generalized linear mod-els, thereby a

ommodating a wide variety of data types. An example is the mixture of logisti
regressions: p(y jx; �) =Xi �i(x; �)�(�Ti x)y(1� �(�Ti x))1�y; (10.45)where �(�Ti x) is the logisti
 fun
tion: �(�Ti x) = 1=(1 + e��T x). This model allows us to bring thedivide-and-
onquer approa
h to bear on 
lassi�
ation problems.The interpretation of the prior and posterior probabilities is identi
al in this model to thelinear regression 
ase, with the likelihood being a Bernouilli distribution rather than a Gaussiandistribution.10.2.2 Parameter estimation via the EM algorithmAt this point we have parameterized the graphi
al model in Figure 17.16, and the problem ofmaximum likelihood parameter estimation 
an be handled straightforwardly using the tools thatwe have developed in Se
tion 10.1.3 and Se
tion 10.1.5. Indeed the model is a good exer
ise of ourskills. In this se
tion we write down the log likelihood, the expe
ted 
omplete log likelihood, andthe EM algorithm for 
onditional mixtures.We assume an IID data set D = f(xn; yn) : n = 1; : : : ; Ng. The likelihood is obtained as thesum of the logarithm of the probability model in Eq. (10.40):l(� j D) =Xn logXi �i(xn; �)p(yn jZi = 1; xn; �i): (10.46)Note the presen
e of the logarithm outside of the summation; as in the un
onditional 
ase, thelikelihood is a marginal probability.The \
omplete data" is the data set D
 = f(xn; zn; yn) : n = 1; : : : ; Ng, where as before weimagine that we 
an observe the latent variable Z. The likelihood for N 
omplete observations ofthe model is: l(� j D
) =Yn Yi ��i(xn; �)p(yn jZi = 1; xn; �i)�zin (10.47)and taking the logarithm yields the 
omplete log likelihood:l
(� j D
) =Xn Xi zin log ��i(xn; �)p(yn jZi = 1; xn; �i)� ; (10.48)where we now see the logarithm inside the summation.We take the expe
tation of the 
omplete log likelihood, where we now treat the variables Zin asrandom variables. The expe
tation is taken with respe
t to the 
onditional probability distributionp(z jx; y; �(t)). Given that the 
omplete log likelihood is linear in zin, we see that 
an obtain theexpe
tation by simply 
omputing:hZini�(t) = p(Zin = 1 jxn; yn; �(t)) (10.49)= � i(xn; yn; �(t)): (10.50)



20 CHAPTER 10. MIXTURES AND CONDITIONAL MIXTURESThus we see that the E step of the EM algorithm amounts to 
omputing the posterior probabilities� i(xn; yn; �(t)). These 
an be viewed as our \best guess" of the values of the latent variables Zn,
onditioned on the observed values xn and yn, and evaluated at the 
urrent value of the parameterve
tor �(t).To summarize, the expe
ted 
omplete log likelihood takes the following form:l
(� j D) =Xn Xi � in(t) log ��i(xn; �)p(yn jZi = 1; xn; �i)� ; (10.51)where we write � i(t)n for the posterior probability � i(xn; yn; �(t)), in order to simplify notation.With the expe
ted 
omplete log likelihood in hand, we 
an now turn to the M step. Let us �rst
onsidering maximizing l
 with respe
t to the parameters �. Colle
ting together the terms thatdepend on �, and referring to the result as J(�), we have:J(�) =Xn Xi � in(t) log �i(xn; �): (10.52)This is identi
al to the log likelihood for the dis
riminative 
lassi�
ation problem (
f. Eq. (??)),where the role of the 
lass labels in that problem (the zin) is now played by the posterior probabilities(the � i(t)n ). The interpretation is that we \�ll in" the values of the latent variables Zin with our\best guess." Based on these �lled-in values we treat the problem of estimating the parameters ofthe 
onditional probability p(Z jx; �) as a dis
riminative 
lassi�
ation problem. In parti
ular we
an use the IRLS algorithm to update these parameters.It is also straightforward to derive an M step for the parameters �i. Colle
ting together theterms in the expe
ted 
omplete log likelihood that depend on �i, and referring to the result asJ(�i), we obtain: J(�i) =Xn � in(t) log p(yn jZi = 1; xn; �i): (10.53)For generalized linear models, the log probability in this expression is the logarithm of an expo-nential family distribution. Ea
h data point, (xn; yn), has an asso
iated \weight," the posteriorprobability � in(t). Thus we have a weighted maximum likelihood problem to solve. In essen
e, ea
hdata point is \assigned" to one of the mixture 
omponents, and the estimation of the parametersof ea
h mixture 
omponent is 
arried out using the data points assigned to that 
omponent.In the 
ase of a mixture of linear regressions, we obtain a set of weighted least squares problems,one for ea
h mixture 
omponent. For a mixture of logisti
 regressions, we have a set of weighted
ross-entropies. In general we 
an treat all of these problems within the IRLS framework|re
allour dis
ussion of weighted IRLS in Se
tion ??.In summary, the EM algorithm for 
onditional mixtures takes the following form:� (E step): Cal
ulate the posterior probabilities � i(t)n .� (M step): Use the IRLS algorithm to update the parameters �, based on data pairs (xn; � i(t)n ).� (M step): Use the weighted IRLS algorithm to update the parameters �i, based on data pairs(xn; yn), with weights � i(t)n ).These steps iterate and, as we prove in Chapter 11, 
limb to a lo
al maximum of the likelihood.



10.2. CONDITIONAL MIXTURE MODELS 2110.2.3 An on-line algorithmWe 
an obtain some additional insight into the 
onditional mixture model by developing an on-lineestimation algorithm. As we dis
ussed in Chapter 6, the problem here is to derive an update forthe parameters based on a single data point.To derive these updates we take the derivative of the log likelihood with respe
t to the param-eters and delete the summation over n; this yields the \sto
hasti
 gradient." We omit the algebra,asking the reader to supply the details in Exer
ise ??.In the equations below, we use the notation �in(t) to denote the 
onditional expe
tation of Ygiven fX = xg, for the ith mixture 
omponent, the nth data point, and letting the parameterve
tor equal �(t). We assume that the 
anoni
al link fun
tion has been 
hosen.Taking the derivative with respe
t to �i, we obtain the following update equation:�(t+1)i = �(t)i + �� i(t)n (yn � �in(t))xn; (10.54)where � is a step size. Similarly, taking the derivative with respe
t to �i, we obtain:�(t+1)i = �(t)i + �(� i(t)n � �i(xn; �(t)))xn; (10.55)where � is a step size.Both of these equations have natural interpretations. The update of �i in Eq. (10.54) has theform of the LMS algorithm, but with the additional feature that the step size is modulated by theposterior probability � i(t)n . Thus, if our 
urrent \best guess" is that the nth data point should beassigned to the ith mixture 
omponent, then we update the parameters in the normal way. If, onthe other hand, we do not think that the nth data point should be assigned to the ith mixture
omponent, then the step size is near zero and the parameters are not adjusted.The update of �i in Eq. (10.54) also has an appealing interpretation. The update again takes theform of the LMS algorithm, where the error is the di�eren
e between the posterior probability andthe prior probability. In essen
e we have a 
lassi�
ation problem in whi
h the prior probability is apredi
tion of the 
lass label asso
iated with the mixture 
omponents, and the posterior probabilityis an improved estimate of that label.Figure 17.16 shows a depi
tion of these update equations for the 
ase of a mixture of linearregressions. In this 
ase �in(t) = �(tT )i xn, and the error whi
h drives the update of �i is simplythe di�eren
e (yn � �(tT )i xn). This di�eren
e is shown in the �gure for both of the regressions.Although the error is larger for the Z = 0 regression, the posterior probability asso
iated with thisregression is vanishingly small (it is proportional to the exponential of the negative of the square ofthe error). Thus, as we show in Figure 17.16(b), the parameters asso
iated with the upper (Z = 1)
urve 
hange signi�
antly, while the parameters asso
iated with the lower (Z = 0) 
urve 
hangelittle.Given that the posterior probability asso
iated with the upper 
urve is near one, the errorin Eq. (10.55) has the e�e
t of shifting the logisti
 
urve towards the left. As we show in Fig-ure 17.16(b), this implies that on future presentations of this data point, the prior predi
tion willbe 
loser to one.



22 CHAPTER 10. MIXTURES AND CONDITIONAL MIXTURES10.2.4 Hierar
hi
al 
onditional mixtures and de
ision trees10.3 Appendix XXXAs an alternative to the EM algorithm, we 
an use standard nonlinear optimization algorithmssu
h as 
onjugate gradients. In this appendix we dis
uss this approa
h for un
onditional mixtures,fo
using on the problem of implementing the probabilisti
 
onstraints on the parameters.In evaluating the derivatives we must take a

ount of the requirement for the mixing proportionsto satisfy 0 � �i � 1 and Pi �i = 1. Similarly, the 
ovarian
e matri
es �i must remain symmetri
and positive-de�nite.We 
an allow for the 
onstraints on the mixing proportions �i by expressing them as a nonlineartransformation of a 
orresponding set of un
onstrained variables �i. Spe
i�
ally, we use the softmaxtransformation: �i = exp(�i)Pj exp(�j) ; (10.56)whi
h has the property that the mixing proportions will automati
ally satisfy the required 
on-straints.In order to impose the required 
onstraints on the 
ovarian
e matrix we 
an represent theinverse4 
ovarian
e matrix in terms of its Cholesky de
omposition:��1 = ATA (10.57)where A is an upper diagonal matrix, so that Aij = 0 if i < j. It is easily seen that there ared(d + 1)=2 remaining independent elements in A, 
orresponding to the number of independentelements in �. In 
omputing the expe
ted 
omplete-data log likelihood we need the inverse squareroot of the determinant of the 
ovarian
e matrix, whi
h is given by:j�j�1=2 = dYi=1Aii: (10.58)The 
ovarian
e matrix will be positive de�nite provided the diagonal elements Aii are positive,whi
h 
an be ensured by writing them as the exponentials of real values Aii = exp(�i).In summary, if we treat the values of �i, Aij (for j > i), �i and the 
omponents of �i asindependent, un
onstrained real values, the required 
onstraints will be met. The required deriva-tives of the log likelihood with respe
t to these un
onstrained variables are then easily obtainedExer
ise ??.
4The inverse of a positive de�nite symmetri
 matrix is also positive de�nite and symmetri
.


