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1 Lecture 01 (Aug 23)

Overview

• Optimization problem

• Conic optimization and semi-definite programming

• Conic duality

• Optimality conditions

• Midterm

• Robust optimization

• Applications

Optimization

min
x

f0(x) s.t. fi(x) ≤ 0, i = 1, 2, . . . ,m

x ∈ Rn is the optimization variable. f0(x) : Rn → R is the objective function. fi(x) : Rn → R
are the constraint functions. We define feasible set as T := {x | fi(x) ≤ 0, i = 1, 2, . . . ,m}.
Hence our problem of interest can also be written as:

min
x

f0(x) s.t. x ∈ T

Different type of points

• Feasible x: x ∈ T

• Global minimum: x∗. Giving lowest cost among all feasible points.

• Local minimum

How can we measure the complexity of a problem?

• Solution methods:

Analytical solution: Formula

Numerical solution: Algorithm

Example: Least squares problem. Define x: decision, b: measurement and Ax: model.
Thus the problem is:

min
x
‖Ax− b‖2

2 ⇒ x∗ = (ATA)−1AT b ≈ O(n3)

Now if the problem gets more complicated:

min
x:cTi x≤di,i=1,...,m

‖Ax− b‖2
2
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This problem does not have a closed form solution. Hence we need an algorithm: give
an initial guess x(0), then we form a sequence following some updates rules x(1), x(2),
. . . that hopefully converge to the optimal solution x∗. The algorithm iteratively designs
x(i) converging to x∗. Now the complexity of the algorithm depends on number of basic
operations. It is a function of n (number of variables), m (number of constraint), F
(hidden cost for evaluating gradient / hessian etc. etc.).

• O(n): easy, O(2n): hard.
Example:

min
x:x2i =1

cTx

We suppose n = 500, then this combinatorial problem will become intractable, i.e. 2500

is too big!

• In this class, we consider complexity in polynomial degree of m and n as easy prob-
lems.

Class of convex optimization problems

LP (Linear programming) ⊂ QP (Quadratic programming) ⊂ QCQP (Quadratically con-
straint quadratic programming) ⊂ SOCP (Second-order cone programming) ⊂ SDP (Semi-
definite programming) ⊂ Conic

Reformulation and approximation

Some examples include:

• Circuits: device sizing

• Control theory: optimal control and system identification

• Communication networks: TCP (transmission-control protocol)

• Power system: scheduling of generators

• Signal processing: compress sensing

Compressed sensing

Some theorem states that sampling rate for exact recovery should ≥ 2× highest frequency
of the signal. But what if we cannot sample that much?
We suppose x is a sparse vector and after some linear measurement, we have y, which is
rather dense. i.e. We have a matrix A such that y = Ax, thus A is a “fat” matrix since the
size of y is way smaller than the size of x. We want to design A such that given y, we can
recover x.
We give the sparse recovery problem:

min
x∈Rn:y=Ax

‖x‖0
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We use 0-norm primarily for the cardinality. But then this problem is non-convex and
hence hard. Thus, to solve this, we need to use a convex approximation of the problem:

min
x:y=Ax

‖x‖1

1.1 Operations and convexity

Suppose we have x, y ∈ Rn two vectors, we define the following operations:

• Affine combination:
(x, y)→ {αx+ βy | α + β = 1}

Geometry: any points on a straight line cross two points.

• Convex combination:

(x, y)→ {αx+ βy|α + β = 1, α, β ≥ 0}

Geometry: any points on the line segment starting from x ending at y.

• Conic combination:
(x, y)→ {αx+ βy | α, β ≥ 0}

Geometry:

• General case: (x1, . . . , xk)→
∑k

i=1 αixi. Then:

Affine:
∑
αi = 1

Convex:
∑
αi = 1, αi ≥ 0,∀i

Conic: αi ≥ 0, ∀i

Now we define the sets:

• Affine set S: (x1, . . . , xk) ∈ S, then affine combination of the points x1, . . . , xk should
∈ S.

• Convex set S: (x1, . . . , xk) ∈ S, then convex combination of the points x1, . . . , xk
should ∈ S.

• Convex hull: C = {
∑
αixi |

∑k
i=1 αi = 1, αi ≥ 0, xi ∈ C}. It is the smallest convex

set containing C.

• Cone S: (x1, . . . , xk) ∈ S, then conic combination of the points x1, . . . , xk should ∈ S.

Example: hyperplane is the set of all vector x such that aTx = b. This is an affine set.
half-space is the set of all vectors x such that aTx ≤ b. This is a convex set.

2 Lecture 02 (Aug 28)

This lecture is scribed by Calvin Chi, only minimum edit performed.
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2.1 Example of convex sets

• Half-spaces. Let aTx = b define a hyperplane, then aTx ≥ b or aTx ≤ b is the
corresponding half-space.

• Polyhedron. A polyhedron can be described as the set

P = {x | Ax � b, Cx = d}

where A ∈ Rm×n and C ∈ Rp×n.

• Norm balls. A norm ball can be described as the set

B(xc, r) = {x | ‖x− xc‖2 ≤ r}

To prove this, use the triangle inequality and positive homogeneity of norms.

• Ellipsoids. An ellipsoid can be described as the set

E = {x | (x− xc)TP−1(x− xc) ≤ 1}

where P ∈ Sn++
1.

2.2 Set Operations Preserving Convexity

Let f : Rn → Rm, then dom f is the set of values x where f(x) is defined. The range of f is
the set of all values f(x) where x ∈ domf . The following are operations on convex sets that
preserve convexity.

• Intersection. Intersection of convex sets are also convex. However, the union of
convex sets is generally not convex.

• Affine transformation. Let f(x) = Ax + b be a function where f : Rn → Rm. Let
S denote a convex set, then the image of S (f(s) = {f(x)|x ∈ S}) under f is also a
convex set. The inverse image of S under f is also convex (f−1(s) = {x|f(x) ∈ S}).

• Projection: the projection of members of a convex set to a lower dimensional space
results in another convex set.

• Linear fractional transformation. Let f : Rn → Rm be of the form

f(x) =
Ax+ b

cTx+ d

For A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and d ∈ R. dom f = {x|cTx + d > 0}. Then if S is a
convex set, then the image f(S) is also a convex set. The inverse image f−1(S) is also
convex.

1Here S++ denotes the set of positive definite matrices and S+ denotes the set of positive semidefinite
matrices
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2.3 Convex Functions

A function f : Rn → R is convex if ∀x, y and ∀α ∈ [0, 1],

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (2.1)

where f has a convex domain2. Strict convexity is achieved if the inequality of Equation
1 is strict. The geometric interpretation of a convex function is shown in Figure 1

Figure 1: The line segment αf(x) + (1− α)f(y) is above f(αx+ (1− α)y).

If the function f is furthermore continuous, then the midpoint theorem states that check-
ing Equation 1 is true for α = 1

2
is sufficient to establishing convexity of f .

First Order Condition for Convexity. Suppose a function f : Rn → R is differ-
entiable and continuous, then f is convex if and only if dom f is a convex set and for all
x, y ∈ domf ,

f(y) ≥ f(x) +∇xf(x)T (y − x) (2.2)

The geometric interpretation is shown in Figure 2.

Figure 2: Illustration of the condition that f(y) ≥ f(x) +∇xf(x)T (y − x).

Second Order Condition for Convexity. Suppose a function f : Rn → R is twice
differentiable and continuous.Then f is convex if and only if dom f is convex and its Hessian
is positive semidefinite (PSD).

∇2
xf(x) � 0 (2.3)

2The requirement that the domain of f be a convex set is just to ensure that f(αx+ (1−α)y) is defined.
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However, a positive definite Hessian is a sufficient but not necessary condition for strict
convexity. For instance f(x) = x4 is strictly convex but ∇2

xf(x) = 12x2 = 0 at x = 0.
Below are some examples of convex functions that can be verified using the above con-

ditions for convexity.

• Exponential. A function of the form f(x) = eax is convex for a ∈ R and strictly
convex if a 6= 0. This is easily checked with the second order condition for convexity,
where ∇f 2(x) = a2eax ≥ 0.

• Powers.

1. xa is convex on R++ if a ≥ 1 or a ≤ 03.

2. −xa is convex on R+ if 0 ≤ a ≤ 1.

• Logs. The negative log determinant − log detX is convex on domain of PSD matrices.
This is a generalization of the statement that − log x is convex on R++. The negative
entropy x log x is also convex on R++.

Below are additional conditions for establishing convexity.

• Pointwise maximum of a set of convex functions is convex. If f(x, y) is a convex
function of x, then for every y in the index set D, g(x) = supy∈D f(x, y) is a convex
function in x. Figure 3 illustrates this concept.

• If f(x) is convex, then g(x) = f(Ax + b) is also convex for arbitrary A ∈ Rm×n and
b× Rm.

• Assume f(x, y) is jointly convex in x and y and D is a convex set. Then g(x) =
infy∈D f(x, y) is convex if g(x) is always greater than −∞.

Figure 3: Illustration of the condition that the pointwise maximum of a set of convex
functions is convex. Here the index set D = {1, 2} and the red portion of the graph is
g(x) = supy∈D f(x, y).

3xa needs to be defined on R++ because otherwise x−1/2 is undefined for x = 0.

9



EE 227B by El Ghaoui and Sojoudi Tom Hu

3 Lecture 03 (Aug 30)

Theorem 3.1 (Line restriction theorem). f is convex if and only if its restriction to
any line is convex, i.e. g(t) = f(x + ty) is convex for every x ∈ dom(f), y ∈ Rn.
{t | x+ ty ∈ dom(f)}.

Theorem 3.2 (Conic combination). Let α1, α2, . . . , αk ≥ 0, if f1, . . . fk is convex.
Then

∑k
i=1 αifi(x) is also convex.

Theorem 3.3 (Composite theorem). Let f : D1 → R, g : D2 → R, range(f) ⊆ D2.
If f and g are convex and g is non-decreasing, then g(fi(x)) is also convex.

Examples:

• Quadratic function: f(x) = xTAx+ bTx+ c, ∇f(x) = 2Ax+ b, ∇2f(x) = 2A. f is
convex iff A ≥ 0. f is strictly convex if A > 0.

• Indicator function Given D,

ID(x)

{
0, x ∈ D
∞, otherwise

ID is convex iff D is convex. We can transfer problem using indicator function, i.e. we
have minfi(x)≤0 f0(x), we can transfer it to min f0(x) + ID(x) where D is the feasible
region.

• Distance to a set
g(x) = inf

y∈M
‖x− y‖

‖x − y‖ is jointly convex in (x, y), if z =

[
x
y

]
and M is convex, by previous theorem

g(x) is convex.

• Norm f(x) = ‖x‖, arbitrary norms. Note that the 0-norm is actually not a norm.

• Dual norm ‖ · ‖ ∈ Rn, then:

‖u‖∗ := sup{uTx|‖x‖ ≤ 1}

3.1 Fentchel conjugate

Definition 3.1 (Fentchel conjugate). The Fenchel conjugate of f is defined as:

f ∗(z) = sup
x∈ dom f

xT z − f(x)

point-wise supremum of a set of affine functions in z → convex.
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Theorem 3.4. f ∗(z) is convex even when f(x) is not

Theorem 3.5 (Fenchel inequality). f(x) + f ∗(z) ≥ xT z, ∀x, z

Example:

• f(x) = ax+ b. Then

f ∗(z) = sup
x
zx−(ax+b) = sup

x
(z−a)x−b =

{
−b z = a

∞ otherwise
→ f ∗(z) = −b, dom(f ∗) = {a}

• f(x) = 1
2
xTAx+ bTx+ c, A > 0, then: f ∗(z) = 1

2
(z − b)TA−1(z − b)− c.

• f(x) =
∑n

i=1 xi log xi, then f ∗(z) =
∑n

i=1 e
zi−1. Both ones use the trick that f(x) itself

is non-negative, hence would be upper-bounded by xT z. Calculation is eliminated.

• f(X) = − log det(X), dom(f) = Sn++, then f ∗(Z) = − log det(−Z−1) − n. The opti-
mization problem is:

f ∗(Z) = sup
X∈Sn++

Tr(XZ) + log det(X)

Note that we can simply construct X = I + tvvT , then if Z 6< 0:

tr(XZ) + log det(X) = tr(Z) + tλ+ log det(I + vvT )→∞

If Z < 0, we take the gradient with respect to X and yield Z + X−1 = 0. Thus
X∗ = −Z−1, plug it in yield desired solution.

• If f(x) = ‖x‖, then:

f ∗(z) = I‖·‖∗≤1(z) =

{
0, if ‖z‖∗ ≤ 1

+∞, if ‖z‖∗ > 1

Proof. Recall ‖z‖∗ = sup‖x‖≤1 x
T z.

Case 1: if ‖z‖∗ ≤ 1, then:

zT
(

x

‖x‖

)
≤ ‖z‖∗ ≤ 1⇒ zTx− ‖x‖ ≤ 0⇒ f ∗(z) = sup zTx− ‖x‖ ≤ 0

Case 2: If ‖z‖∗ > 1, then:

∃x s.t. ‖x‖ ≤ 1, xT z > 1⇒ f ∗(z) ≥ zT (tx)− ‖tx‖ = t (zTx− ‖x‖)︸ ︷︷ ︸
>0

→∞

Theorem 3.6. If f is convex and the domain of f is closed, then f ∗∗ = f, ∀x. In
general, f ∗∗(x) ≤ f(x),∀x.

11
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3.2 Subgradients

Definition 3.2. A vector g ∈ Rn is called a subgradient at a point y, if ∀x ∈ dom(f),
the following inequality holds:

f(x) ≥ f(y) + 〈g, x− y〉

Recall the first order condition for convex functions:

f(x) ≥ f(y) + 〈∇f, x− y〉

Differentiable convex functions:
Non-differentiable convex functions:
Subgradient is a global linear underestimator of function at (y, f(y)). For convex func-

tions, any local underestimator is a global underestimator.

Definition 3.3 (Subdifferentials). Subdifferentials is the set of all subgradients at y
and is denoted by ∂f(y)

Theorem 3.7. ∂f(x) is a closed, convex set and possibly empty.

Proof. f(x)− f(y)−〈f, x− y〉 ≥ 0. Note that y is fixed, if fix x, set of all g’s is a half-space.
Intersection of infinitely many half-spaces is still convex.

Theorem 3.8. If x is in the interior of dom(f), f convex, then subdifferential is
non-empty and bounded.

Example: f(x) = |x|, ∂f(x) =


1, x > 0

−1, x < 0

[−1, 1], x = 0

Theorem 3.9. If f is differentiable, then ∂f(x) = {∇f(x)}.

Theorem 3.10. If ∂f(x) = {g}, i.e. a single element, then f is differentiable and
g = ∇f .

Theorem 3.11. f convex, if f(x) = max{f1(x), . . . , fk(x)}, then ∂f(x) is the convex
hull of union of ∂fi(x), where i stands for active functions.

Example: f(x) = max1≤i≤k(a
T
i x+ bi), then ∂(aTi x+ bi) = {ai}, ∂f(x) is the convex hull

of {ai | i ∈ I(u)}, and
I(u) = {i | aTi u+ bi = f(x)}

12
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4 Lecture 04 (Sep 4)

In general
min
x∈Rn

fi(x)≤0,i=1,2,...,m
hj(x)=0,j=1,2...,p

f0(x)

4.1 Re-formulations

• max g(x) ⇐⇒ min−g(x)

• g(x) = 0 ⇐⇒

{
g(x) ≤ 0

−g(x) ≤ 0

• g(x) ≤ 0 ⇐⇒ g(x) + z2 = 0, z is the slack variable

• Change of variables: φ : Rn → Rn is an one-to-one mapping. x = φ(z). New problem
would be: min z∈Rn

f̃i(z)≤0

h̃j(z)=0

f̃0(z). f̃i = fi · φ and h̃j = hj · φ.

• Transformation:

min
x∈Rn,ψi(fi(x))≤0,i=1,...,m,ψj+m(hj(x))=0,j=1,...,p

ψ0(f0(x))

– ψ0 : R→ R: strictly increasing

– ψi : R→ R, i = 1, 2, . . . ,m s.t. ψi(y) ≤ 0 ⇐⇒ y ≤ 0

– ψi : R→ R, i = m+ 1, . . . ,m+ p s.t. ψi(y) = 0 ⇐⇒ y = 0.

• Epigraph. Any optimization problem can be converted to another optimization prob-
lem with linear objective. New problem:

min
x∈Rn,t∈R,f0(x)−t≤0,fi(x)≤0,hj(x)=0

t

At optimality, t∗ = f(x∗)

4.2 Solutions of optimization problems

• Feasible solution: x is a feasible solution if it satisfies all the constraints:

dom = dom(f0) ∩ dom(fi) ∩ dom(hj)

• Optimal value: Infimum of f0(x) over all feasible x’s


∞ : infeasible

finite

−∞ : unbounded from below

• Global min: x∗ is feasible and gives the lowest value possible for f0(x)

• Local min: x∗ if ∃R > 0 such that f(x∗) ≤ f(x), ∀x ∈ feasible set ∩ {y|‖y − x∗‖ ≤ R}

13
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4.2.1 Non-convex optimization

• 1st order necessary condition

• 2nd order necessary condition

• 2nd order sufficient condition

4.2.2 Convex optimization

• 1st order necessary condition: global min

4.3 Convex optimization

f0, f1, . . . , fm convex functions, h1, . . . , hp: affine. We have:

min
x∈Rn

fi(x)≤0
Ax=b

f0(x)

Exercise: show that the feasible set of a convex optimization is a convex set.
Overall: convex optimization is the minimization of a convex function over a convex set.
Example:

min
x31≤0

x1+x2≥1

x2
1 + x2

2

is not convex, but we can change x3
1 ≤ 0 to x1 ≤ 0 to yield an equivalent convex optimization

problem.

Theorem 4.1. Every local min of a convex optimization is a global mean.

Proof. Assume x∗ is a local min but not a global min, and x̃ is the global min. Assume the
feasible set of the problem is M . Pick z = (1− t)x∗+ tx̃, t small. z ∈M but f0(z) < f0(x∗),
hence x∗ can’t be a local mean, thus a contradiction.

Theorem 4.2. Consider a point x∗ that is in the interior of the feasible set. Then x∗

is a global min if and only if ∇f0(x∗) = 0.

Theorem 4.3. Consider a point x∗ that is in the feasible set. Then x∗ is a global min
if and only if ∇f0(x∗)(x− x∗) ≥ 0 for all x in the feasible set, X.

Proof. ⇒: Use first order condition, trivial.
⇐: By first order convexity:

f0(x) ≥ f0(x∗) +∇fT0 (x− x∗)
≥ f0(x∗)

Thus x∗ is a global min.

14
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Definition 4.1. The level sets of f0(x) with constant c:

{x | f0(x) = c}

5 Lecture 05 (Sep 6)

Example 5.1.
min

x∈Rn,x≥0
f0(x)

convex optimization, x∗ is a global min iff ∇f0(x∗)T (x − x∗) ≥ 0, ∀x ≥ 0, this is equivalent

to
∑n

i=1
∂f0(x∗)
∂xi

(xi − x∗i ) ≥ 0, ∀x ≥ 0 Pick x =



x∗1
x∗2
...

x∗i + 1
...
x∗n


, and ∂f0(x∗)

∂xi
≥ 0, ∀i If x∗i > 0 for

some i, then: x =



x∗1
x∗2
...

x∗i /2
...
x∗n


then ∂f0(x∗)

∂xi
(−x∗i

2
) ≥ 0⇒ ∂f0(x∗)

∂xi
= 0.

Theorem 5.1. Set of global mins of a function f0(x) = {x∗ ∈ Rn | 0 ∈ ∂f0(x∗)}.

Proof. x∗ is a global min if and only if f0(x) ≥ f0(x∗), ∀x ∈ X, equivalent to f0(x) ≥
f0(x∗) + 〈0, x− x∗〉,∀x ∈ X ⇐⇒ 0 ∈ df(x∗)

5.1 Different classes of convex optimization

5.1.1 Linear program (LP)

Minimization of a linear function subject to linear equality and inequality constraints.

min
Gx≤h,Ax=b

cTx+ d

Canonical form:
min

x̃≥0,Ãx̃=b̃
c̃T x̃

Facts:

• Gx ≤ h⇒ Gx+ s = h, s ≥ 0

15



EE 227B by El Ghaoui and Sojoudi Tom Hu

• x can be written as x = x+ − x−, x+ ≥ 0, x− ≥ 0

Example:

• Piecewise linear
min
x

max
i=1,...,m

(aTi x+ bi)

min
x,t

t, aTi x+ bi ≤ t, i = 1, . . . ,m

• Linear fractional

min
Gx≤h
Ax=b

cTx+ d

eTx+ f

Note that dom(f0) = {eTx + f > 0}, define y = x
eT x+f

, z = 1
eT x+f

. Replace x with y

and z subject to: z ≥ 0, eTy + fz = 1.

• Absolute value, also use the epigraph idea:

min
Gx≤h
Ax=b

‖x‖1

min
Gx≤h
Ax=b

−ti≤xi≤ti

t1 + . . .+ tn

5.1.2 Quadratic program (QP)

Minimization of a quadratic function subject to a linear equality and inequality constraints.

min
Gx≤h,Ax=b,P≥0

xTPx+ qTx+ r

QP includes LP by setting P = 0.

5.1.3 Quadratically constrained quadratic program (QCQP)

min
1
2
xTPix+qTi x+ri≤0

Fx=g
P0,Pi≥0

1

2
xTP0x+ qT0 x+ r0

QCQP includes QP by setting Pi = 0

• Constrained least squares:
min
‖x‖2≤1

‖Ax− b‖2
2

16
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5.1.4 Second order cone program (SOCP)

Minimization of linear function subject to linear equality constraints and 2-norm inequality
constraints:

min
‖Aix+bi‖2≤cTi x+di

Fx=g

fTx

SOCP includes QCQP. Show it as an exercise! (Hint: Epigraph idea)

Definition 5.1. Second order cone is:

{(x, t)|x ∈ Rn, t ∈ R, ‖x‖2 ≤ t}

• Robust LP.
Recall the general LP:

min
aTi x≤bi

cTx

ai is not known exactly, but we know ai ∈ εi = {āi + Piu | ‖u‖2 ≤ 1}. The robust LP
is:

min
aTi x≤bi,∀ai∈εi

cTx

Note that this is infinitely dimensional convex optimization, very hard to solve.
We show that Robust LP ⇐⇒ SOCP:

min
‖PT

i x‖2≤bi−āix
cTx

Proof. Note that:

sup
ai∈{āi+Piu | ‖u‖2≤1}

aTi x

= āTi x+ sup
‖u‖2≤1

uTP T
i x

= āTi x+ ‖P T
i x‖2

• LP with random constraints.
Consider an alternative of LP:

min
P(aTi x≤bi)≥η

cTx

where the parameters ai are independent Gaussian random vectors, with mean āi and
covariance Σi. And η ≥ 0.5.
Let u = aTi x, standardize the constraints we yield P

(
u−ū
σ
≤ bi−ū

σ

)
≥ η. Define Φ(z)

the CDF of unit variance Gaussian. Then we can express the probability constraint
as: bi−ū

σ
≥ Φ−1(η). Thus the problem can be expressed as an SOCP:

min
āTi x+Φ−1(η)‖Σ1/2

i x‖2≤bi
cTx

17
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5.1.5 Semi-definite program (SDP)

Replace Gx ≤ h as linear matrix inequality (LMI) in LP. F : Sn → Sn s.t. F (x) is linear in
every entry F (x) ≤ 0 is an LMI.
Example: LMI, set n = 2, we have:

F (x) =

[
1 + x1 x1 − 2x2

x1 − 2x2 x2 + 5x1

]
, F (x) ≤ 0→ LMI

A canonical form is:
F (x) = x1F1 + x2F2 + . . .+ xnFn + F0

where Fi’s are all symmetric.
min

x1F1+x2F2+...+F0≤0
Ax=b

cTx

Canonical LP Canonical SDP
x ∈ Rn x ∈ Sn
min cTx min〈C,X〉
Ax = b 〈Ai, X〉 = bi
x ≥ 0 X ≥ 0 PSD

Note that 〈Ai, X〉 = tr(AiX), the canonical SDP is:

min
tr(AiX)=bi

X≥0

tr(CX)

Trick: change of variables:

X = −F (x) = −x1F1 − x2F2 . . . F0

cTx,ATx = b can be rewritten in terms of X.

6 Lecture 06 (Sep 11)

6.1 Examples of SDP

6.1.1 Eigenvalues  1 + x1 x2 − 2x1 x1

x2 − 2x1 x1 − x2 + 1 2x1 + 1
x1 2x1 + 1 x2 + 3


1. How to minimize the maximum eigenvalue of this matrix?

2. How to minimize sum of two largest eigenvalues?

3. How to minimize sum of all eigenvalues?

18



EE 227B by El Ghaoui and Sojoudi Tom Hu

4. How to maximize the minimum eigenvalue of the matrix?

Recall the general form:

A(x) = A0 + x1A1 + . . . xnAn, Ai ∈ Sm+ , λ1(Ai) ≤ λ2(Ai) ≤ . . . ≤ λm(Ai)

1.

min
x∈Rn

λmax(A(x)) ⇐⇒

min
x∈Rn

t∈R
A(x)≤tIm

t

2.

min
∑m

i=k λi(A(x)) ⇐⇒
min

x∈Rn,S∈R
Z∈Sm,Z≥0

Z−A(x)+sIm≥0

tr(Z) + s(m− k + 1)

EVD:

A = UΣUT

= U diag(λi)U
T

= U



λm − λk 0 . . . 0
0 λ2 − λk . . . 0
...

...
...

...
0 0 . . . λk − λk
...

...
...

...
0 0 . . . 0


UT

︸ ︷︷ ︸
Z

+U


0 0 . . . 0
0 λk−1 − λk . . . 0
...

...
...

...
...

...
...

...
0 0 0 λ1 − λk

UT

︸ ︷︷ ︸
NSD

+λkI

That is A(x)− Z − λkI ≤ 0 and tr(Z) =
∑m

i=k(λi − λk) =
∑m

i=k λi − λk︸︷︷︸
s

(m− k + 1):

m∑
i=k

λi = tr(Z) + s(m− k + 1)

3.

max
∑k

i=1 λi(A(x)) ⇐⇒
min

B(x)=−A(x)

∑m
i=m−k+1 λi(B(x))

19
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6.1.2 Max Cut

How to partition the vertices of a graph into two sets, such that the number of edges between
the two sets is maximal.

• Each edge (i, j) has a weight wij ≥ 0.

• Optimization formulation: xi is a variable associated with note i, and

{
+1 if ui ∈ S1

−1 if ui ∈ S2

.

• Cut: Define ε the edge set, then:∑
(i,j)∈ε,i∈S1,j∈S2

=
n∑

i,j=1

−(xi + 1)(xj − 1)

4
wij =

n∑
i,j=1

1

4
wij(1− xixj)︸ ︷︷ ︸

quadratic

Max-cut can be formulated as:

max
x∈Rn,x2i−1=0

xTQx

Matirx reformulation:

xTQx = tr(xTQx) = tr(QxxT ) = tr(QX)

Hence the problem:
max

X∈Sn,X≥0,Xii=1,rank(X)=1
QX

However, we need to drop the rank constraint in order to make it an SDP, i.e. it’s a
convex relaxation of a non-convex set. Some proofs show:

1

0.87
(x∗)TQx∗ ≥ tr(QX∗) ≥ (x∗)TQ(x∗)

(Geomans and Williamson in 1995). A sketch of proof is:

– X∗ is not always rank 1, i.e. we cannot always decompose it into (u∗)Tu∗

– Consider Nn(0, X∗)

– Define a new probability distribution:

x̂i =

{
1 xi ≥ 0, i = 1, . . . , n

−1 otherwise

We then show (see paper for details):

∗ E[x̂TQx̂] ≤ (x∗)TQx∗

∗ E[x̂TQx̂] ≥ 0.87tr(QX∗).

The general idea on simulation is that:

∗ Solve SDP relaxation

∗ Using X∗, generate a probability distribution

∗ Sample random variable û

∗ Get a cut that is 13% away from optimal.

20
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6.1.3 Polynomial optimization

min
x∈Rn,pi(x)≤0

p0(x)

where p(x) stands for a polynomial. For example, suppose we want:

minx4
1 + x2

2x1 + x6
1

These can always be converted into a non-convex QCQP, i.e. the above can be written as:

min
x21−x3=0,x23−x4=0,x22−x5=0

x2
3 + x5x1 + x3x4

min
xTAix+bTi x+ci≤0

xTA0x+ bT0 x+ c0

Note that A0, A1, . . . might not be PSD. It’s hence a non-convex QCQP.

6.1.4 General SDP relaxation

By defining X =

[
x
1

] [
xT 1

]
, drop the rank constraint, we get SDP relaxation.

Theorem 6.1 (Pataki’s Theorem). Consider a canonical SDP:

min
〈Mi,X〉=ai,X≥0

tr (M0X)

There is a solution whose rank is upper-bounded by:⌊√
8k + 1− 1

2

⌋
i.e. when k = 1, rank = 1, k = O(n), rank = O(

√
n).

6.2 Conic optimization

Definition 6.1 (Proper cone). We say a cone K ⊆ Rn proper if:

• K is convex

• K is closed

• K has non-empty interior

• K is pointed, i.e. if x ∈ K,−x ∈ K, then x = 0. “It cannot contain a line.”

Linear canonical form of Conic optimization:
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Canonical LP Canonical SDP
min cTx min cTx
Ax = b Ax = b
x ≥ 0 x ≥K 0

Note that x ≥K 0 means x ∈ K, a convex cone. Hence x ≥K y means x − y ∈ K. If
K = Rn

+, x ≥K 0 ⇐⇒ x ≥ 0, so conic becomes LP.

6.2.1 General form of linear conic optimization

min
Aix−bi≤K0,Fx=g

cTx

Definition 6.2. Given a cone K, the dual cone K∗ is:

K∗ = {y | xTy ≥ 0,∀x ∈ K}

Note that K∗ is always a cone even if K is not. y ∈ K∗ iff −y is a normal vector of
the hyperplane that supports K at the origin.
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6.3 Tractable conic optimization

• The non-negative orthant, i.e. Rn
+

• The second-order cone: Qn := {(x, t) ∈ Rn
+ × R+ : t ≥ ‖x‖2}.

– Rotated second-order cone: Qn
r := {(x, y, z) ∈ Rn+2 : 2yz ≥ ‖x‖2

2, y ≥ 0, z ≥ 0},
which is equivalent to:

(y + z) ≥
∥∥∥∥(y − z)√

2x

∥∥∥∥
2

Note that this is useful to show that QP is a special case of SOCP, especially the
constraint t ≥ xTQx can be interpreted as (Q1/2x, t, 1) ∈ Qn

r .

• The semi-definite cone: Sn+ := {X = XT ≥ 0}.

Note that the below demonstrates that semi-definite cone actually contains second-order
cone (also, soc contains nno):

‖x‖2 ≤ t ⇐⇒


t x1 . . . xt
x1 t . . . 0
...

...
. . .

...
xn 0 . . . t

 ≥ 0

Theorem 6.2 (Schur’s complement). Given a matrix X =

[
A B
BT C

]
, and define

Schur complement of A as:
X/A = C −BTA−1B

and Schur complement of C as:

X/C = A−BTC−1B

Then the following hold true:

• X is positive definite if and only if A (resp C) and X/A (resp X/C) are both
positive definite.

• if A (resp. C) is positive definite, then X is positive semi-definite if and only if
X/A (resp. X/C) is positive semi-definite.

We can hence show the iff equation from Schur’s complement.
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7 Lecture 07 (Sep 13)

7.1 Review Problems

1. Give an SDP relaxation of non-convex quadratic optimization of the form:

min
xTQix+2qix+pi≤0

xTQ0x+ 2q0 + p0

We denote the variable as X = xxT , x, then the problem becomes:

min
Tr(XQ0)+2q0x+p0≤0

Rank(X)=1

Tr(XQi) + 2qix+ pi

Drop the rank 1 we get a SDP relaxation.

2. Recall that Sn+ is the PSD cone. Given an arbitrary matrix A ∈ Sn, we want to find the
closest point in Sn+ to A with respect to Frobenious norm (distance between A and X is
‖A−X‖F ).

a. Formulate the problem as a smooth conic optimization.

The problem can be explicitly formed as:

min
X≥0
‖A−X‖2

F

Recall that Frob norm can be written as ‖X‖F =
√
tr(XTX), thus the problem

above can be formulated as

min
X≥0

tr(ATA+XTX − 2ATX)

b. Using the optimality condition, find the point.

Recall the optimality condition is when ∇f(x∗)(x∗ − x) ≤ 0,∀x in feasible set,
i.e.

〈(X∗ − A), (X∗ −X)〉 ≤ 0,∀X ∈ Sn

Decompose A = A+ − A−, where A+ = Udiag(λ1, . . . , λk, 0, . . . , 0), similarly we
construct A−, note that 〈A+, A−〉 = 0 hence the above becomes

〈X∗, X∗ −X〉 − 〈A+ − A−, X〉 ≤ 0

3. Consider an integer k between 1 and n.
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a. Find the convex hull of the set

M = {XXT |X ∈ Rn×k}

It’s the set itself. Let K1, . . . , Kk ∈M , then

H :=

{
k∑
i=1

αiKi ≥ 0|Ki ∈ XXT

}

Thus H ⊆ Sn+. We proceed to prove the other side, suppose we have A ∈ Sn+, A =∑n
i=1 λiuiu

T
i . Define a unit, say

εi =
√
n
√
λi
[
ui 0 . . . 0

]
Then we can see

n∑
i=1

1

n
εiε

T
i =

n∑
i=1

λiuiu
T
i = A

b. Find the convex hull of the set

{XXT |X ∈ Rn×k, rank(X) = k}

• If A ≥ 0, but rank(A) < k, then A /∈ H. Suppose A ∈ H, then A =∑m
i=1 αiXiX

T
i s.t.

∑
αi = 1, then since rank < k, ∃N such that rank(N) >

n − k, i.e. NTAN = 0 ⇒
∑
αi(N

TXi)(X
T
i N) = 0. At least one αj 6= 0,

then (NTXj)(X
T
j N) = 0, XT

j N = 0, then this demonstrates rank(XT
j ) <

n− n(n− k) = k, a contradiction.

• H ∈ Sn+.

• Convex hull is {Sn+|rank ≥ k}. Assume that A ∈ T and rank= k, then
A = XXT for some X, A is in the convex hull. We show the other way. The
other way around: assume A ∈ T and rankk = k + 1, then

A =
k∑
i=1

λiuiu
T
i

=
2λ1u1u

T
1 + λ2u2u

T
2 . . . λkuku

T
k

2
+
λ2u2u

T
2 . . . λkuku

T
k + λk+1uk+1u

T
k+1

2

We can complete by induction.

4. Find the sub-differential of the function f(x) = ‖x‖∞.
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According to Denskin’s theorem, ∂f(x) is the convex hull of union of sgn(xi) for
i ∈ D, where D is the set of index such that the maximum is attained. Or in other
words, we can express it as:

5. A matrix X ∈ Sn is called copositive if zTXz ≥ 0,∀z ≥ 0. Find the dual cone of the cone
of copositive matrices.

By definition, dual cone is defined as :

〈Y,X〉 ≥ 0,∀X copositive

Claim: vvT ∈ C∗ if v ≥ 0, v ∈ Rn, note that

〈vvT , X〉 = vTXv ≥ 0

Thus C∗ ⊇ αiviv
T
i .

C: copositive, C∗: dual cone. Let:

T =
{∑

αiviv
T
i | αi ≥ 0, vi ∈ Rn

+

}
Suppose there exists B such that B ∈ T ∗ but B /∈ C. Note that T ⊂ C∗, then
T ∗ ⊃ (C∗)∗, then there exists B such that B ∈ T ∗ but B /∈ C, since B /∈ C, ∃z ≥ 0
such that zTBz < 0, i.e. 〈zzT , B〉 < 0. But zzT ∈ T,B ∈ T ∗, by definition, the
inner product of dual and dual cone must be ≥ 0, thus a contradiction.

6. Find the dual cone of a positive semi-definite cone.

We claim it’s self dual and show by contrapositive. We want to establish the fact:

Y | Tr(XY ) ≥ 0,∀X ≥ 0 ⇐⇒ Y ≥ 0

Suppose Y /∈ Sn+, then there exists q ∈ Rn with:

qTY q = Tr(qqTY ) < 0

Hence the psd matrix X = qqT satisfies Tr(XY ) < 0, thus Y /∈ (Sn+)∗.
Now suppose X, Y ∈ Sn+, we can express X as X =

∑n
i=1 λiqiq

T
i where (the eigen-

values) λi > 0, then we have:

Tr(Y X) = Tr

(
Y

n∑
i=1

λiqiq
T
i

)
=

n∑
i=1

λiq
T
i Y qi ≥ 0

This shows Y ∈ (Sn+)∗.
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7. Find the dual cone of a norm cone, i.e. K = {(x, t) ∈ Rn+1 | ‖u‖∗ ≤ v}.

We claim the following:

xTu+ tv ≥ 0,∀‖x‖ ≤ t ⇐⇒ ‖u‖∗ ≤ v

⇐: Suppose ‖u‖∗ ≤ v, ‖x‖ ≤ t, t > 0, then since we know ‖ − x/t‖ ≤ 1, we have:

uT (−x/t) ≤ ‖u‖∗ ≤ v

Thus uTx+ vt ≥ 0 for x, t such that ‖x‖ ≤ t.
⇒: We show that if RHS does not hold then LHS does not hold. i.e. Suppose
‖u‖∗ > v, then by definition of the dual norm, ∃x such that ‖x‖ ≤ 1 and xTu < v,
take t = 1, we have:

uT (−x) + v < 0

which contradicts LHS.

8 Lecture 08 (Sep 18)

8.1 Separating Hyperplanes

Theorem 8.1 (Separating hyperplane theorem). Suppose C and D are two convex
sets that do not intersect, i.e. C ∩D = ∅, then ∃a 6= 0 and b such that:

aTx ≤ b,∀x ∈ C

aTx ≥ b,∀x ∈ D

Note that the inequality is not always strict. A simple counter-example would be y ≤ 0
and y ≥ ex, note that y = 0 is a separating hyperplane.

Proof. Sketch dist(C,D) = inf{‖u − v‖2) | u ∈ C, v ∈ D}. Find the best pair (c, d) to
minimize the length.

• Find (c, d)

• Find the mid-point of the segment.

• Draw an orthogonal hyperplane going through the midpoint.

Define: a = d− c, b =
‖d‖22−‖c‖22

2
. It’s easy to show that this is a separating hyperplane.

Theorem 8.2. If D is a single point, (we denote as b) and C is a closed set then there
is a strict separation.
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Proof. WLOG, we assume b = 0 (If not, change variable x′ = x− b).
There exists x0 ∈ C with ‖x0‖2 = δ = min{‖x‖2 | x ∈ C}.
Let a point m = x0

2
and a vector a = x0

δ
(‖a‖2 = 1), aT (x−m) = aTx+ β.

Claim: aTx+ β = 0 strictly separate C and b = 0.

(1) We first consider the case starting from b = 0, then we have:

aT b+ β = β = −aTm

= −x
0

δ
· x

0

2

= −‖x
0‖2

2

2δ

= − δ
2

2δ
= −δ

2
< 0

(2) Suppose x ∈ C, then we have: ‖x0‖2 ≤ ‖(1−θ)x0+θx‖2, δ2 = ‖x0‖2
2 ≤ ‖x0+θ(x−x0)‖2

2 =
‖x0‖2

2 + 2θx0(x− x0) + θ2‖x− x0‖2
2, so we have: 0 ≤ 2x0(x− x0) + θ‖x− x0‖2

2. Now let
θ → 0, we have: x0(x − x0) ≥ 0. 0 ≤ x0(x − x0) = (δa)(x − 2m), since δ > 0, we have
0 < aT (x− 2m). Then:

0 <
δ

2
= aTm < aT (x−m) = aTx+ β

Hence aTx+ β ≥ δ
2
> 0,∀x ∈ C.

Theorem 8.3 (Converse separating hyperplane theorem). Any two convex sets C and
D, with at least one being open are disjoint iff there is a separating hyperplane.

Note that existance of hyperplane does not necessarily imply the sets are disjoint. A
sufficient condition is that one set should be open. For example: find necessary and sufficient
conditions on A ∈ Rm×n, b ∈ Rn such that the inequality Ax < b has no solution.

Define C = {b− Ax | x ∈ Rn}, D = Rm
++. The problem is infeasible iff C ∩D is empty.

C and D are convex and D is open. By previous theorem,

C ∩D = ∅ ⇐⇒ ∃λ ∈ Rm, µ ∈ R,

{
λTy ≤M, on C

λTy ≥M, on D

⇐⇒ ∃λ ∈ Rm such that λ 6= 0, λ ≥ 0, ATλ = 0, λT b ≤ 0. (left as an exercise).
Summary: The set of inequalities Ax < b is infeasible if the set of inequalities λ ≥

0, ATλ = 0, λT b ≤ 0 has a non-zero solution.
* This is known as Farkas Lemma. (Special case of theorem of alternatives)
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8.2 Supporting Hyperplanes

Definition 8.1. If C is a closed convex set, and D is a single point x0 on the boundary
of C, then there is a separating hyperplane which is called a supporting hyperplane.

As the picture shows, at a smooth point, supporting hyperplane is unique and tangential to
the set.

8.3 Generalized inequalities

Theorem 8.4. Assume K is a proper cone, then @x ∈ Rn such that Ax <K b ⇐⇒
∃λ 6= 0, λK∗ ≥ 0, ATλ = 0, λT b ≤ 0

Proof. Use separation between two sets.

Theorem 8.5. Dual cones satisfy several properties, such as:

• K∗ is convex and closed

• K1 ⊆ K2 implies K∗2 ⊆ K∗1

• If K has non-empty interior, then K∗ is pointed.

• If the closure of K is pointed, then K∗ has non-empty interior.

• K∗∗ is the closure of the convex hull of K. (Hence if K is convex and closed,
K∗∗ = K.
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Theorem 8.6.

• If K = Rn
+, then K∗ = K by Farkas lemma.

• If K is a second order cone, then K∗ = K

• If K is a PSD cone, then K∗ = K

Theorem 8.7. If K is a proper cone, then K∗∗ = K.

9 Lecture 09 (Sep 20)

9.1 Duality

Consider the optimization problem:

min
fi(x)≤0,i=1,...,m
hj(x)=0,j=1,...,p

f0(x)

We associate a scalar variable to each constraint,

λi : fi(x) ≤ 0, νj : hj(x) = 0

Then the Largrangian is defined as L : Rn × Rm × Rp → R:

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x)

Note that dom(L) = D × Rm × Rp, where D is the domain of the original optimization
problem, and λi, νj’s are called Lagrangian multipliers. Let p∗ denote the optimal objective
value for the original problem.

Theorem 9.1. As long as λ ≥ 0, we have g(λ, ν) ≤ p∗, where

g(λ, ν) = inf
x∈D

L(x, λ, ν)

Proof. Assume x∗ is a global solution of the original problem.

p∗ = f0(x∗) ≥ f0(x∗) +
m∑
i=1

λi︸︷︷︸
≥0

fi(x
∗)︸ ︷︷ ︸

≤0

+

p∑
j=1

νjhj(x
∗)︸ ︷︷ ︸

=0

≥ min
x
L(x, λ, ν) = g(λ, ν)
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Theorem 9.2. −g(λ, ν) is always convex for arbitrary functions, fi’s and hj’s.

Proof. −g → maxx−L, hence convex.

• What is the dual function of LP?
Lagrangian: L(x, λ, ν) = cTx−

∑n
i=1 λixi + νT (Ax− b) = −bTν + (c+ ATν − λ)Tx.

Dual function: g(λ, ν) = infx L(x, λ, ν) = −bTν+infx(c+ATν−λ)Tx Thus (c+ATν−
λ) = 0, (since −∞ otherways), thus:

g(λ, ν) =

{
−bTν if c+ ATν − λ = 0

−∞ otherwise

• Dual function for max-cut. Primal:

max
x2i =1

xTWx

Note that we can form Q = −W , then the problem becomes a minimization problem.

L(x, ν) = xTQx+
n∑
i=1

νi(x
2
i − 1)

= uT (Q+ diag(ν1, . . . , νn))︸ ︷︷ ︸
∗

u−
n∑
i=1

νi

min
x
∗ =

{
0, if Q+ diag(ν1, . . . , nun) ≥ 0

−∞, otherwise

g(ν) =

{
−
∑n

i=1 νi if Q+ diag(ν1, . . . , nun) ≥ 0

−∞, otherwise

9.2 Lagrangian Dual

Logic: since g(λ, ν) is a lower bound on p∗ for every λ ≥ 0, maximize it!

Theorem 9.3. Weak duality: p∗ ≥ d∗, p∗ is the primal solution and d∗ is the dual
solution.

Theorem 9.4. Dual problem is always convex even when primal is not convex.

• Dual of LP is still LP
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• QP:
min

Ax≤b,Cx=d
xTpx+ qTx+ r

L(x, λ, ν) = xTpx+ qTx+ ν + λT (Ax− b) + νT (Ax− d)

= xTpx+ (qT + λTA+ νT c)x+ (r − λT b− νTd)

Assume p ≥ 0. To minimize L, take the derivative:

2px+ (qT + λTA+ νT c) = 0

Hence x is linear in λ, ν, plug x in L, then we are maximizing xTpx, and x is linear in
constraint, i.e. a QP again.

• Exercise: Dual of QCQP is SOCP.

• Exercise: Dual of SOCP is SOCP.

9.3 Connection to Conjugate Functions

For an objective with linear constraints, dual function is:

g(λ, ν) = min
x

(f0(x) + λT (Ax− b) + νT (cx− d))

= min
x

(f0(x) + (λTA+ νT c)x) + (−λT b− νTd)

Note that: {
f ∗0 (y) = sup(yTx− f0(x))

−f ∗0 (y) = min(f0(x)− yTx)

Exactly the conjugate, hence :

g(λ, ν) = −f ∗0 (−λTA− νT c)

Thus the dual optimization is:

max
λ≥0

−f ∗0 (z) + (−λT b− νTd)

Note y ∈ dom(f ∗0 ).

•
min
Ax=b
‖x‖

f ∗0 (y) =

{
0 ‖y‖∗ ≤ 1

∞ otherwise

Dual:
max

‖−AT ν‖∗≤1
−f ∗0 (−ATν)− bTν
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9.4 Duality Gap

p∗ − d∗ is the duality gap. When duality gap = 0, strong duality holds. How to analyze
the duality gap?
Suppose we have a generic optimization problem (no assumption on convexity).

Definition 9.1. λ∗ ≥ 0 is called a geometric multiplier if

p∗ = min
x
L(x, λ∗)

Consider the space:

H =

(z ∈ Rm, w ∈ R) | z =

f1(x)
...

fm(x)

 , w = f0(x), for some x

 ∈ Rm+1

Assuming n = 1 for simplicity.

L(x, λ) = f0(x) + λTf(x) = w + λT z

This is a line in R2 with the coefficients
[
λT 1

]
, i.e. w + λT z =

[
λT 1

] [z
w

]
.

min
x
L(x, λ) = minw + λT z s.t.(z, w) ∈ H
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Based on the graph above, we can see among all λ’s, redo the same thing and find the
maximum point that gives you d∗.

Theorem 9.5.

• If there is no duality gap, the set of geometric multipliers is equal to the set of
optimal dual solutions.

• If there is a duality gap, even though the set of dual multipliers may not be empty,
the set of geometric multipliers might be empty.

10 Lecture 10 (Sep 25)

10.1 Strong duality

Consider
min
fi(x)≤0

f0(x)

Assume λ∗ is a geometric multiplier (see previous lecture for definition), and the solution
exists. Then p∗ = minx L(x, λ∗) = f0(x∗). Note that

L(x, λ∗) = f0(x) +
m∑
i=1

λ∗i fi(x)
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Thus f0(x∗) ≤ L(x∗, λ∗) = f0(x∗) +
∑m

i=1 λ
∗
i fi(u

∗), which implies λ∗i fi(x
∗) = 0, i = 1, . . . ,m,

which is complementary slackness.

Theorem 10.1. Existence of a geometric multiplier means no duality gap.

Proof. By weak duality, we know p∗ ≥ d∗, and p∗ = minL(x, λ∗) ≤ maxλ minx L(x, λ) = d∗.
Thus p∗ = d∗.

10.1.1 Necessary and sufficient condition for zero duality gap

∃(x∗, λ∗) such that:

1. Primal feasibility: fi(x
∗) ≤ 0, i = 1, . . . ,m

2. Dual feasibility: λ∗i ≥ 0, i = 1, . . . ,m

3. Complementary slackness: λ∗i fi(x
∗) = 0, i = 1, . . . ,m

4. Lagrangian minimization: L(x∗, λ∗) = f0(x∗) = minx L(x, λ∗).

Unfortunately, 4 is very hard to check. Note that a necessary condition for 4 in the
differentiable case is:

∇L(x, λ∗)

∣∣∣∣
x=x∗

= 0

Hence 4 can be placed by the stationarity condition:

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) = 0 (10.1)

It turns out that 1, 2, 3, 10.1 also sufficient for strong duality for certain problems (i.e.
convex optimization, under constraint qualification).

10.2 Optimality conditions for equality constraints

We now consider a class of problems that only has equality constraints, i.e.

min
hi(x)=0,i=1,...,p

f0(x)

assume hi’s are differentiable. To find a local solution, we need to do a local analysis.
Consider a point x∗, we want to check if this is a local minimum. We need to study the
feasible set around x∗, which is related to the notion of tangent plane.
Example:

• f(x) = x2
1 + x2

2 − 1

• h(x) = x2
1 + x2

2 + x2
3 − 1
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• h1(x) = x2
1 + x2

2 − 1, x ∈ R3

• h2(x) = x3 − 1

How can you find tangent plane?

Definition 10.1 (Regular point). A point x∗ is called regular if vectors
∇h1(x∗),∇h2(x∗), . . . ,∇hp(x∗) are linearly independent at that single point.

If x∗ is regular, then the tangent plane of feasible set at x∗ is:{
∆x ∈ Rn | ∇hi(x∗)T∆x = 0, i = 1, . . . , p

}
Intuition: hi(x

∗ + ∆x) = hi(x
∗) + ∇hi(x∗)T∆x + O(x∗2). If a point is regular, then

the higher order term is really not important in this equation.

Example:

• Tangent plane for h(x) = x2
1 +x2

2 +x2
3−1. ∇h(x) =

2x1

2x2

2x3

, this is linearly independent

unless x = 0, but x = 0 is not a feasible point, because h(0) 6= 0, which implies that
all feasible points are regular. Tangent plane at x∗ is:

{∆x ∈ R3 | x∗1∆x1 + x∗2∆x2 + x∗3∆x3 = 0}

• h1(x) = x2
1 +x2

2−1, h2(x) = x3−1, then ∇h1(x) =

2x1

2x2

0

, ∇h2(x) =

0
0
1

, and linearly

independent, unless x = 0, where x is not feasible, thus all points are regular, thus
tangent plane at x∗ is:

{∆x ∈ R3 | x∗1∆x1 + x∗2∆x2 = 0,∆x3 = 0}

10.2.1 First order optimality conditions

minx∈D f0(x) by a local analysis around x∗ as: min f0(x∗ + ∆x), such that ∆x ∈ tangent
plane at x∗ and ∆x small. Note that:

f0(x∗ + ∆x) = f0(x∗) +∇f0(x∗)T∆x+ h.o.t

≥ f0(x∗)

Theorem 10.2. If x∗ is regular and a local min, then ∇f0(x∗)T∆x ≥ 0 for every ∆x
such that ∇hi(x∗)T∆x = 0.
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Theorem 10.3. Under the conditions of previous theorem, ∃ν∗1 , . . . , ν∗p such that

∇f0(x∗) + ν∗1∇h(x∗) + . . . ν∗p∇hp(x∗) = 0

This is called first order necessary optimality condition.

10.2.2 Second order optimality conditions

f0(x∗ + ∆x) = f0(x∗) +∇f0(x∗)T∆x+
1

2
∆xT∇2f0(x∗)∆x+ . . .

h1(x∗ + ∆x) = h1(x∗) +∇h1(x∗)T∇x+
1

2
∆xT∇2h1(x∗)∆x+ . . .

...

hp(x
∗ + ∆x) = hp(x

∗) +∇hp(x∗)T∇x+
1

2
∆xT∇2hp(x

∗)∆x+ . . .

f0(x∗+ ∆x) = f0(x∗) +
1

2
∆xT∇2f0(x∗)∆x+ . . .+

1

2

p∑
i=1

ν∗i ∆xT∇2hi(x
∗)∆x+ h.o.t ≥ f0(x∗)

by local optimality. This concludes

∆xT

(
p∑
i=1

ν∗i∇2hi(x
∗) +∇2f0(x∗)

)
∆x ≥ 0

for all ∆x in the tangent plane, which brings us the following theorem:

Theorem 10.4 (2nd order necessary condition). Under the conditions of previous
theorem:

M = ∆xT

(
p∑
i=1

ν∗i∇2hi(x
∗) +∇2f0(x∗)

)
∆x ≥ 0

for every ∆x such that ∇hi(x∗)T∆x = 0, i = 1, . . . , p. If no constraint:

∆xT∇2f0(x∗)∆x ≥ 0⇒ ∇2f0(x∗) ≥ 0, PSD

M = 0, to compare f0(x∗ + ∆x), f0(x∗) go to third order condition.

Theorem 10.5 (2nd order sufficient condition). If x∗ is regular and feasible, for which
∃ν∗ such that f.o.c. is satisfied and M > 0 for every ∆x in tangent plane such that
∆x 6= 0, then x∗ is a local min. In unconstrained case, x∗ is a local min if:

∇f0(x∗) = 0,∇2f0(x∗) > 0

How to check second order condition? Tangent plane:

{∆x ∈ Rn | ∇hi(x∗)T∆x = 0, i = 1, . . . , p}
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Dimension of this set is in n− p. Pick n− p linearly independent vectors in tangent plane,
called E1, E2, . . . , En−p. Define E =

[
E1 E2 . . . En−p

]
, we define the tangent plane:

{Ey | y ∈ Rn−p}

2nd order necessary condition:

ET

(
∇2f0(x∗) +

p∑
i=1

ν∗i∇2hi(x
∗)

)
E ≥ 0

2nd order sufficient condition:

ET

(
∇2f0(x∗) +

p∑
i=1

ν∗i∇2hi(x
∗)

)
E > 0

11 Lecture 11 (Sep 27)

11.1 Optimality conditions with inequality constraints

min
f1(x)≤0,h1(x)=0

f0(x) ⇐⇒ min
f1(x)+z2=0,h1(x)=0

f0(x)

Define: x̃ =

[
x
z

]
∈ Rn+1, h̃2(x̃) = f1(x) + z2, f̃0(x̃ = f0(x), h1(x̃) = h1(x).

First order necessary condition

∇f̃0(x̃∗) + ν∗1∇h̃1(x̃∗) + ν∗2 h̃2(x̃∗) = 0, which is:[
∇f0(x∗)

0

]
+ ν∗1

[
∇h1(x∗)

0

]
+ ν∗2

[
∇f1(x∗)

2z∗

]
= 0

Note that since ν∗2 = λ∗1, thus we have λ∗1z
∗ = 0 ⇒ λ∗1z

∗2 = 0 ⇒ λ∗1f(x∗) = 0, which is the
complementary slackness.

Second order conditions

∆x̃T

 ∇2f̃0(x̃∗)︸ ︷︷ ︸∇2f0(x∗) 0
0 0


+ν∗1 ∇2h̃1(x̃∗)︸ ︷︷ ︸∇2h1(x∗) 0

0 0


+ν∗2 ∇2h̃2(x̃∗)︸ ︷︷ ︸∇2f1(x∗) 0

0 2



∆x̃ ≥ 0

which is exactly:

∆x̃T
([
∇2f0(x∗) + ν∗1∇2h1(x∗) + λ∗1∇f1(x) 0

0 2

])
∆x̃ ≥ 0

By tangent plane:
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(1) If x∗ is regular, then x̃∗ is regular for the new problem.

(2) 2λ∗1 ≥ 0

Theorem 11.1 (1st order necessary condition). Consider minx f0(x), such that
fi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , p. If x∗ is regular and a local min,
then ∃λ∗1, . . . , λ∗m, ν∗1 , . . . , ν∗p such that:

(1) λ∗i ≥ 0, i = 1, . . . ,m

(2) λ∗i fi(x
∗) = 0 (complementary slackness)

(3) ∇f0(x∗) +
∑m

i=1 λ
∗
i∇fi(x∗) +

∑p
i=1 ν

∗
i∇hi(x∗) = 0

Theorem 11.2 (2nd order necessary condition). Consider minx f0(x), such that
fi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , p. If x∗ is regular and a local min,
then ∃λ∗1, . . . , λ∗m, ν∗1 , . . . , ν∗p such that:

(1) λ∗i ≥ 0, i = 1, . . . ,m

(2) λ∗i fi(x
∗) = 0 (complementary slackness)

(3) ∇f0(x∗) +
∑m

i=1 λ
∗
i∇fi(x∗) +

∑p
i=1 ν

∗
i∇hi(x∗) = 0

(4) ∆xT (∇2f0(x∗) +
∑m

i=1 λ
∗
i∇2fi(x

∗) +
∑p

i=1 ν
∗
i∇2hi(x

∗)) ∆x ≥ 0 for every ∆x in
tangent plane at x∗, ∆x ≥ 0

Theorem 11.3 (2nd order sufficient condition). If x∗ is feasible and a regular point
for which ∃λ∗, ν∗ such that (1), (2), (3) are satisfied, and (4) is satisfied in a strict
way wherever ∆x 6= 0,∆x ∈ T , then x∗ is a local min. T is a set bigger than tangent
plane, i.e.:

T =
{

∆x | ∇hi(x∗)T∆x = 0, i = 1, . . . , p;∇fi(x∗)T∆x = 0 if fi(x
∗) = 0&λ∗i > 0

}
As it has fewer constraints than the tangent plane

Definition 11.1. fi(x) ≤ 0 is called binding (active) at x∗ is fi(x
∗) = 0

Definition 11.2. x∗ is called regular if gradients of equality and all active inequality
constraints are linearly independent.

Definition 11.3. Tangent plane at x∗ is a set of all ∆x ∈ Rn that are orthogonal to
the gradients of equality and active inequality.

Note: 2nd order sufficient condition guarantees a strict local optimality.
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11.2 Sensitivity analysis

min
fi(x)≤0,hj(x)=0

f0(x) (11.1)

min
fi(x)≤ci,hj(x)=dj

f0(x) (11.2)

Suppose p∗(c, d) is the solution to 11.2, then p∗(0, 0) would be the solution to 11.1. Note:
for convex optimization, p∗(c, d) is still convex.
Assume second order sufficient condition is satisfied for x∗ and no constraint is degenerating,
then ∃ a ball around (0, 0) such that for every (c, d) ∈ ball, we have:

(1) p∗(c, d) exists.

(2) There is a solution x∗(c, d) such that x∗(0, 0) = x∗ and continuous.

(3) ∇cp
∗(c, d)|(0,0) = −λ∗, ∇dp

∗(c, d)|(0,0) = −ν∗.

For small perturbations (c, d), we have:

p∗(c, d) ≈ p∗ −
m∑
i=1

λ∗i ci −
p∑
j=1

ν∗j dj (11.3)

11.3 Optimality conditions for convex optimization

2nd order necessary condition is automatically satisfied for convex optimization. Recall:

∆xT

(
∇2f0(x∗) +

m∑
i=1

λ∗i∇2fi(x
∗) +

p∑
i=1

ν∗i∇2hi(x
∗)

)
∆x ≥ 0

Since f0, fi convex, hj linear, we have ≥ 0+ ≥ 0 + 0, i.e. ≥ 0.

Although second order sufficient condition may not be satisfied, we don’t care about second
order sufficient condition for convex optimization.

Theorem 11.4.

f(x+ ∆x) = f(x) +∇f(x)T∆x+
1

2
∆xT∇2f(x)∆x+ h.o.t.

∃y such that 1
2
∆xT∇2f(y)∆x ≥ 0

Summary:

1. If x∗ is regular and a local min, then first order optimality condition is satisfied.

2. If x∗ is regular and feasible and satisfies first order conditions, then it’s a global min for
convex optimization.
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which implies FOC is both necessary and sufficient under regularity assumptions.

Theorem 11.5 (Optimality condition for convex optimization).

1) Primal feasibility

2) λ∗ ≥ 0

3) Complementary slackness

4) Stationarity of Lagrangian, i.e. ∇xL(x, λ∗, ν∗) = 0

Which is called KKT condition.

L(x, λ∗, ν∗) = f0(x) +
m∑
i=1

λ∗i fi(x) +

p∑
i=1

ν∗i hi(x)

Thus

{
∇xL(x∗, λ∗, ν∗) = 0

L(x∗, λ∗, ν∗) = f0(x∗)
, which implies x∗ is a solution to minx L(x, λ∗, ν∗). Which

implies (λ∗, ν∗) is a geometric multiplier. (2) in KKT is called dual feasibility.

For convex optimization, the regularity condition can be replaced with Slater’s condition:

Definition 11.4 (Slater). Slater’s condition is satisfied if ∃x ∈ Rn that is feasible and
fi(x̄) < 0 (satisfies inequality constraint in a strict way).
Note that x̄ is an arbitrary point, not need to be the optimal solution.

Definition 11.5 (Weaker Slater). Need a feasible point that satisfies all non-linear
inequalities in a strict way.

Theorem 11.6. Weak duality always holds. Strong duality holds for convex optimiza-
tion under weaker Slater’s condition. If objective value is finite, then there is a dual
solution.

Theorem 11.7. If Slater is satisfied: p∗ = d∗

(1) If p∗ finite and Slater is satisfied for (p), then ∃(λ∗, ν∗) finite

(2) If d∗ finite and Slater is satisfied for (d), then ∃x∗ finite.

Example 11.1 (Scenarios for primal-dual for LP).

1. p∗ = d∗ = +∞, (p) is infeasible

2. p∗ = d∗ = −∞, (d) is infeasible
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3. p∗ = d∗ = finite, which is both (p), (d) have solutions.

The only way we don’t have strong duality is when both (p), (d) are infeasible, i.e. p∗ =
+∞, d∗ = −∞, gap is infinity.

Theorem 11.8. LP has a zero duality gap unless (p) and (d) are both infeasible. Same
for QP.

12 Lecture 12 (Oct 2)

Consider an example:
min∑n

i=1 x
2
i =n,i 6=j

xjxj

We know:

2
∑
i 6=j

xjxj +
n∑
i=1

x2
i =

(
n∑
i=1

xi

)2

Assume we do not know this, use the optimality condition to solve the problem:

L(x, ν) =
∑
i 6=j

xixj + ν

(
n∑
i=1

x2
i − n

)

1st order necessary condition:

• ∇xL(x, ν) = 0, i.e.
∑

i 6=j xj + 2νxi = 0, i = 1, . . . , n

•
∑n

i=1 x
2
i = n, which implies

∑
j xj + (2ν − 1)xi = 0, i = 1, . . . , n

2 possibilities:

{
2ν − 1 = 0⇒ ν = 1/2⇒

∑n
j=1 xi = 0

2ν − 1 6= 0⇒ x1 = x2 = . . . xn = −
∑n

i=1 xi
2ν−1

⇒ n =
∑n

i=1 x
2
i

Now there

are two more possibilities:

{
x1 = x2 = . . . = xn = 1⇒ ν = −n−1

2

x1 = x2 = . . . = xn = −1⇒ ν = −n−1
2

Second order condition:

• Start with xi = 1, i = 1, . . . , n

• Regularity: ∇xh(x) =


2x1

2x2
...

2xn


• The vector is linearly independent if x 6= 0. But x = 0 is not feasible, thus all feasible

points are regular.
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• Tangent plane (at x). To find E, we need n−m = n− 1 linearly independent vectors,
one choice:

E1 =


1
−1
0
...
0

 , E2 =


1
0
−1
...
0

 , . . . , En−1 =


1
0
0
...
−1


•

ET
(
∇2f0(x∗) + ν∗∇2h1(x∗)

)
E

= ET




0 1 . . . 1
1 0 . . . 1
...

...
. . .

...
1 1 . . . 0

− n− 1

2
diag(2)

E

= −ETE − (n− 1)ETE = −nETE

= −n




1
1
...
1

 [1 . . . 1
]

+ I

 < 0

Thus 2nd order condition is satisfied for maximization. and point [1, . . . , 1] is a strict
local max.

• If n ≥ 3, intersection of a sphere and a hyperplane have infinitely many points. Thus
points are not isolated. i.e. second order sufficient condition cannot be satisfied for
n ≥ 3. But one can show 2nd order necessary condition is satisfied:

2
∑
i 6=j

xixj =
(∑

xi

)2

−
(∑

x2
i

)
≥ 0− n

We can show all these points are global minimum. Also, previously found local max
are global max:

– both give same optimal objective value n(n− 1)/2

– All points are regular and we have analyzed every possible stationary point

– global solution exists

Theorem 12.1. If feasible set is closed and compact, there exists global min and global
max.
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12.1 Example 2

min
Ax=b

1

2
xTpx+ qTx+ r

A ∈ Rm×n, p ∈ Sn+. If the problem is feasible, Slater holds for QP and optimality is equivalent
to KKT:

• Primal feasibility: Ax∗ = b

• Stationarity: 0 = ∇xL(x∗, ν∗) = ∇x(f0(x∗) + ν∗Th1(x∗)), by a simple calculation:

⇒ 0 = px∗ + q + ATν∗

⇒
[
p AT

A 0

]
︸ ︷︷ ︸

M

[
x∗

ν∗

]
=

[
−q
b

]

Note that M has n+m variables and n+m conditions. Possibilities include:

• If M is invertible, then there exists a unique solution

• Otherwise, it might have zero or infinitely many solutions.

12.2 Example 3: QCQP

min
1
2
xT pix+qTi x+ri≤0

1

2
xTp0x+ qT0 x+ r0

Theorem 12.2 (s-procedure). If m = 1 and Slater holds, then duality gap is 0.

Consider possibly non-convex equations{
fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

We are interested in checking feasibility/infeasibility of this problem. Consider minimizing
0 over this constraint. Then consider the dual function:

g(λ, ν) = inf
x

(
m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x)

)

If g(λ, ν) is strictly positive for some (λ, ν), then g(αλ, αν) = αg(λ, ν), as α → ∞ then
g(α, λ, ν)→∞. Thus:

d∗ =

{
+∞ ∃(λ, ν) s.t. λ ≥ 0, g(λ, ν) > 0

0 otherwise

By weak duality p∗ ≥ d∗. Thus
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• If d∗ = +∞⇒ p∗ = +∞, means the primal is infeasible.

• If p∗ = 0, then d∗ = 0.

• Cannot talk about the case when p∗ =∞, d∗ = 0 due to duality gap.

Theorem 12.3 (Weak alternatives). p and condition 1 of d∗ cannot be feasible at the
same time.

Convex case: equality should be linear and since need to satisfy Slater, focus on fi(x) < 0.

Theorem 12.4. (p) :

{
fi(x) < 0, i = 1, . . . ,m

Ax = b
, Θ =


λ > 0

λ 6= 0

g(λ, ν) ≥ 0

. If fi’s are

convex, then strong alternatives hold meaning (p) is feasible iff Θ is infeasible.

13 Lecture 13 (Oct 4)

13.1 Conic duality

Linear conic duality:

minx∈Rn aT0 x (13.1)

s.t. Ax = b, Aix− bi ≤Ki
0, i = 1, . . . ,m (13.2)

Duality:

1. Define a Lagrange multiplier ν for Ax− b = 0

2. Define a Lagrange multiplier λi for Aix − b ≤ki 0. (Note that if Aix − bi ∈ Rni , then
λi ∈ Rni .

3. Define g(λ, ν) as:

g(λ, ν) = inf
x∈D
L(x, λ, ν) = inf

x∈D

(
f0(x) +

m∑
i=1

λTi fi(x) +

p∑
i=1

νihi(x)

)

Dual optimization of Conic form:

max g(λ, ν) (13.3)

s.t. λi ≥K∗i 0, i = 1, . . . ,m (13.4)
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13.1.1 SDP

min
Tr(M1X)=ai,i=1,...,m,X≥0

Tr(M0X)

Mi’s symmetric. Then:

1. Tr(MiX) = ai associate with νi

2. −X ≤ 0 associate with w ≥ 0 (recall that PSD is self-dual)

L(X, ν, w) = Tr(M0X) +
m∑
i=1

νi(Tr(MiX)− ai) + Tr((−X)w)

= Tr

((
M0 +

m∑
i=1

νiMi − w

)
X

)
−

m∑
i=1

νiai

Recall that vec(X)Tvec(w) = Tr(XW ).
g(ν, w) = minL(x, ν, w), then

X =

{
−∞
−
∑m

i=1 νiai if M0 +
∑m

i=1 νiMi − w = 0

Dual:

max
M0t+

∑m
i=1 νiMi−w=0
w≥0

−
m∑
i=1

νiai

Which indicates the dual of SDP is also SDP.

13.1.2 SDP Canonical

min
F0+x1F1+...+xnFn

aTx

Lagrange multiplier: Z needs to be PSD, then

L(X,Z) = aTx+ Tr((F0 + x1F1 + . . .+ xnFn)Z)

g(Z) = minx L(X,Z) = min
∑n

i=1(ai + Tr(FiZ))Xi + Tr(F0Z), then:

X =

{
−∞
−Tr(F0Z) if ai + Tr(FiZ) = 0,∀i

Dual:
max

ai+Tr(FiZ)=0,Z≥0
Tr(F0Z)
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13.1.3 SOCP

min
‖Aix+bi‖2≤cTi x+di

cTx

Use linear conic duality: 2nd order cone is defined as:

K = {(u, v) | u ∈ Rn, v ∈ R, ‖u‖2 ≤ v}

min

−

Aix+ bi
cTi x+ di

≤K0

cTx

Define dual parameters

[
ui
vi

]
, where ui ∈ Rni , vi ∈ R. Recall the second order cone is self-

dual, then ‖ui‖2 ≤ vi.
Thus dual is:

L(x, u, v) = cTx−
m∑
i=1

[
uTi vi

] [Aix+ bi
cTi x+ di

]
= (cT −

m∑
i=1

uTi Ai −
m∑
i=1

vic
T
i )x−

m∑
i=1

uTi bi −
m∑
i=1

vidi

Dual: g(u, v) = minX L(x, u, v).

g(u, v) =

{
−∞
−
∑m

i=1 u
T
i b−

∑m
i=1 vidi if cT −

∑m
i=1 u

T
i Ai −

∑m
i=1 vic

T
i = 0

Dual optimization is:

max
cT−

∑m
i=1 u

T
i Ai−

∑m
i=1 vic

T
i =0

‖ui‖2≤vi

−
m∑
i=1

uTi b−
m∑
i=1

vidi

This is also SOCP.

13.2 KKT Condition for Conic Programming

min
fi(x)≤ki

0

hi(x)=0

f0(x)
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KKT conditions for conic programming:

1. Primal feasibility: fi(x
∗) ≤Ki

0, hi(x
∗) = 0

2. Dual feasibility: λ∗i ≥K∗i 0

3. Complementary slackness:
λ∗i

Tfi(x
∗) = 0

Note: this does not mean either fi or λi is zero.

4. ∇xL(x∗, λ∗, ν∗) = 0

13.2.1 KKT for SDP

min
Tr(MiX)=ai,i=1,...,m

X≥0

Tr(M0X)

1. Tr(MiX) = ai,∀i and X∗ ≥ 0

2. w∗ ≥ 0

3. Tr((−X∗)w∗) = 0. Note: since X∗ ≥ 0, w∗ ≥ 0, then X∗w∗ = 0.

4. L(x, ν, w) = Tr(M0X) +
∑m

i=1 νi(Tr(MiX)− ai) + Tr((−X)w), and

∇xL(x∗, ν∗, w∗) = 0

13.3 Strong duality

Theorem 13.1. If ∃x in the relative interior of domain of optimization such that the
conic inequalities are satisfied in a strict sense:

fi(x) <Ki
0

Then we say, Slater’s condition is satisfied. If Slater’s is satisfied, then strong duality
holds for linear conic program. Also, the dual optimization has a solution and KKT is
equivalent to optimality conditions.

Example 13.1. Slater for SDP: {
Tr(Mi, X̄) = ai,∀i
X̄ > 0
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13.3.1 Fentchel’s duality

min
x∈X1∩X2

f1(x)− f2(x)

In this scenario, f1, f2 are arbitrary function, can replace it by:

min
y∈X1,z∈X2,y=z

f1(y)− f2(z)

Dualize the constraint z − y = 0:

g(ν) = min
y∈X1,z∈X2

f1(y)− f2(z) + νT (z − y)

Define: {
g1(ν) = supx∈X1

{xTν − f1(x)

g2(ν) = infx∈X2{xTν − f2(x)}

Dual:
max

ν∈Λ1∩Λ2

g2(ν)− g1(ν){
Λ1 = {ν | g1(ν) < +∞}
Λ2 = {ν | g2(ν) > −∞}

Theorem 13.2. If the following assumption is satisfied:

• f1 convex

• f2 concave

• ∃ a point in relative interior of both X1 and X2.

Under the assumptions strong duality holds, so:

inf
x∈X1∩X2

f1(x)− f2(x) = max
x∈Λ1∩Λ2

g2(ν)− g1(ν)

Dual has a solution.

14 Lecture 14 (Oct 11)

Nominal Problem:
min

aTi x≤bi,i=1,...,m
cTx

Robust LP:
min

aTi x≤bi,i=1,...,m
ai∈Ui:={âi+u:‖u‖2≤ρi}

cTx
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Robust counterpart:
min

aTi x≤bi,∀ai∈Ui
i=1,...,m

cTx

min
aTi x≤bi

max
ai∈Ui

cTx

Example (SVM): (xi, yi): xi ∈ Rn and yi = +1 or −1. Then predicted ŷ(x) = sgn(wTx),
which implies:

min
w

‖xi−x̂i‖2≤ρi

n∑
i=1

(1− yiwTxi)+

min
w

[
max

‖xi−x̂i‖∞≤ρi

n∑
i=1

(1− yiwTxi)+

]

min
w

n∑
i=1

[
max

‖xi−x̂i‖∞≤ρi
(1− yiwTxi)+

]

min
w

n∑
i=1

[
(1− yiwT x̂i + ρi‖w‖1)+

]
which is

≤ min
w

n∑
i=1

[
(1− yiwT x̂i

]
+

n∑
i=1

ρi‖ω‖1

which is exactly `1 regularization!
It’s not clear if robust optimization is a practical method! But if we can get:

x→ max
ai∈Ui

aTi x = φi(x)

(note that the robust counterpart is convex). We can replace Ui as its convex hull anyway.
RC is intractable in general:

max
‖u‖∞≤1

‖Au‖2

where A = A0 +
∑
xiAi is the decision variable.

Simple tractable case:
max
a∈U

U :={a:‖a−â‖∞≤ρ}

aTx ≤ b

Note that we can write a = â+ ρu, ‖u‖∞ ≤ 1, then:

φ(x) = âTx+ ρ max
‖u‖∞≤1

uTx = âTx+ ρ‖x‖1
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15 Lecture 15 (Oct 16)

Robust counterpart:
min
x

max
u∈U

f0(x, u)

max
u∈U

fi(x, u) ≤ 0, i = 1, . . . ,m

Assume fi(·, u) is convex ∀u ∈ U .
Linear programming:
Nominal problem:

min
aTi x≤bi

cTx

Uncertainty set:
ui = ai − âi, ‖ui‖∞ ≤ ε

Robust counterpart:
min
x
cTx

s.t.
(âi + ui)

Tx ≤ bi,∀ui : ‖ui‖∞ ≤ ε

which is:
max
‖ui‖∞≤ε

(âi + ui)
Tx ≤ bi

Note that:

max
n∑
i=1

uixi =
n∑
i=1

max
|ui|≤ε

uixi = ε|xi| = ε‖x‖1

as we can select u∗i = εsgn(xi). Thus the problem becomes:

min
âTi x+ε‖x‖1≤bi

cTx

SVM
min
w,b

∑
(yi − sgn(wTxi + b))2

But it’s highly non-convex, so instead we have the hinge loss:

min
w,b

∑
i

(1− yi(wTxi + b))+

Consider the robust SVM:

min
w,b

1

m

m∑
i=1

(1− yi(wT x̂i + b+ ε‖w‖1))+

≤ min
w,b

1

m

∑
(1− yi(wT x̂i + b))+ + ε‖w‖1

ui = xi − x̂i, ‖ui‖∞ ≤ ε.
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15.1 Intersect two sets of uncertainty

aTx = b, and A = {a : ‖a‖(1) ≤ α, ‖a‖(2) ≤ ε}, want to find maxa∈A a
Tx.

min
x

max
yi∈{−1,1}
‖y−ŷ‖1≤2k

m∑
i=1

(1− yi(wTi x+ b))+

16 Lecture 16 (Oct 18)

nominal: LP: minx c
Tx : aTi x ≤ bi, i = 1, . . . ,m

uncertainty: ai ∈ Ui, i = 1, . . . ,m
robust counterpart: minx c

Tx : aTi x ≤ bi,∀ai ∈ Ui, which is equivalent to: minx c
Tx :

maxai∈Ui a
T
i x ≤ bi

simple case: U = {a ∈ Rn : ‖a − â‖ ≤ ρ}, we know ψu(x) = max aTx : ‖a − â‖ ≤ ρ =
âTx+ ρ‖x‖∗.

17 Lecture 17 (Oct 23)

How to compute a function ψ(x) = maxa∈A a
Tx ≤ b as min(u,x)∈C c

Tx + dTu ≤ b ⇐⇒ ∃u :
cTx+ dTu ≤ b.

17.1 Chance Programming

aTx ≤ b, a ∼ N (â,Σ).
P{a : aTx ≤ b} ≥ 1− ε

which is called the “chance constraints” on x. ε: reliability level.

âTx+ κ(ε)‖Σ1/2x‖2 ≤ b

Deterministic interpretation: assume (a− â)TΣ−1(a− â) ≤ κ, a = â+ κΣ−1/2u, ‖u‖2 ≤ 1. If
we want aTx ≤ b,∀a in this set.

17.1.1 Large deviation theory

Distributional robustness:
inf
p∈P

PP{a : aTx ≤ b} ≥ 1− ε

Generalized Chebyshev’s bound:

P{aTx ≤ b} ≥ 1− ε,∀p s.t. E[a] = â,Var = Σ
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17.1.2 Approaches

aTx ≤ b, a random:

•
PP{a : aTx ≤ b} ≥ 1− ε

distribution P known.

•
inf
p∈P

PP{a : aTx ≤ b} ≥ 1− ε

distribution P unknown.

18 Lecture 18 (Oct 25)

Assume distribution of a is known. i.e. a ∼ N (â,Γ): mean â, Γ: covariance matrix. Then

P{a : aTx ≤ b} ≥ 1− ε, ε� 1

V ar(aTx) = E(xT (a− â)(a− â)Tx) = xTΓx

Assuming distribution of a is partially known,

inf
p∈P

PP(a : aTx ≤ b) (18.1)

e.g. a ∼ (â,Γ) where Ea = â and E(a− â)(a− â)T = Γ. Then 18.1 is equivalent to:

âTx+ κ(ε)
√
xTΓx ≤ b

where κ(ε) =
√

1−ε
ε

.

Approach based on moment generating function:

sup
p∈P

PP(a : aTx ≤ b)

Define a “generator” γ such that {
γ(s)→ 0, s→ −∞
γ(0) ≥ 1

Eγ
(
ωT
[
x
1

])
≥ P

(
ωT
[
0
1

]
> 0

)
, P(ω̄ > 0) = E(1+(ω̄)), we have:

sup
p∈P

E(γ(aTx− b)) = αΨ

(
(x, 1)

α

)
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x→ f(x) convex, and:

(x, α)→

{
αf(x/α) : x ∈ dom(f), α > 0

+∞ otherwise

Special case: γ(s) = exp(s), consider the constraint

sup
p∈P

Pp(aTx− b > 0) ≤ ε

Assumption: a is zero-mean, support of a is in [−1, 1]n. ai’s are independent of each other.
Set α = 1, calculating:

E[exp(aTx+ b)] =
∏

exp aixie
−b ≤ cosh(t) ≤ et

2/2

Which is induced by considering the function f(s) = ets − s sinh(t), since it’s zero mean, we
have:

E(ets) =

∫
etsdQ(s) = E(f(s))

= max
s∈[−1,1]

f(s) = cosh(t) ≤ et
2/2

E[exp(aTx+ b)] ≤
∑
i

exp

(
1

2
Σx2

i − b
)
≤ ε

Assume a = â + ρu, u: random, ui’s independent, Eu = 0, u ∈ [−1, 1]. Use γ(s) =
max(1 + s, 0) (this gives you the best bound). In order for you to ensure

P{a : aTx > b} ≤ ε

for all distribution on a ∈ p, sufficient condition:

min
p
β +

1

ε
E(aTx− b− β)+ ≤ 0

19 Lecture 19 (Oct 30)

19.1 Moment bound on probabilities

1. X ≥ 0: random variable:
P(X ≥ a) ≤ E(X)/a
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