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1 Lecture 01 (Aug 23)

Overview

e Optimization problem

Conic optimization and semi-definite programming

Conic duality

Optimality conditions

Midterm

Robust optimization

Applications

Optimization
min  fo(z) st filx) <0,i=1,2,...,m

x € R™ is the optimization variable. fy(z) : R® — R is the objective function. f;(z) : R" — R
are the constraint functions. We define feasible set as T':= {z | fi(z) <0,i =1,2,...,m}.
Hence our problem of interest can also be written as:

min  fo(x) st.zeT

Different type of points
e Feasible x: x € T
e Global minimum: z*. Giving lowest cost among all feasible points.

e Local minimum

How can we measure the complexity of a problem?
e Solution methods:
Analytical solution: Formula
Numerical solution: Algorithm

Example: Least squares problem. Define z: decision, b: measurement and Az: model.
Thus the problem is:

min ||Az — b||3 = 2* = (ATA) AT =~ O(n?)
Now if the problem gets more complicated:

min | Az — b3
x:c?mgdi,izl,...,m
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This problem does not have a closed form solution. Hence we need an algorithm: give
an initial guess (9, then we form a sequence following some updates rules z(M), 23,
... that hopefully converge to the optimal solution x*. The algorithm iteratively designs
2% converging to 2*. Now the complexity of the algorithm depends on number of basic
operations. It is a function of n (number of variables), m (number of constraint), F
(hidden cost for evaluating gradient / hessian etc. etc.).

O(n): easy, O(2"): hard.
Example:
min ¢’z

2
Ty =1

We suppose n = 500, then this combinatorial problem will become intractable, i.e. 2°%°
is too big!

In this class, we consider complexity in polynomial degree of m and n as easy prob-
lems.

Class of convex optimization problems

LP (Linear programming) C QP (Quadratic programming) C QCQP (Quadratically con-
straint quadratic programming) C SOCP (Second-order cone programming) C SDP (Semi-
definite programming) C Conic

Reformulation and approximation

Some examples include:

Circuits: device sizing

Control theory: optimal control and system identification
Communication networks: TCP (transmission-control protocol)
Power system: scheduling of generators

Signal processing: compress sensing

Compressed sensing

Some theorem states that sampling rate for exact recovery should > 2x highest frequency
of the signal. But what if we cannot sample that much?

We suppose z is a sparse vector and after some linear measurement, we have y, which is
rather dense. i.e. We have a matrix A such that y = Az, thus A is a “fat” matrix since the
size of y is way smaller than the size of z. We want to design A such that given y, we can
recover .

We give the sparse recovery problem:

szl
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We use 0-norm primarily for the cardinality. But then this problem is non-convex and
hence hard. Thus, to solve this, we need to use a convex approximation of the problem:

min [l

1.1 Operations and convexity
Suppose we have x,y € R" two vectors, we define the following operations:

e Affine combination:
(z,y) > {faz+ By | a+ 5 =1}

Geometry: any points on a straight line cross two points.

e Convex combination:
(z,y) = {az + Byla+ 8 =1,0,8 > 0}
Geometry: any points on the line segment starting from = ending at y.

e Conic combination:
(2, y) = {oz+ By | o, 8 > 0}
Geometry:
e General case: (z1,...,25) — Zle a;z;. Then:
Affine: Y oy =1
Convex: Y a; =1,a; > 0,Vi
Conic: «; > 0,Vi

Now we define the sets:

e Affine set S: (1,...,x) € S, then affine combination of the points z1, ...,z should
es.

e Convex set S: (x1,...,x;) € S, then convex combination of the points z1, ...,z
should € S.

e Convex hull: C' = {Xa;z; | 5 oy = 1,ap > 0,2 € C}. Tt is the smallest convex
set containing C'.

e Cone S: (1,...,71) € 5, then conic combination of the points x1, ...,z should € S.

Example: hyperplane is the set of all vector x such that a’2 = b. This is an affine set.
half-space is the set of all vectors  such that e’z < b. This is a convex set.

2 Lecture 02 (Aug 28)

This lecture is scribed by Calvin Chi, only minimum edit performed.
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2.1

2.2

Example of convex sets

Half-spaces. Let a’z = b define a hyperplane, then a’x > b or a’2 < b is the
corresponding half-space.

Polyhedron. A polyhedron can be described as the set
P={z|Ax 2b,Czx =d}
where A € R™*" and C' € RP*™.

Norm balls. A norm ball can be described as the set

B(e,r) ={z |||z — ]2 <}
To prove this, use the triangle inequality and positive homogeneity of norms.
Ellipsoids. An ellipsoid can be described as the set
E={r|(x—z.)" Pz —2z) <1}

1
where P € 87 *.

Set Operations Preserving Convexity

Let f: R™ — R™, then dom f is the set of values x where f(z) is defined. The range of f is
the set of all values f(z) where x € domf. The following are operations on convex sets that
preserve convexity.

Intersection. Intersection of convex sets are also convex. However, the union of
convex sets is generally not convex.

Affine transformation. Let f(z) = Az + b be a function where f : R® — R™. Let
S denote a convex set, then the image of S (f(s) = {f(z)|x € S}) under f is also a
convex set. The inverse image of S under f is also convex (f~!(s) = {z|f(z) € S}).

Projection: the projection of members of a convex set to a lower dimensional space
results in another convex set.

Linear fractional transformation. Let f : R™ — R™ be of the form

B Az +b

@)= Tevd

For Ae R™" b€ R™ c€R" and d € R. dom f = {z|c'z +d > 0}. Then if S is a
convex set, then the image f(S) is also a convex set. The inverse image f~*(S) is also
convex.

'Here S, denotes the set of positive definite matrices and S, denotes the set of positive semidefinite
matrices
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2.3 Convex Functions

A function f : R" — R is convex if Va,y and Va € [0, 1],

flax+ (1 —a)y) < af(z) +(1-a)f(y) (2.1)

where f has a convex domain?. Strict convexity is achieved if the inequality of Equation
1 is strict. The geometric interpretation of a convex function is shown in Figure 1

(z, flx)) ,..._._...____......._.._.

Figure 1: The line segment af(z) + (1 — a) f(y) is above f(az + (1 — a)y).

If the function f is furthermore continuous, then the midpoint theorem states that check-
ing Equation 1 is true for o = % is sufficient to establishing convexity of f.

First Order Condition for Convexity. Suppose a function f : R" — R is differ-
entiable and continuous, then f is convex if and only if dom f is a convex set and for all

x,y € domf,

F) = f(@) + Vaf(2)" (y — ) (2.2)

The geometric interpretation is shown in Figure 2.

£yl

Fl)+V £ (y—x)

lx, flx))

Figure 2: Tllustration of the condition that f(y) > f(x) + V. f(z)T (y — x).

Second Order Condition for Convexity. Suppose a function f : R" — R is twice
differentiable and continuous.Then f is convex if and only if dom f is convex and its Hessian
is positive semidefinite (PSD).

V2f(z) =0 (2.3)

2The requirement that the domain of f be a convex set is just to ensure that f(az + (1 — a)y) is defined.

8
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However, a positive definite Hessian is a sufficient but not necessary condition for strict

convexity. For instance f(z) = 2 is strictly convex but V2 f(z) = 122*> = 0 at = = 0.
Below are some examples of convex functions that can be verified using the above con-

ditions for convexity.
e Exponential. A function of the form f(x) = e* is convex for a € R and strictly
convex if a # 0. This is easily checked with the second order condition for convexity,

where V f%(z) = a?e™ > 0.

e Powers.
1. 2% is convex on R, ifa > 1 or a < 0.
2. —z%is convex on R, if 0 <a < 1.
e Logs. The negative log determinant — log det X is convex on domain of PSD matrices.
This is a generalization of the statement that —logx is convex on R, .. The negative

entropy z log z is also convex on R, ..

Below are additional conditions for establishing convexity.

e Pointwise maximum of a set of convex functions is convex. If f(z,y) is a convex
function of x, then for every y in the index set D, g(x) = sup,cp f(z,y) is a convex

function in x. Figure 3 illustrates this concept.

o If f(x) is convex, then g(z) = f(Az + b) is also convex for arbitrary A € R™*" and
b x R™.

e Assume f(z,y) is jointly convex in z and y and D is a convex set. Then g(z) =

inf,ep f(x,y) is convex if g(x) is always greater than —oo.

Figure 3: Mlustration of the condition that the pointwise maximum of a set of convex
functions is convex. Here the index set D = {1,2} and the red portion of the graph is

g(w) = sup,ep (2, y).

32 needs to be defined on R, because otherwise z~/2 is undefined for = 0.
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3 Lecture 03 (Aug 30)

~

Theorem 3.1 (Line restriction theorem). f is convex if and only if its restriction to
any line is convez, i.e. g(t) = f(x + ty) is convex for every x € dom(f), y € R™.
{t | z+ty € dom(f)}.

Theorem 3.2 (Conic combination). Let oy, as,...,ar > 0, if fi,... fx is conver.
k .
Then Y ., a;fi(x) is also conver.

Theorem 3.3 (Composite theorem). Let f: Dy — R, g : Dy — R, range(f) C Ds.
If f and g are convex and g is non-decreasing, then g(fi(z)) is also convex.

Examples:

e Quadratic function: f(z) =27 Az + bz +c¢, Vf(z) =2Ax +b, V2f(x) =2A. fis
convex iff A > 0. f is strictly convex if A > 0.

e Indicator function Given D,
0, zeD
Ip(z) .
oo, otherwise

Ip is convex iff D is convex. We can transfer problem using indicator function, i.e. we

have ming,z)<o fo(x), we can transfer it to min fo(x) + Ip(x) where D is the feasible
region.

e Distance to a set

— inf ||z —
g(w) = inf o~y

|z — y|| is jointly convex in (x,y), if z = [ﬂ and M is convex, by previous theorem
g(x) is convex.

e Norm f(z) = ||z||, arbitrary norms. Note that the 0-norm is actually not a norm.

e Dual norm | - || € R", then:

lull. := sup{u"=||z] <1}

3.1 Fentchel conjugate

Definition 3.1 (Fentchel conjugate). The Fenchel conjugate of f is defined as:

frz)= suwp  a'z— f(a)

z€ dom f

point-wise supremum of a set of affine functions in z — convex.

10
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Theorem 3.4. f*(z) is convex even when f(x) is not

Theorem 3.5 (Fenchel inequality). f(x)+ f*(z) > 272, Vz,z

Example:

e f(xr) =azx+b. Then

z * oo otherwise

f*(2) = sup zz—(az+b) = sup(z—a)x—b = {_b ==a — f*(z) = =b,dom(f*) = {a}

o f(z)=1a"Ax + b +¢,A>0, then: f*(2) = 3(z —b)TA (2 —b) —c.

o f(x)=> 1 xilogz;, then f*(z) ="  e*'. Both ones use the trick that f(x) itself
is non-negative, hence would be upper-bounded by z7z. Calculation is eliminated.

o f(X) = —logdet(X),dom(f) = ST, then f*(Z) = —logdet(—Z~') — n. The opti-

mization problem is:

f*(Z) = sup Tr(XZ) + logdet(X)

Xesn
Note that we can simply construct X = I + tvv?, then if Z £ 0:
tr(XZ) + logdet(X) = tr(Z) + tA + log det(I + vv”) — oo

If Z < 0, we take the gradient with respect to X and yield Z + X! = 0. Thus
X* = —Z71, plug it in yield desired solution.

o If f(x) = ||z||, then:

0, izl <1
+oo, if ||z]ls > 1

f(z) =I,<1(2) = {

Proof. Recall ||z, = supy,<; 2" 2.
Case 1: if ||z]|« < 1, then:

g (W) < Jell. <1 7o — ol 0= f1(z) = sup ="z — 2] <0
x

Case 2: If ||z]|. > 1, then:
Jr st ||z|| < 1L,072 > 1= f5(2) > 2T (te) — ||tz =t (272 — ||2]|) = o0
—_———

>0

Theorem 3.6. If f is convex and the domain of f is closed, then f** = f,Vx. In
general, f**(z) < f(z),Vz.

11
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3.2 Subgradients

Definition 3.2. A vector g € R" is called a subgradient at a point y, if Vx € dom(f),
the following inequality holds:

f(x) > fly) + (g, —y)
Recall the first order condition for convex functions:

f(x) > fly) +(Vfiz—y)

Differentiable convex functions:

Non-differentiable convex functions:

Subgradient is a global linear underestimator of function at (y, f(y)). For convex func-
tions, any local underestimator is a global underestimator.

Definition 3.3 (Subdifferentials). Subdifferentials is the set of all subgradients at y
and is denoted by Of (y)

Theorem 3.7. 0f(z) is a closed, convex set and possibly empty.

Proof. f(x)— f(y)—(f,z—y) > 0. Note that y is fixed, if fix x, set of all ¢’s is a half-space.
Intersection of infinitely many half-spaces is still convex. O]

Theorem 3.8. If x is in the interior of dom(f), f convex, then subdifferential is
non-empty and bounded.

1, x>0
Example: f(z) = |z|, 0f(x) =< —1, x <0
—1,1], =0

Theorem 3.9. If f is differentiable, then 0f(x) = {Vf(z)}.

Theorem 3.10. If 0f(z) = {g}, i.e. a single element, then f is differentiable and
g=Vf.

Theorem 3.11. f convez, if f(z) = max{fi(z),..., fe(x)}, then Of(x) is the convex
hull of union of 0f;(x), where i stands for active functions.

Example: f(x) = max;<;<x(alx + b;), then d(al'z + b;) = {a;}, Of(z) is the convex hull
of {a; | i € Iy}, and

Ty = {i | aju+bi = f(x)}

12
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4 Lecture 04 (Sep 4)
In general
min fo(w)
fi(2)<0,i=1,2,....,m
hj(2)=0,j=12....p
4.1 Re-formulations
e maxg(r) <= min—g(x)
<0
« glr) =0 = {79 =
—g(z) <0
e g(x) <0 < g(z) + 2% =0, z is the slack variable
e Change of variables: ¢ : R" — R" is an one-to-one mapping. r = ®(z). New problem
would be: min .ern fo(2). fi = fi- ¢ and hj = h; - ¢.
fi(2)<0
h;(z)=0
e Transformation:
min x
T€R™ ;i (fi(x))<0,i=1,...,m 4 m (h;(x))=0,7=1,....p wO(fO( ))
— 1y : R — R: strictly increasing
- R=>Ri=1,2....m st ¢y <0 < y<0
— i R=>Ri=m+1,....m+p st Yy) =0 < y=0.
e Epigraph. Any optimization problem can be converted to another optimization prob-
lem with linear objective. New problem:
min
z€R™ teR, fo(x)—t<0, f; (x)<0,h; (x)=0
At optimality, t* = f(z*)
4.2 Solutions of optimization problems
e Feasible solution: x is a feasible solution if it satisfies all the constraints:
dom = dom/( fo) N dom(f;) N dom(h;)
oo : infeasible
e Optimal value: Infimum of fy(z) over all feasible z’s < finite
—o00 : unbounded from below
e Global min: z* is feasible and gives the lowest value possible for fy(z)
e Local min: z* if 3R > 0 such that f(z*) < f(x),Vx € feasible set N {yl|||ly — z*|| < R}

13
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4.2.1 Non-convex optimization
e Ist order necessary condition
e 2nd order necessary condition

e 2nd order sufficient condition

4.2.2 Convex optimization

e 1st order necessary condition: global min

4.3 Convex optimization

fo, f1,- .., fm convex functions, hy, ..., h,: affine. We have:

min
TeR™ fo(l‘)
fi(x)<0

Ax=b

Exercise: show that the feasible set of a convex optimization is a convex set.
Overall: convex optimization is the minimization of a convex function over a convex set.
Example:

min ] + 75

z3<0

r1t+x2>1

is not convex, but we can change x‘;’ < 0toz; <0 to yield an equivalent convex optimization
problem.

[ Theorem 4.1. FEvery local min of a convexr optimization is a global mean. ]

Proof. Assume z* is a local min but not a global min, and Z is the global min. Assume the
feasible set of the problem is M. Pick z = (1 —t)z* +tz, t small. z € M but fo(z) < fo(z*),
hence z* can’t be a local mean, thus a contradiction. O

Theorem 4.2. Consider a point x* that is in the interior of the feasible set. Then x*
is a global min if and only if V fo(x*) = 0.

Theorem 4.3. Consider a point x* that is in the feasible set. Then x* is a global min
if and only if V fo(x*)(x — %) > 0 for all x in the feasible set, X.

\. 4

Proof. =: Use first order condition, trivial.
<: By first order convexity:

fo(x) > folz*) + Vfg (x — x*)
> fo(x")

Thus z* is a global min. O

14
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Definition 4.1. The level sets of fo(x) with constant c:

{z [ fo(z) = c}
5 Lecture 05 (Sep 6)
Example 5.1.

etz 0

convex optimization, x* is a global min iff V fo(z*)T (x — 2*) > 0,Va > 0, this is equivalent

Iy
5
to S0, afgg*)(% —a¥) > 0,Yz > 0 Pick z = x*+1 , and Wg—fj*) >0, If xf > 0 for
R
x] |
5
: R Dfo(a) (_ Dhoa*) _
some i, then: x = /2 then =5.—(—%) 2 0= =5—==0.
L 7,

Theorem 5.1. Set of global mins of a function fo(x) = {z* € R™ | 0 € 0fp(x*)}.

Proof. x* is a global min if and only if fy(z) > fo(z*),Vz € X, equivalent to fo(x) >
fo(x*) + (0,2 — 2*),Vo € X <= 0 € df(z*) O

5.1 Different classes of convex optimization
5.1.1 Linear program (LP)

Minimization of a linear function subject to linear equality and inequality constraints.

min cz+d
Gx<h,Az=b

Canonical form:

min &' F

#>0,Az=b
Facts:

e Gxr<h=Gr+s=hs>0

15
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e 1 can be written asx =2t — a7, 2T > 0,27 >0
Example:

e Piecewise linear
min  max (a] x + b;)

T i=1,....m
. T -
mint, a;rz+b <t,i=1...,m
x,t
e Linear fractional
le+d

min ——
Ge<heTx + f
Ax=b

Note that dom(fy) = {efz + f > 0}, define y = Replace x with y

and z subject to: z > 0,eTy + fz = 1.

T y = 1
elz+fr~ = elTatf"

e Absolute value, also use the epigraph idea:

min ||z
Gz<h
Ax=b

min t;+...+1,
Gz<h
Az=b

—t;<x;<t;

5.1.2 Quadratic program (QP)

Minimization of a quadratic function subject to a linear equality and inequality constraints.

min o' Py +q" x4+
Gz<h,Az=b,P>0

QP includes LP by setting P = 0.

5.1.3 Quadratically constrained quadratic program (QCQP)

. 1
min —z! Pyx + qu + 7o
%J:TPix—ﬁ-qiTx—i-mgO
Fax=g
Py,P;>0

QCQP includes QP by setting P, =0
e Constrained least squares:

min ||Az — b||?
mmin | 12

16



EE 227B by El Ghaoui and Sojoudi Tom Hu

5.1.4 Second order cone program (SOCP)

Minimization of linear function subject to linear equality constraints and 2-norm inequality
constraints:

min Tz

|Asz+b;]l2<cla+d;
Fx=g

SOCP includes QCQP. Show it as an exercise! (Hint: Epigraph idea)

Definition 5.1. Second order cone is:

{(z,t)|x e R"t € R, ||z|]2 < t}

e Robust LP.
Recall the general LP:

min ¢’ x

aZTbei
a; is not known exactly, but we know a; € ¢; = {a; + Pyu | ||u||» < 1}. The robust LP
1s:
min ¢’
aiTxgbi,VaiEGi

Note that this is infinitely dimensional convex optimization, very hard to solve.
We show that Robust LP <= SOCP:

T

min c
HP,LTxHQSbZ—ﬁZCE
Proof. Note that:
sup alx

a;€{a;+Pu | ||ull2<1}
=alz+ sup u' Plx
l[ull2<1

=a; z + || Pzl

e LP with random constraints.
Consider an alternative of LP:
min 'z
P(alz<b;)>n
where the parameters a; are independent Gaussian random vectors, with mean a; and
covariance ;. And n > 0.5.
Let u = af z, standardize the constraints we yield P (% < %) > 1. Define ®(z)
the CDF of unit variance Gaussian. Then we can express the probability constraint
as: %= > @~!(n). Thus the problem can be expressed as an SOCP:

min Tx

alz+0—1 ()=} al|2<b;

i

17



EE 227B by El Ghaoui and Sojoudi Tom Hu

5.1.5 Semi-definite program (SDP)

Replace Gz < h as linear matrix inequality (LMI) in LP. F': 8™ — S™ s.t. F(z) is linear in
every entry F'(z) <0 is an LMIL.
Example: LMI, set n = 2, we have:

. 1+.T1 x1—2x2

= <
Fa)= |, or o o | Fle) 0= LMI

A canonical form is:
F(l‘) :$1F1+x2F2+...—|—ann+Fo

where F;’s are all symmetric.
T

min cx
1 F14z2Fo+...+Fp<0
Az=b
Canonical LP | Canonical SDP
r €R" re s
min ¢’z min(C, X)
x>0 X >0PSD

Note that (A;, X) = tr(A4;X), the canonical SDP is:

min  tr(CX)
tT(AiX):bi
X>0

Trick: change of variables:
X = —F(QT) = —l’lFl - ZL'QFQ .. -FO

'z, ATz = b can be rewritten in terms of X.

6 Lecture 06 (Sep 11)

6.1 Examples of SDP
6.1.1 Eigenvalues

1—|—$1 x2—2x1 I
To—2x7 T1—29+1 221+1
I 2$1+1 ZE2+3

1. How to minimize the maximum eigenvalue of this matrix?
2. How to minimize sum of two largest eigenvalues?

3. How to minimize sum of all eigenvalues?

18
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4. How to maximize the minimum eigenvalue of the matrix?

Recall the general form:

1.
min Amax(A(7)) <=
min t
TeR™
teR
Az)<tlm
2.
min Y ", N(A(z)) =
min tr(Z)+s(m—k+1)
zeR", SR
Zes™,7>0
Z—A(x)+sIn>0
EVD:
A=UxU"
= U diag(\)U”
Ama“ AEA 8 0 0 o 0]
2o o 0 Me—1—Ae ... 0
_ : : T : : : : T
=U 0 0 A U +U U™+
0 0 0] o 0 VO Ml
N ~— NSD
z
That is A(x) = Z — M <Oand tr(Z) =>" (M= M) =D\ — A (m—Ek+1):
Z)‘i =tr(Z)+s(m—Fk+1)
i—k
3.

max Zle Ai(A(z)) =

min m \i(B(z
B(x)=——A(z) Zz—m—k—H ( ))

19
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6.1.2 Max Cut

How to partition the vertices of a graph into two sets, such that the number of edges between

the two sets is maximal.

e Bach edge (4, j) has a weight w;; > 0.

P . . . : . . +1
e Optimization formulation: x; is a variable associated with note 7, and { )
e Cut: Define € the edge set, then:
—(; + 1) (x; — 1) "1
(4,4)€€,i€S51,j€S2 4,j=1 ij=1 quadratic

Max-cut can be formulated as:

max z!Qx
zeR™ ,1’? —1=0

Matirx reformulation:

2T Qr = tr(z7 Qz) = tr(Qra”) = tr(QX)

Hence the problem:
max QX

Xesn, X>0,X;;=1,rank(X)=1

if u; € 5]
1fu1 GSQ'

However, we need to drop the rank constraint in order to make it an SDP, i.e. it’s a

convex relaxation of a non-convex set. Some proofs show:

ﬁ(x*)TQx* > tr(QX*) > ()T Q(z*)

(Geomans and Williamson in 1995). A sketch of proof is:

— X* is not always rank 1, i.e. we cannot always decompose it into (u*)?u*

— Consider NV, (0, X*)
— Define a new probability distribution:

N 1 1'120,2:1,,77/
Xy = .
—1 otherwise

We then show (see paper for details):
x E[27Qz] < ()T Qux*
x E[27Qz] > 0.87tr(QX™).
The general idea on simulation is that:
x Solve SDP relaxation
x Using X*, generate a probability distribution
x Sample random variable 4
x Get a cut that is 13% away from optimal.
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6.1.3 Polynomial optimization

perin_ Po(@)

where p(x) stands for a polynomial. For example, suppose we want:
min x] + x57; + 25
These can always be converted into a non-convex QCQP, i.e. the above can be written as:

min x% + 2521 + X374
a:%—xgz(),x%—:m:O,x%—mg,:O

min 2T Agz + bOTx + ¢
xTA,'aH»bZT:EJrciSO

Note that Ag, A, ... might not be PSD. It’s hence a non-convex QCQP.

6.1.4 General SDP relaxation

T

By defining X = [1

] [ZBT 1}, drop the rank constraint, we get SDP relaxation.

Theorem 6.1 (Pataki’s Theorem). Consider a canonical SDP:

min tr (MyX)

(M;,X)=a;,X>0

There is a solution whose rank is upper-bounded by:

e

i.e. when k=1, rank =1, k = O(n), rank = O(y/n).

6.2 Conic optimization

Definition 6.1 (Proper cone). We say a cone K C R" proper if:
e K 1s convex
o K 1is closed
e K has non-empty interior

e K is pointed, i.e. if v € K,—x € K, then x = 0. “It cannot contain a line.”

Linear canonical form of Conic optimization:
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Canonical LP | Canonical SDP
min ¢’ x min ¢’ x
Ax =b Az =b
T Z 0 T ZK 0

Note that x >k 0 means x € K, a convex cone. Hence x >k y means x —y € K. If
K =R}, r>Kg0 <= x>0, so conic becomes LP.

6.2.1 General form of linear conic optimization

min o

Aixz—b;<k0,Fx=g
Definition 6.2. Given a cone K, the dual cone K* is:
K*={y| 2Ty >0,Vz € K}

Note that K* is always a cone even if K is not. y € K* iff —y is a normal vector of
the hyperplane that supports K at the origin.

WV
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6.3 Tractable conic optimization

e The non-negative orthant, i.e. R
e The second-order cone: Q" := {(x,t) € R} x Ry : ¢t > ||z2}.

— Rotated second-order cone: Q" := {(z,y,z) € R"™ : 2yz > ||z||3,y > 0,2 > 0},
which is equivalent to:

wea= |50

Note that this is useful to show that QP is a special case of SOCP, especially the
constraint ¢t > 27Qx can be interpreted as (Q'/%x,t,1) € Q7.

e The semi-definite cone: S := {X = XT > 0}.

Note that the below demonstrates that semi-definite cone actually contains second-order
cone (also, soc contains nno):

t T Ty
el <t = | . . . .|=0
z, 0 ... t
: . . A B
Theorem 6.2 (Schur’s complement). Given a matric X = BT |’ and define

Schur complement of A as:
X/A=C—-BTA'B
and Schur complement of C' as:
X/C=A-B'Cc™'B
Then the following hold true:

e X is positive definite if and only if A (resp C) and X/A (resp X/C') are both
positive definite.

o if A (resp. C) is positive definite, then X is positive semi-definite if and only if
X/A (resp. X/C) is positive semi-definite.

We can hence show the iff equation from Schur’s complement.
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7 Lecture 07 (Sep 13)

7.1 Review Problems

1. Give an SDP relaxation of non-convex quadratic optimization of the form:

. T
min " Qox + 2qo + po
2T Q;x+2q;x+p; <0

We denote the variable as X = xz”, z, then the problem becomes:

min Tr(XQ;) + 2q;x + p;
Tr(X Qo)+2q0z+po<0 (XQ:) ¢ b
Rank(X)=1

Drop the rank 1 we get a SDP relaxation.

2. Recall that S7} is the PSD cone. Given an arbitrary matrix A € S", we want to find the

closest point in S% to A with respect to Frobenious norm (distance between A and X is
A= X][p).

a. Formulate the problem as a smooth conic optimization.

The problem can be explicitly formed as:

min||A—XH§7

X>0

Recall that Frob norm can be written as | X | p = \/tr(XTX), thus the problem

above can be formulated as

min tr(ATA+ XTX — 247 X)
X>0

b. Using the optimality condition, find the point.

Recall the optimality condition is when V f(2*)(z* — z) < 0,Vx in feasible set,
le.

(X*—A),(X"-X))<0,VX e€8§"

Decompose A = AT — A~ where AT = Udiag(\1, ..., M\, 0,...,0), similarly we
construct A~, note that (A", A7) = 0 hence the above becomes

(X*, X* — X) — (At — A=, X) <0

3. Consider an integer k between 1 and n.
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a. Find the convex hull of the set

M = {XXT|X € R}

It’s the set itself. Let Ki,..., K, € M, then

k
H = {Zaim > 0|K; € XXT}
=1

Thus H C S". We proceed to prove the other side, suppose we have A € 8%, A =
S Aiugul. Define a unit, say

Then we can see
n

1 n
n
i =1

=1

b. Find the convex hull of the set

{XXT|X € R™* rank(X) = k}

e If A > 0, but rank(A) < k, then A ¢ H. Suppose A € H, then A =
S X X st Y a; = 1, then since rank < k, 3N such that rank(N) >
n—k,ie. NTAN =0 = > o;(NTX;)(XFN) = 0. At least one a; # 0,
then (N*X;)(X/N) = 0, XN = 0, then this demonstrates rank(X,) <
n —n(n — k) = k, a contradiction.

oHGSﬁ.

e Convex hull is {S" |rank > k}. Assume that A € T and rank= k, then
A= XXT for some X, A is in the convex hull. We show the other way. The
other way around: assume A € T" and rankk = k + 1, then

k
2 : T
i=1

T T T T T T
. 2)\1U1U,1 + )\2U2U2 500 )\kukuk i )\QUQUQ 500 )\kukuk + )\k+1uk+1uk+1
2 2

We can complete by induction.

4. Find the sub-differential of the function f(z) = ||%||co-
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According to Denskin’s theorem, 0f(z) is the convex hull of union of sgn(z;) for
i € D, where D is the set of index such that the maximum is attained. Or in other
words, we can express it as:

5. A matrix X € S" is called copositive if 27 Xz > 0,Vz > 0. Find the dual cone of the cone

of copositive matrices.

By definition, dual cone is defined as :
(Y, X) > 0,VX copositive
Claim: vv! € C* if v > 0,v € R", note that
(vof, X) =0T Xv >0

Thus C* D aiviviT.
C': copositive, C*: dual cone. Let:

T = {ZQZ"UZ"UZ-T | a; > 0,v; € Ri}

Suppose there exists B such that B € T* but B ¢ C. Note that T' C C*, then
T* D (C*)*, then there exists B such that B € T* but B ¢ C, since B ¢ C, 32 > 0
such that 27 Bz < 0, i.e. (227, B) < 0. But 227 € T, B € T*, by definition, the
inner product of dual and dual cone must be > 0, thus a contradiction.

6. Find the dual cone of a positive semi-definite cone.

We claim it’s self dual and show by contrapositive. We want to establish the fact:
Y | Tr(XY)>0,VX >0 < Y >0
Suppose Y ¢ S, then there exists ¢ € R™ with:
¢"Yq="Tr(gq"Y) <0

Hence the psd matrix X = ¢q” satisfies Tr(XY) < 0, thus Y ¢ (S%)*.
Now suppose X,Y € S, we can express X as X = > """ | Nig;q/ where (the eigen-
values) A\; > 0, then we have:

Tr(YX) = Tr (Y > Nigig! ) =Y g/ Y >0
i=1 i=1

This shows Y € (ST)*.
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7. Find the dual cone of a norm cone, i.e. K = {(z,t) € R"™ | |jul|. < v}.

We claim the following:
gTu+tv>0,V|z]| <t <= ||ull <v
<: Suppose ||ul|s < v, ||z]| < t,t > 0, then since we know || — z/t|| < 1, we have:
u' (=2/t) < Jlufl < v

Thus vz + vt > 0 for z,t such that ||z] <.
=: We show that if RHS does not hold then LHS does not hold. i.e. Suppose
|u|s« > v, then by definition of the dual norm, Jz such that ||z|]| < 1 and z7u < v,
take t = 1, we have:

uf(—z) +v <0

which contradicts LHS.

8 Lecture 08 (Sep 18)

8.1 Separating Hyperplanes

Theorem 8.1 (Separating hyperplane theorem). Suppose C' and D are two convex
sets that do not intersect, i.e. C N D =), then Ja # 0 and b such that:

afz <bVrel

alz > b,Yxr € D

J

Note that the inequality is not always strict. A simple counter-example would be y < 0
and y > e, note that y = 0 is a separating hyperplane.

Proof. Sketch dist(C, D) = inf{|lu — v|2) | v € C,v € D}. Find the best pair (c,d) to
minimize the length.

e Find (c,d)
e Find the mid-point of the segment.
e Draw an orthogonal hyperplane going through the midpoint.

Define: a =d —c¢,b = w. It’s easy to show that this is a separating hyperplane. [

Theorem 8.2. If D is a single point, (we denote asb) and C' is a closed set then there
1S a strict separation.
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Proof. WLOG, we assume b = 0 (If not, change variable 2’ = z — b).
There exists 2° € C with ||2°||y = § = min{||z|, | =z € C}.

Let a point m = % and a vector a = % (lalla = 1), a® (x — m) = a’x + B.
Claim: a”z + B = 0 strictly separate C and b = 0.

(1) We first consider the case starting from b = 0, then we have:

a’b+p=p=—-a"m

_ Tz
52
_ 1213

20
52 )
"% g~

(2) Suppose z € C, then we have: [|2°)|s < [[(1—-0)2°+0z]|2, 6% = ||2°]|3 < ||2°+0(z—2°)|)3 =
|2°|3 + 202°(x — 2°) + 62||x — 2°||3, so we have: 0 < 22%(z — %) + ||z — 2°||3. Now let
6 — 0, we have: 2%(x —2°%) > 0. 0 < 22 — 2°) = (da)(x — 2m), since § > 0, we have
0 < a’(x —2m). Then:

o
0<§:aTm<aT(:p—m):aTx+ﬁ

Hence a’z+ 8>3 > 0,Vz € C.

Theorem 8.3 (Converse separating hyperplane theorem). Any two convex sets C' and
D, with at least one being open are disjoint iff there is a separating hyperplane.

Note that existance of hyperplane does not necessarily imply the sets are disjoint. A
sufficient condition is that one set should be open. For example: find necessary and sufficient
conditions on A € R™*" b € R" such that the inequality Az < b has no solution.

Define C' = {b — Az | z € R"}, D = R7,. The problem is infeasible iff C'N D is empty.

C and D are convex and D is open. By previous theorem,

My < M,on C

CND=0 < INcR™, ucR,
a {)\TyZM,onD

<= 3) € R™ such that A # 0, A > 0, ATA = 0, \Th < 0. (left as an exercise).

Summary: The set of inequalities Ax < b is infeasible if the set of inequalities A >
0, ATXA = 0,\Tbh < 0 has a non-zero solution.

* This is known as Farkas Lemma. (Special case of theorem of alternatives)
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8.2 Supporting Hyperplanes

Definition 8.1. If C is a closed convex set, and D 1is a single point xq on the boundary
of C, then there is a separating hyperplane which is called a supporting hyperplane.

Ko

As the picture shows, at a smooth point, supporting hyperplane is unique and tangential to
the set.

8.3 (Generalized inequalities

Theorem 8.4. Assume K is a proper cone, then x € R" such that Az <gx b <=
AN £ 0, g >0,ATA=0,\Tb <0

Proof. Use separation between two sets. O]

Theorem 8.5. Dual cones satisfy several properties, such as:
e K* is conver and closed

o K1 C Ky implies K5 C K}

If K has non-empty interior, then K* is pointed.

If the closure of K is pointed, then K* has non-empty interior.

o K** is the closure of the conver hull of K. (Hence if K is conver and closed,
K> =K.
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Theorem 8.6.
o If K =RY, then K* = K by Farkas lemma.
o [f K is a second order cone, then K* = K

e If K is a PSD cone, then K* = K

Theorem 8.7. If K is a proper cone, then K** = K.

9 Lecture 09 (Sep 20)

9.1 Duality

Consider the optimization problem:

We associate a scalar variable to each constraint,

it filz) <0, wv;:hi(x)=0
Then the Largrangian is defined as £ : R" x R™ x R? — R:

Lz, A\, v) = folx) + Z Aifi(x) + Z vihj(z)

Note that dom(L) = D x R™ x RP, where D is the domain of the original optimization
problem, and A;, v;’s are called Lagrangian multipliers. Let p* denote the optimal objective

value for the original problem.

Theorem 9.1. As long as A > 0, we have g(\,v) < p*, where

g(\,v) = inf L(z,\,v)

xzeD

Proof. Assume z* is a global solution of the original problem.

> min L(z, \,v) = g(\,v)

30



EE 227B by El Ghaoui and Sojoudi Tom Hu

Theorem 9.2. —g(\,v) is always convex for arbitrary functions, f;’s and h;’s.

Proof. —g — max, —L, hence convex. O

e What is the dual function of LP?
Lagrangian: L(z, \,v) =cTo =Y " Nz + vl (A —b) = =b"v + (¢ + ATv — \) .
Dual function: g(\,v) = inf, L(x, \,v) = —bTv+inf,(c+ ATv —\)Tx Thus (c+ ATv —
A) =0, (since —oo otherways), thus:

—00 otherwise

'y ife+ATv—A=0
g(A,V)Z{

e Dual function for max-cut. Primal:

Note that we can form () = —W, then the problem becomes a minimization problem.

L(z,v)=2"Qx + 2": vi(z? — 1)

1=1

N

=u? (Q + diag(vy, ..., vn)) u — ZVZ'
i=1

-~
*

{O, if Q + diag(vy,...,nu,) >0

—00, otherwise

0, otherwise

—> v if Q +diag(vy, ..., nu,) >0
o) = {_2_1 8 )

9.2 Lagrangian Dual

Logic: since g(A,v) is a lower bound on p* for every A > 0, maximize it!

~

Theorem 9.3. Weak duality: p* > d*, p* is the primal solution and d* is the dual
solution.

Theorem 9.4. Dual problem is always convex even when primal is not convez.

e Dual of LP is still LP
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e QP:

min  alpr+¢lx+r
Ax<b,Cx=d

Lz, \v)=a"pr+¢" v +v+ 2\ (Azr — b) + v (Ar — d)
=a"pr+ (" + A+ v )z + (r — Nb—v7d)
Assume p > 0. To minimize £, take the derivative:
2pr + (g8 +MNTA+vTe) =0

Hence z is linear in \, v, plug = in L, then we are maximizing 2% pz, and x is linear in
constraint, i.e. a QP again.

e Exercise: Dual of QCQP is SOCP.
e Exercise: Dual of SOCP is SOCP.

9.3 Connection to Conjugate Functions
For an objective with linear constraints, dual function is:
g\, v) = min(fo(x) + A\ (Az — b) + 7 (cx — d))
= min(fy(z) + A\TA+ vie)z) + (=A\Tb — v d)

Note that:

foly)  =sup(y’z — fo(z))

—fo(y) = min(fo(x) —y'2)
Exactly the conjugate, hence :

ghv) = —fo(=\"A—-v"¢)
Thus the dual optimization is:

ok Ty T
max —fg(z) + (=A"b—v'd)

Note y € dom(f;).

[ ]
min ||z|
Az=b
foly) = {oo otherwise
Dual:

max —Ff(—ATv) — Ty
I—ATv||, <1 Ja )
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9.4 Duality Gap

p* — d* is the duality gap. When duality gap = 0, strong duality holds. How to analyze
the duality gap?
Suppose we have a generic optimization problem (no assumption on convexity).

Definition 9.1. \* > 0 is called a geometric multiplier if

p" = min L(z, \¥)

Consider the space:

fi(z)
H=¢(zeR"weR)|z= : | ,w = fo(x),for some z p € R™H!
Assuming n = 1 for simplicity.
M o

7

[ Z
\Z—.,_. yt

L(z,\) = fo(x) + N f(2) =w+ A2

This is a line in R? with the coefficients [AT 1], i.e. w+ ATz = [AT 1] [5}] .

min £(x, \) = minw + A"z s.t.(2,w) € H

T
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Theorem 9.5.

o [f there is no duality gap, the set of geometric multipliers is equal to the set of
optimal dual solutions.

e [fthere is a duality gap, even though the set of dual multipliers may not be empty,
the set of geometric multipliers might be empty.

10 Lecture 10 (Sep 25)

10.1 Strong duality

Consider

nin fo(x)

Assume \* is a geometric multiplier (see previous lecture for definition), and the solution
exists. Then p* = min, L£(x, \*) = fo(z*). Note that
L(a,\) = folw) + )N filx)
i=1
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Thus fo(z*) < L(z*, X*) = fo(x*) + D, Af fi(u*), which implies A} f;(z*) = 0,i =1,...,m,
which is complementary slackness.

Theorem 10.1. Ezistence of a geometric multiplier means no duality gap.

Proof. By weak duality, we know p* > d*, and p* = min £(z, \*) < max, min, £(x, \) = d*.
Thus p* = d*. O]

10.1.1 Necessary and sufficient condition for zero duality gap

(x*, \*) such that:

1. Primal feasibility: f;(z*) <0,i=1,...,m

2. Dual feasibility: Ay > 0,i =1,...,m

3. Complementary slackness: Aff;(z*) =0,i=1,...,m

4. Lagrangian minimization: £(z*, \*) = fo(2*) = min, L(x, \*).

Unfortunately, 4 is very hard to check. Note that a necessary condition for 4 in the
differentiable case is:

VL(x,\") =0

r=x*

Hence 4 can be placed by the stationarity condition:
Vfola®) + ) NV fi(a*) =0 (10.1)
i=1

It turns out that 1, 2, 3, 10.1 also sufficient for strong duality for certain problems (i.e.
convex optimization, under constraint qualification).

10.2 Optimality conditions for equality constraints

We now consider a class of problems that only has equality constraints, i.e.

i olw)

assume h;’s are differentiable. To find a local solution, we need to do a local analysis.
Consider a point z*, we want to check if this is a local minimum. We need to study the
feasible set around z*, which is related to the notion of tangent plane.

Example:

o fla)=a3+a}—1

o hz)=ai4ax3+23-1
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o (x)=at+ai—-1,2eR’
) hQ(ZE) = T3 — 1
How can you find tangent plane?

Definition 10.1 (Regular point). A point x* is called regular if vectors
Vhi(z*), Vhe(z*),...,Vhy(z*) are linearly independent at that single point.

If x* is regular, then the tangent plane of feasible set at x* is:
{Az e R" | Vhy(z*)"Az =0,i=1,...,p}

Intuition: h;(z* + Az) = hi(2*) + Vhi(z*)T Az + O(z*?). If a point is regular, then
the higher order term is really not important in this equation.

Example:
21’1

e Tangent plane for h(z) = 22 +22+25—1. Vh(x) = |2z, this is linearly independent
21‘3

unless x = 0, but = 0 is not a feasible point, because h(0) # 0, which implies that
all feasible points are regular. Tangent plane at x* is:

{Az € R® | 2} Az + 23Amy + 25A13 = 0}

21‘1 0
o hi(x) =a2+22—1,hy(x) = w3—1, then Vhy(z) = |2x2|, Vho(z) = |0], and linearly
0 1

independent, unless x = 0, where x is not feasible, thus all points are regular, thus
tangent plane at x* is:

{Az € R? | 2} Az + 25Az9 = 0, Axz = 0}

10.2.1 First order optimality conditions

mingep fo(x) by a local analysis around z* as: min fo(x* + Az), such that Az € tangent
plane at * and Ax small. Note that:

fo(z* + Ax) = fo(z*) + Vfo(z*)" Az + h.ot
> fo(x")

Theorem 10.2. If x* is reqular and a local min, then V fo(z*)T Az > 0 for every Ax
such that Vh;(z*)T Az = 0.
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Theorem 10.3. Under the conditions of previous theorem, vy, ... v, such that

Vfo(x™) +viVh(x™) 4 ... v;Vh,(2") =0

This is called first order necessary optimality condition.

10.2.2 Second order optimality conditions
1
fo(z* + Ax) = fo(a*) + V fo(a*) Az + §AxTV2f0(x*)Ax +...

1
hi(x* + Az) = hi(z*) + Vhi(2*) Vo + §AxTV2h1 () Az + ...

1
hy(x* 4+ Ax) = hy(z*) + Vh,(z*) ' Va + §AxTV2hp(:c*)A:U + ...

1 1
folx* + Ax) = fo(z*) + iAxTVQfO(I*)AI +.. -+ 3 Z viALTV2hi(x*) Az + h.ot > fo(z¥)
i=1
by local optimality. This concludes
p
Ax” <Z viV2h(x*) + V2f0<l‘*)> Az >0
i=1

for all Az in the tangent plane, which brings us the following theorem:

Theorem 10.4 (2nd order necessary condition). Under the conditions of previous
theorem:

P
M = AzT (Z viV2h(x*) + VQfO(x*)> Az >0
i=1

for every Ax such that Vhy(z*)'Ax =0,i=1,...,p. If no constraint:

AxTV2 fo(x*) Az > 0 = V2fo(x*) >0, PSD

M =0, to compare fo(z* + Az), fo(z*) go to third order condition.

Theorem 10.5 (2nd order sufficient condition). If z* is reqular and feasible, for which
Jv* such that f.o.c. is satisfied and M > 0 for every Ax in tangent plane such that
Ax # 0, then x* is a local min. In unconstrained case, * is a local min if:

Vf(](l‘*) = 0, V2f0(x*) >0

How to check second order condition? Tangent plane:
{Az € R" | Vhi(z")'Az =0,i=1,...,p}
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Dimension of this set is in n — p. Pick n — p linearly independent vectors in tangent plane,
called Ey, Es, ..., E,_,. Define F' = [El Ey ... En_p], we define the tangent plane:

{Ey |y eR"7}

2nd order necessary condition:

ET<V2f0 +Zuv2 >E>O

2nd order sufficient condition:
ET ( ) + Z ViV2h, ) E>0

11 Lecture 11 (Sep 27)

11.1 Optimality conditions with inequality constraints

min min T
J1(2)<0,h1(z)=0 fO( ) f1(z)+2%2=0,h1(z)=0 fO( )

Define: & = [ﬂ € R hy(2) = fi(x) + 22, fo(& = fo(x), h(Z) = by ().

First order necessary condition

V fo(#*) + vV hy (%) 4+ v3ha(3*) = 0, which is:

{Vfoo(x*)} o [Vhlo( )} . {v];(* )} _9

Note that since 1§ = ¥, thus we have \iz* = 0 = \2** = 0 = X f(z*) = 0, which is the
complementary slackness.

Second order conditions

ATl V() b VP (EY) 4y Vihe(2Y) Az >0
N—— N——

V2 fo(z*) 0 V2hi(z*) 0 VWO
AR I AR I A

which is exactly:

AGT ({Wfo(;,;*) + ufv2;81(g;*) + XV f1(7) (2)}) AG >0

By tangent plane:
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(1) If z* is regular, then Z* is regular for the new problem.

(2) 2X7 >0

Theorem 11.1 (1st order necessary condition). Consider min, fo(x), such that
file) <0,i =1,...,m, hj(x) = 0,5 = 1,...,p. If 2* is reqular and a local min,
then AT, ..., AL, Vi, ..., vy such that:

(1) X>0i=1,...,m

(2) X fi(x*) =0 (complementary slackness)

(3) Vfola™) + 22 NV file®) + 320, v Vhi(z™) = 0

Theorem 11.2 (2nd order necessary condition). Consider min, fo(x), such that
filx) < 0,i =1,....m, hj(z) = 0,5 = 1,...,p. If x* is regular and a local min,
then AT, ..., X5 vy, ..., v such that:

J m? p
(1) X>0i=1,...,m
(2) N fi(x*) =0 (complementary slackness)
(3) Vo(a*) + S0 NV fi(a®) + S0, 1 Vhi(a*) = 0

(4) Azt (V2 fo(z*) + S0 MV fi(a*) + D0 viV2hy(x*)) Az > 0 for every Az in
tangent plane at x*, Az > 0

Theorem 11.3 (2nd order sufficient condition). If x* is feasible and a regular point
for which IN*,v* such that (1), (2), (3) are satisfied, and (4) is satisfied in a strict
way wherever Ax # 0, Ax € T, then x* is a local min. T is a set bigger than tangent
plane, 1.e.:

T={Az | Vhi(z*)" Az =0,i =1,...,p; Vfi(z") Az = 0 if fi(z*) = 0&\; >0}

As it has fewer constraints than the tangent plane

Definition 11.1. f;(z) <0 is called binding (active) at z* is fi(z*) =0

Definition 11.2. z* is called regular if gradients of equality and all active inequality
constraints are linearly independent.

Definition 11.3. Tangent plane at x* is a set of all Ax € R™ that are orthogonal to
the gradients of equality and active inequality.

Note: 2nd order sufficient condition guarantees a strict local optimality.
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11.2 Sensitivity analysis

min T 11.1
P L fo(@) (11.1)
min fo(z) (11.2)

fi(z)<ci,hj(z)=d,

Suppose p*(¢, d) is the solution to 11.2, then p*(0,0) would be the solution to 11.1. Note:
for convex optimization, p*(c,d) is still convex.

Assume second order sufficient condition is satisfied for * and no constraint is degenerating,
then 3 a ball around (0, 0) such that for every (¢, d) € ball, we have:

(1) p*(c,d) exists.
(2) There is a solution z*(¢, d) such that 2*(0,0) = z* and continuous.
(3) Vep* (e, d)|0,0) = =", Vap*(c,d)|0,0) = —V".

For small perturbations (¢, d), we have:
m p
p*(c,d) =~ p* —Z)\:Ci —Zy;dj (11.3)
i=1 j=1

11.3 Optimality conditions for convex optimization

2nd order necessary condition is automatically satisfied for convex optimization. Recall:

Az" <v2 +ZA*VfZ +Zuv2 )A:)s>0
Since fo, f; convex, h; linear, we have > 0+ > 040, i.e. > 0.

Although second order sufficient condition may not be satisfied, we don’t care about second
order sufficient condition for convex optimization.

Theorem 11.4.
flx+ Az) = f(z) + Vf(z) Az + %AmTV2f(ac)Ax + h.o.t.

Jy such that %A:ETV2f(y)Ax >0

Summary:

1. If z* is regular and a local min, then first order optimality condition is satisfied.

2. If x* is regular and feasible and satisfies first order conditions, then it’s a global min for
convex optimization.
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which implies FOC is both necessary and sufficient under regularity assumptions.

Theorem 11.5 (Optimality condition for convex optimization).
1) Primal feasibility

2) X >0

3) Complementary slackness

4) Stationarity of Lagrangian, i.e. V L(x,\*,v*) =0

Which is called KKT condition.

Lz, \*,v") = fo(z) + Z A fi(w) + Z v;hi(x)

V. L(x* N v%) =0
L(z*, X*,v*) = fo(z*)
implies (A\*,v*) is a geometric multiplier. (2) in KKT is called dual feasibility.

Thus , which implies z* is a solution to min, £(x, \*, v*). Which

For convex optimization, the regularity condition can be replaced with Slater’s condition:

Definition 11.4 (Slater). Slater’s condition is satisfied if 3x € R™ that is feasible and
fi(z) < 0 (satisfies inequality constraint in a strict way).
Note that x is an arbitrary point, not need to be the optimal solution.

Definition 11.5 (Weaker Slater). Need a feasible point that satisfies all non-linear
inequalities in a strict way.

Theorem 11.6. Weak duality always holds. Strong duality holds for convex optimiza-
tion under weaker Slater’s condition. If objective value is finite, then there is a dual
solution.

Theorem 11.7. If Slater is satisfied: p* = d*
(1) If p* finite and Slater is satisfied for (p), then I(\*,v*) finite
(2) If d* finite and Slater is satisfied for (d), then 3x* finite.

.

Example 11.1 (Scenarios for primal-dual for LP).
1. p* =d* = +oo, (p) is infeasible

2. p* =d" = —o0, (d) is infeasible
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3. p* = d* = finite, which is both (p), (d) have solutions.

*

The only way we don’t have strong duality is when both (p),(d) are infeasible, i.e. p* =
+oo,d* = —00, gap is infinity.

Theorem 11.8. LP has a zero duality gap unless (p) and (d) are both infeasible. Same
for QP.

12 Lecture 12 (Oct 2)

Consider an example:
min TiT;
iy =] 7
We know: )
n n
2Z:cj:cj +fo = (Z:&)
i#j i=1 i=1
Assume we do not know this, use the optimality condition to solve the problem:

L(z,v) = inx’j +v <Z xi — n)
i) i=1
1st order necessary condition:
o V.L(x,v) =0, ie. Z#jxj +2vx; =0,1=1,...,n

e >, x7 = n, which implies . 2 + (2v — 1)2; = 0,i=1,...,n

W—1=0=>v=1/2=5S"_2,=0
2 possibilities: / ZJ*I ’ S n o Now there
2V_1$£O:>I‘III2:...‘T”:—27‘,/:711 :}n:zizlxi
L1 =Tog=...=Zp,=1=>v=-1-—-
are two more possibilities: ! 2 " 2 )
TN=Tp=...=x,=-1=>v=—-"-

Second order condition:
e Start with z; =1,1=1,...,n
2331
. 233'2
e Regularity: V h(z) =

2z,

e The vector is linearly independent if x # 0. But x = 0 is not feasible, thus all feasible
points are regular.
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e Tangent plane (at z). To find £, we need n —m = n — 1 linearly independent vectors,

one choice: i _ -
1 1 1
-1 0 0
E1: 0 7E2: —1 ) '7En71— 0
0 | | 0] | —1]
[
ET (V2f0(f£*) + I/*Vth(CL'*)) E
0 1 ...1
10 1 -1
_ g7 . -z S—diag(2) | E
11 0
= -FE'E—(n-1)E"E = -nE"E
1
1
=-n 1 1]+1]<0
1
Thus 2nd order condition is satisfied for maximization. and point [1,..., 1] is a strict
local max.

e [f n > 3, intersection of a sphere and a hyperplane have infinitely many points. Thus
points are not isolated. i.e. second order sufficient condition cannot be satisfied for
n > 3. But one can show 2nd order necessary condition is satisfied:

We can show all these points are global minimum. Also, previously found local max

are global max:

— both give same optimal objective value n(n —1)/2

— All points are regular and we have analyzed every possible stationary point

— global solution exists

Theorem 12.1. If feasible set is closed and compact, there exists global min and global

max.
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12.1 Example 2

1
gﬂlcizr}) §prx +q'x+r

A e R™™ pe S, If the problem is feasible, Slater holds for QP and optimality is equivalent
to KKT:

e Primal feasibility: Ax* =b
e Stationarity: 0 = V,L(z*,v*) = V. (fo(z*) + v*Thy(2*)), by a simple calculation:

= 0=pz*+q+ A"V

p AT| [#*] _ [—q
- A=
~——
M
Note that M has n + m variables and n 4+ m conditions. Possibilities include:

e If M is invertible, then there exists a unique solution

e Otherwise, it might have zero or infinitely many solutions.

12.2 Example 3: QCQP

: L 7 T
min —T PoT + gy T+ To
%:L‘Tpi:c—qurx—i-rigo

[ Theorem 12.2 (s-procedure). If m = 1 and Slater holds, then duality gap is 0. ]

Consider possibly non-convex equations

hij(x)=0,7=1,...,p

We are interested in checking feasibility/infeasibility of this problem. Consider minimizing
0 over this constraint. Then consider the dual function:

g\ v) = iI%f (Z Nifi(x) + Z v;h; (1;))

If g(\,v) is strictly positive for some (\,v), then g(a\ av) = ag(A,v), as o — oo then
g(a, \,v) = oco. Thus:

P B A\ v) st A>0,9(\,v) >0
o otherwise

By weak duality p* > d*. Thus
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o If d* = +00 = p* = 400, means the primal is infeasible.
o If p* =0, then d* = 0.

e Cannot talk about the case when p* = oo, d* = 0 due to duality gap.

Theorem 12.3 (Weak alternatives). p and condition 1 of d* cannot be feasible at the
same time.

Convex case: equality should be linear and since need to satisfy Slater, focus on f;(z) < 0.

fi@) <0,i=1 oY
Theorem 12.4. (p):{lx A , O =<N#£0 . If fi’s are

Axr =b
g\ v) >0

convex, then strong alternatives hold meaning (p) is feasible iff © is infeasible.

13 Lecture 13 (Oct 4)

13.1 Conic duality

Linear conic duality:
Milgepn  ag T (13.1)
s.t. Az =b,Aix —b; <k, 0,i=1,...,m (13.2)
Duality:
1. Define a Lagrange multiplier v for Az —b =10

2. Define a Lagrange multiplier \; for A;x — b <;, 0. (Note that if A;x — b; € R™, then
A € R™,

3. Define g(\,v) as:

g\ v) = gg’)ﬁ(m, A\ v) = ;Igg <f0(x) + Z M i) + Z uihi(x)>

Dual optimization of Conic form:

max g(A,v) (13.3)
s.t. >\z ZKZ* O,@zl,,m (134)
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13.1.1 SDP
TI'(M()X)

min
Tr(M;1X)=a;,i=1,...,m,X >0
M;’s symmetric. Then:

1. Tr(M;X) = a; associate with v;

2. —X <0 associate with w > 0 (recall that PSD is self-dual)

L(X,v,w) = Tr(MyX) + Z vi(Te(M; X)) — a;) + Tr((—X)w)

Recall that vec(X)Tvec(w) = Tr(XW).
g(v,w) = min L(z, v, w), then

X — — 0
- 2211 v;a; if MO + Z:il V’iMi —w=20
Dual:

m
max — E v;a;
M()t“rz;r;l vi M; —w=0 .
w> =1

>0
Which indicates the dual of SDP is also SDP.

13.1.2 SDP Canonical
min a’x
F0+-'E1Fl++37nFn
Lagrange multiplier: Z needs to be PSD, then
LX,Z)=a"2+Te((Fo+21F + ... +2,F,)72)

9(Z) =min, L(X,Z) =min > (a; + Tr(F;2))X; + Tr(FyZ), then:

—00
X pu—
{—Tr(FOZ) if a; + Te(F;Z) = 0,Vi

Dual:

max Tr(FoZ)
az—f—TI‘(FZZ):O,ZZO
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13.1.3 SOCP

min L

| Aiz+b;ll2<cT z+d;

Use linear conic duality: 2nd order cone is defined as:

K ={(u,v) | u e R",v € R, ||ulls < v}

min Tl

B AII‘i‘bl <0
To4d;| ="

Define dual parameters ZZ], where u; € R" v; € R. Recall the second order cone is self-
i

dual, then |lu;| < v;.
Thus dual is:

e = a3 o [HH0]

i=1
m m m m

= (" - E ul Ay — E viel ) — E ulb; — E v;d;
i=1 i=1 i=1 i=1

Dual: g(u,v) = miny L(x,u,v).

—00
u,v) = m m : m m
o) {— Dy ufb =300 vidy i T = 3T uf A= 300 v =0

Dual optimization is:

m

m
max _E uin— g v;d;
=30y uf Ai=3T1 vic =0 i=1

=1
[l |l2<v;

This is also SOCP.

13.2 KKT Condition for Conic Programming

min T
fi(2) <k, 0 fol)
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KKT conditions for conic programming:
1. Primal feasibility: f;(z*) <k, 0, h;(z*) =0
2. Dual feasibility: A} > Ky 0

3. Complementary slackness:
AT fi(e) =0

Note: this does not mean either f; or \; is zero.

4. V L(x*, \,v*) =0

13.2.1 KKT for SDP

min Tr(MyX)
TI‘(MZX):O,“ZZI ..... m
X>0

1. Tr(M;X) = a;,Vi and X* >0

2. w*>0

3. Tr((—=X*)w*) = 0. Note: since X* > 0, w* > 0, then X*w* = 0.

4. L(z,v,w) = Te(MoX) + >0 vi(Tr(M; X ) — a;) + Tr((—X)w), and
V. L(z", v, w*) =0

13.3 Strong duality

s ~

Theorem 13.1. If 3z in the relative interior of domain of optimization such that the
conic inequalities are satisfied in a strict sense:

Then we say, Slater’s condition is satisfied. If Slater’s is satisfied, then strong duality
holds for linear conic program. Also, the dual optimization has a solution and KKT is
equivalent to optimality conditions.

Example 13.1. Slater for SDP:

{ Tr(M;, X) = a;,Vi

S
V
(@]
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13.3.1 Fentchel’s duality
,Juin  fi(w) = fa(x)

In this scenario, fi, fo are arbitrary function, can replace it by:

min  fi(y) — fa(2)

y€X1,2€X2,y=2

Dualize the constraint z —y = 0:

gv)= _min_ fi(y) = fo(2) +v"(z —y)

yeX1,2€ X2
Define:
91(v) = sup,ex, {z"v — fi(z)
92(v) = infoex, {2"v — fo(2)}
Dual:

dnax. g2(v) — q1(v)

{Al = {v| g1(v) < +o0}
Ay = {v | gao(v) > —oc0}

Theorem 13.2. If the following assumption is satisfied:
e f1 conver
e f5 concave
e 1 a point in relative interior of both X, and X.

Under the assumptions strong duality holds, so:

inf  fi(z) = f2(x) = max gs(v) —g1(v)

rzeX1NXa zEA1NAg

Dual has a solution.

14 Lecture 14 (Oct 11)

Nominal Problem:

min cx
alz<b;i=1,...m
Robust LP:
min '

a,;fr.tgbi,izl,...,m
a; €U ={a;+w:l|ull2<pi}
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Robust counterpart:

min '

a{xﬁbi,VaiGUi
i=1,....m

min maxc’x
aZT;BSbi a;€U;

Example (SVM): (x;,9;): ; € R" and y; = +1 or —1. Then predicted g(x) = sgn(w’z),
which implies:

T

min Z(l — W Ty

lzi—2ill2<pi i=1

. -
min max E (1 —yw’z;)
W | llwi=Zillo<pi =7

mln 5 max (1 —ywlz;),
”%*11H00<p1

muinz (1 — yaw" &; + pi||lwl1)+]

=1

< mu%nz (1= yw"2;] + ZPiHWHl
i=1 i=1

which is exactly ¢, regularization!
It’s not clear if robust optimization is a practical method! But if we can get:

which is

T
T = Maxa; v = ¢i(x)
(note that the robust counterpart is convex). We can replace U; as its convex hull anyway.
RC is intractable in general:

max || Aul|s
l[ulloo<1

where A = Ay + > x;A; is the decision variable.
Simple tractable case:
max atz <b
aceU
U:={a:l|a—al|loc<p}

Note that we can write a = a + pu, ||u||o < 1, then:

d(x) =a"z+p max u'x=a"x+ plz|;

llulloo <
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15 Lecture 15 (Oct 16)

Robust counterpart:
min max fo(z, u)

Tz uel
max fi(z,u) <0,i=1,...,m
uelU
Assume f;(+,u) is convex Yu € U.
Linear programming;:
Nominal problem:
min ¢’z
a;ngi

Uncertainty set:
U = a; — Gy, [[uglloo <€

Robust counterpart:
T

minc x
X

s.t.

(a; + ui)Ta: < b, Yuy || ui]|eo < €
which is:

max (CAI,Z + 'LLZ')TQ? S bz
lluslloo<e

Note that:

n n

maxZuixi = Y maxux; = €|lx;| = €|z
i=1 i lwil=e

as we can select uf = esgn(x;). Thus the problem becomes:

min '
af atellzll1 <b;

SVM
min Y (y; — sgn(w’ z; +b))?

w,b

But it’s highly non-convex, so instead we have the hinge loss:

min Y (1 —y;(whz; + b)),

w,b “—
Consider the robust SVM:
e T
rg}glaz;(l —yi(w" @i+ b+ ellw]1)+
1
< min — — (T4,
<min—3 (1 - gi(w"Fi+ )y + elw]

U = 2 — Iy, Uil <€
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15.1 Intersect two sets of uncertainty
a’z=b,and A= {a: |allq) < o |la]|@) < €}, want to find maxee s a’z.
min  max (1 —y;(wlz 4+ b))y

r  ye{-1,1} 1
lly—all1 <2k *=

16 Lecture 16 (Oct 18)

nominal: LP: min, Tz :afx <bj,i=1,...,m

uncertainty: a; € U;, 2 =1,...,m

robust counterpart: min,c'x : a;fpx < b;,Ya; € U;, which is equivalent to: min, c'z :
maxg, ey, a; © < b;

simple case: U = {a € R" : |la — a|]| < p}, we know ¢, (r) = maxa’z : |la —al < p =
a'z + pllzl..

17 Lecture 17 (Oct 23)

How to compute a function ¢(z) = maxseqa’z < b as ming, pyec 'z +d'u < b < Ju:
e +du<b.

17.1 Chance Programming

a’zr <ba~N(a?X).
Pla:a"2<b} >1—c¢

which is called the “chance constraints” on x. e: reliability level.
"z + k(€)' 2]l < b

Deterministic interpretation: assume (a —a)"Y " (a —a) < K, a = a+ &SV 2u, ||lully < 1. If
we want a’z < b, Va in this set.

17.1.1 Large deviation theory
Distributional robustness:

inf Pp{a:a’z <b} >1-—
inf r{a:a’x <b} > €

Generalized Chebyshev’s bound:

P{a"z <b} >1—¢Vpst. Ela] =a,Var =%
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17.1.2 Approaches
a’r < b, a random:

[ ]
Pp{a:aTxgb}Zl—e

distribution P known.

inf Pp{a:a’z<bl>1-—
;Jgp r{a:a x <b} > €

distribution P unknown.

18 Lecture 18 (Oct 25)
Assume distribution of a is known. i.e. a ~ N (G,I"): mean a, I': covariance matrix. Then
Pla:a'z2<b} >1—¢ex 1

Var(a'z) = E(z"(a — a)(a — a)'x) = 2" Tx

Assuming distribution of a is partially known,

inf Pp(a:a'z <b 18.1
nfPpla:a’z <b) (18.1)
e.g. a~ (a,I') where Ea = a and E(a — a)(a — @) =T'. Then 18.1 is equivalent to:

o'z 4+ k(e)VaTTe < b

1—¢
- -

where k(e) =
Approach based on moment generating function:

supPp(a:a’z < b)
pEP

Define a “generator” v such that
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x — f(z) convex, and:

(z.0) = {af(x/a) cx € dom(f),a >0

+00 otherwise
Special case: v(s) = exp(s), consider the constraint

supP,(a’z —b>0) <e
peEP

Assumption: a is zero-mean, support of a is in [—1,1]". a;’s are independent of each other.
Set a = 1, calculating:

Elexp(a’z + b)] = Hexp a;zie "’ < cosh(t) < et’/?

Which is induced by considering the function f(s) = e’ — ssinh(¢), since it’s zero mean, we
have:

mwszM@zmm»

= max f(s) = cosh(t) < /2
s€[—1,1]

1
Elexp(a’z +b)] < ;exp (521‘? — b) <e

Assume a = a + pu, w: random, w;’s independent, Eu = 0, u € [—1,1]. Use y(s) =
max(1 + s,0) (this gives you the best bound). In order for you to ensure

P{a:a’z >b} <e

for all distribution on a € p, sufficient condition:

1
min 3+ ~E(a’z —b—3), <0
P €

19 Lecture 19 (Oct 30)

19.1 Moment bound on probabilities

1. X > 0: random variable:
P(X > a) < E(X)/a
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