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Abstract

We consider the task of depth estimation from a single monocular im-
age. We take a supervised learning approach to this problem,in which
we begin by collecting a training set of monocular images (ofunstruc-
tured outdoor environments which include forests, trees, buildings, etc.)
and their corresponding ground-truth depthmaps. Then, we apply su-
pervised learning to predict the depthmap as a function of the image.
Depth estimation is a challenging problem, since local features alone are
insufficient to estimate depth at a point, and one needs to consider the
global context of the image. Our model uses a discriminatively-trained
Markov Random Field (MRF) that incorporates multiscale local- and
global-image features, and models both depths at individual points as
well as the relation between depths at different points. We show that,
even on unstructured scenes, our algorithm is frequently able to recover
fairly accurate depthmaps.

1 Introduction
Recovering 3-D depth from images is a basic problem in computer vision, and has impor-
tant applications in robotics, scene understanding and 3-Dreconstruction. Most work on
3-D reconstruction has focused on binocular vision (stereopsis) [1] and other algorithms
that require multiple images such as structure from motion [2] or depth from defocus [3].
Depth estimation from a singlemonocular image is a difficult task, which requires that
we take into account the global structure of the image. In this paper, we apply supervised
learning to the problem of estimating depth from single monocular images of unconstrained
outdoor environments, including forests, trees, buildings, people, buses, bushes, etc.

In related work, Michels, Saxena & Ng [4] used supervised learning to estimate 1-D dis-
tances to obstacles, for the application of driving a remotecontrol car autonomously. Nagai
et al. [5] performed surface reconstruction from single images for known fixed objects like
hands and faces. Gini & Marchi [6] used single-camera visionto drive an indoor robot, but
relied heavily on known ground colors and textures. Shape from shading [7] offers another
method for monocular depth reconstruction, but is difficultto apply to scenes that do not
have fairly uniform color and texture. In work done independently of ours, Hebert (personal
communication) also considered monocular 3-D reconstruction, but focused on generating
3-D graphical images rather than accurate metric depthmaps. In this paper, we address the
task of learning full depthmaps from single images in unconstrained environments.

Markov Random Fields (MRFs) and their variants are a workhorse of machine learning,



and have been successfully applied to numerous applications in which local features were
insufficient and more contextual information must be used. Examples include text segmen-
tation [8], object classification [9], and image labeling [10]. To model spatial dependencies
in images, Kumar and Hebert’s Discriminative Random Fieldsalgorithm [11] uses logistic
regression to identify man-made structures in natural images. Because MRF learning is
intractable in general, most of these model are trained using pseudo-likelihood.

Our approach is based on capturing depths and relationshipsbetween depths using an MRF.
We began by using a custom designed 3-D scanner to collect training data comprising a
large set of images and their corresponding ground-truth depthmaps. Using this training
dataset, the MRF is discriminatively trained to predict depth; thus, rather than modeling
the joint distribution of image features and depths, we model only the posterior distribu-
tion of the depths given the image features. Our basic model usesL2 (Gaussian) terms
in the MRF interaction potentials, and captures depths and interaction between depths at
multiple spatial scales. We also present a second model thatusesL1 (Laplacian) interac-
tion potentials. Learning in this model is approximate, butexact MAP posterior inference
is tractable (similar to Gaussian MRFs) via linear programming, and it gives significantly
better depthmaps than the simple Gaussian model.

2 Monocular Cues
Humans have an amazing ability to judge depth from a single monocular image [12]. This is
done using monocular cues such as texture variations, texture gradients, occlusion, known
object sizes, haze, defocus, etc. [4, 13, 14]. For example, many objects’ texture appear
different depending on the distance to it. Texture gradients, which capture the distribution
of the direction of edges, also help to indicate depth.1 Haze is another cue resulting from
atmospheric light scattering.

Most of these monocular cues are “contextual information,”in the sense that they are global
properties of an image and cannot be inferred from small image patches. For example, oc-
clusion cannot be determined if we look at just a small portion of an occluded object.
Although local information such as the texture and colors ofa patch can give some in-
formation about its depth, this is usually insufficient to accurately determine its absolute
depth. For another example, if we take a patch of a clear blue sky, it is difficult to tell if this
patch is infinitely far away (sky), or if it is part of a blue object. Due to ambiguities like
these, one needs to look at theoverall organization of the image to determine depths.

3 Feature Vector
In our approach, we divide the image into small patches, and estimate a single depth value
for each patch. We use two types of features:absolute depth features—used to estimate the
absolute depth at a particular patch—andrelative features, which we use to estimate relative
depths (magnitude of the difference in depth between two patches). We chose features that
capture three types of local cues: texture variations, texture gradients, and haze.

Texture information is mostly contained within the image intensity channel,2 so we apply
Laws’ masks [15, 4] to this channel to compute the texture energy (Fig. 1). Haze is reflected
in the low frequency information in the color channels, and we capture this by applying a
local averaging filter (the first Laws mask) to the color channels. Lastly, to compute an

1For example, a tiled floor with parallel lines will appear to have tilted lines in an image. The
distant patches will have larger variations in the line orientations, and nearby patches having smaller
variations in line orientations. For textured environments which may not have well-defined edges,
texture gradient is a generalization of the edge directions. For example, agrass field when viewed at
different distances has a different texture gradient distributions.

2We represent each image in YCbCr color space, where Y is the intensity channel, and Cb and Cr
are the color channels.



Figure 1: The convolutional filters used for texture energies and gradients. The first 9 are
3x3 Laws’ masks. The last 6 are the oriented edge detectors at300. The nine Law’s masks
do local averaging, edge detection and spot detection.

Figure 2: The absolute depth feature vector for a patch, which includes immediate neigh-
bors, and distant neighbors in larger scales. The relative depth features for each patch
compute full histograms of the filter outputs.

estimate of texture gradient that is robust to noise, we convolve the intensity channel with
six oriented edge filters (shown in Fig. 1).

3.1 Features for absolute depth

Given some patchi in the imageI(x, y), we compute summary statistics for it as follows.
We use the output of each of the 17 (9 Laws’ masks, 2 color channels and 6 texture gra-
dients) filtersFn(x, y), n = 1, ..., 17 as: Ei(n) =

∑

(x,y)∈patch(i) |I(x, y) ∗ Fn(x, y)|k,
wherek = {1, 2} give the sum absolute energy and sum squared energy respectively. This
gives us an initial feature vector of dimension 34.

To estimate the absolute depth at a patch, local image features centered on the patch are
insufficient, and one has to use more global properties of theimage. We attempt to capture
this information by using image features extracted at multiple scales (image resolutions).
(See Fig. 2). Objects at different depths exhibit very different behaviors across different
resolutions, and using multi-scale features allows us to capture these variations [16].3 In
addition to capturing more global information, computing features at various scales also
accounts for relative sizes of objects. A closer object appears larger in the image, and
hence will be captured in the larger scale features. The sameobject when far away will
be small and hence be captured in the small scale features. Such features could be strong
indicators of depth values.

To capture additional global features (e.g. occlusion relationships), the features used to
predict the depth of a particular patch are computed from that patch as well as the four

3For example, blue sky may appear similar at different scales; but textured grass would not.



neighboring patches. This is repeated at each of the three scales, so that the feature vector
at a patch includes features of its immediate neighbors, andits far neighbors (at larger
scale), and its very-far neighbors (at the largest scale), as shown in Fig. 2. Lastly, many
structures (such as trees and buildings) found in outdoor scenes show vertical structure, in
the sense that they are vertically connected to themselves (things cannot hang in empty air).
Thus, we also add to features of a patch the summary features of the column it lies in.

After including summary features from each of a patch and its4 neighbors at 3 scales, and
summary features for 4 column patches, our vector of features for estimating depth at a
particular patch is19 ∗ 34 = 646 dimensional.

3.2 Features for relative depth

We use a different feature vector to learn the dependencies between two neighboring
patches. Instead of computing summary statistics, we use a full histogram (with 10 bins)
for each filter output|I(x, y)∗Fn(x, y)|, giving us a total of 170 featuresyi for each patchi.
Our goal is to estimate how different depths at two differentlocations are related. Doing so
requires less global information than predicting absolutedepth,4 but more detail from the
individual patches. Hence we use as our features the difference of the histograms between
two neighboring patchesyij = yi − yj .

4 The Probabilistic Model
The depth of a particular patch depends on the features of thepatch, but is also related to
the depths of other parts of the image. For example, the depths of two adjacent patches
lying in the same building will be highly correlated. Therefore, we use an MRF to model
the relation between the depth of a patch and its immediate neighbors. In addition to the
interactions with the immediately neighboring patches, there are sometimes also strong
interactions between depths of patches which are not immediate neighbors. For example,
consider the depths of patches that lie on a large building. All of these patches will be
at similar depths, even if there are small discontinuities (such as a window on the wall of
a building). However, when viewed at the smallest scale, some adjacent patches are not
easily recognized to be parts of the same object. Thus, we will model interactions between
depths at multiple scales.

Our first model will be a jointly Gaussian MRF. To capture the multi-scale depth relations,
let us definedi(s) as follows. For each of three scaless = 1, 2, 3, definedi(s + 1) =
(1/5)

∑

j∈{i,Ns(i)} dj(s). Here,Ns(i) are the 4 neighbors of patchi at scales. I.e., the
depth at a higher scale is constrained to be the average of thedepths at lower scales. Our
model over depths is as follows:

P (d|X; θ, σ) =
1

Z
exp



−
M
∑

i=1

(di(1) − xT
i θr)

2

2σ2
1r

−
3

∑

s=1

M
∑

i=1

∑

j∈Ns(i)

(di(s) − dj(s))
2

2σ2
2rs





(1)
Here,M is the total number of patches in the image (at the lowest scale);xi is the absolute
depth feature vector for patchi; andθ andσ are parameters of the model. In detail, we
use different parameters (θr, σ1r, σ2r) for each row in the image, because the images we
consider are taken from a horizontally mounted camera, and thus different rows of the
image have different statistical properties.5 Z is the normalization constant for the model.

4For example, given two adjacent patches of a distinctive, unique color and texture, we may be
able to safely conclude that they are part of the same object, and thus thattheir depths are close, even
without more global features.

5For example, a blue patch might represent sky if it is in upper part of image, and might be more
likely to be water if in the lower part of the image.



We estimate theθr parameters in Eq. 1 by maximizing the conditional likelihood
p(d|X; θr) of the training data. In a multivariate Gaussian, the maximum likelihood es-
timate of parameterθr is given by the least squares solution.

The first term in the exponent above models depth as a functionof multiscale features of a
single patchi. The second term in the exponent places a soft “constraint” on the depths to
be smooth. If the variance termσ2

2rs is a fixed constant, the effect of this term is that it tends
to smooth depth estimates across nearby patches. However, in practice the dependencies
between patches are not the same everywhere, and our expected value for(di − dj)

2 may
depend on the features of the local patches.

Therefore, to improve accuracy we model the “variance” termσ2
2rs in the denominator of

the second term as a linear function of the patchesi andj’s relative depth featuresyijs

(discussed in Section 3.2) asσ2
2rs = uT

rs|yijs|. This helps determine which neighboring
patches are likely to have similar depths. E.g., the “smoothing” effect is much stronger if
neighboring patches are similar. This idea is applied at multiple scales, so that we learn
differentσ2

2rs for the different scaless (and rowsr of the image). The parametersurs are
chosen to fitσ2

2rs to the expected value of(di(s) − dj(s))
2 with constraint ofurs ≥ 0, to

keep estimatedσ2
2rs positive.

Similar to our discussion onσ2
2rs, we also learn the variance parameterσ2

1r = vT
r xi as a

linear function of the features. The paramtersvr are chosen to fitσ2
1r to the expected value

of (di(r)− θT
r xi)

2 with constraint ofvr ≥ 0.6 Thisσ2
1r term gives a measure of uncertain-

tity in the first term, dependent on the features. This is motivated by the observation that
in some cases, depth cannot be reliably estimated from the local features. In this case, one
has to rely more on neighboring patches’ depths to infer a patch’s depth (as modelled by
the second term in the exponent).

After learning the parameters, given a new test-set image wecan find the MAP estimate of
the depths by maximizing Eq. 1 in terms ofd. Since Eq. 1 is Gaussian,log P (d|X; θ, σ) is
quadratic ind, and thus its maximum is easily found easily in a closed form (at most 2-3
seconds per image including feature computation time).

4.1 Laplacian models

We now present a second model that uses Laplacians instead ofGaussians to model the
posterior distribution of the depth. Our motivation for doing so is three-fold. First, the
histogram of relative depths (di − dj) has a Laplacian distribution, which strongly sug-
gests that it is better modeled as one. Second, the Laplaciandistribution has heavier tails,
and is therefore more robust to outliers in the image features and error in the training-set
depthmaps (collected with a laser scanner; see Section 5.1). Third, the Gaussian model was
generally unable to give depthmaps with sharp edges; in contrast, Laplacians tend to model
sharp transitions/outliers better. Our model is as follows:

P (d|X; θ, λ) =
1

Z
exp



−
M
∑

i=1

|di(1) − xT
i θr|

λ1r

−
3

∑

s=1

M
∑

i=1

∑

j∈Ns(i)

|di(s) − dj(s)|

λ2rs



 (2)

Here, the terms are the same as for Eq. 1, except for the variance terms. Here,λ1r and
λ2rs are theLaplacian spread parameters. Maximum-likehood parameter estimation for
the Laplacian model is not tractable (since the partition function depends onθr). But by
analogy to the Gaussian case, we approximate this by solvingthe linear system of equations
Xrθr ≈ dr to minimizeL1 (instead ofL2) error. Following the Gaussian model, we also
learn the Laplacian spread parameters in the denominator inthe same way, except that the
instead of estimating the expected value of(di − dj)

2, we estimate the expected value of

6The absolute depth featuresxir are all positive, therefore, the estimatedσ2

1r is always positive.



|di − dj |. Even though parameter estimation in the Laplacian model isintractable, given a
new test-set image, MAP inference for the depthsd is tractable. Specifically,P (d|X; θ, λ)
is easily maximized in terms ofd using linear programming.

Remark. We can also extend these models to combine Gaussian and Laplacian terms in
the exponent, for example by using aL2 norm term for absolute depth, and aL1 norm
term for the interaction terms. MAP inference remains tractable in this setting, and can be
solved using convex optimization as an QP (quadratic program).

5 Experiments

5.1 Data collection

We used a custom-built 3-D scanner for collecting images andtheir corresponding
depthmaps. The scanner uses a SICK 1-D laser range finder mounted on a motor to get
2D scans. We collected a total of 425 image+depthmap pairs, with an image resolution
of 1704x2272 and a depthmap resolution of 86x107. In the experimental results reported
here, 75% of the images/depthmaps were used for training, and the remaining 25% for
hold-out testing. Due to noise in the motor system, the depthmaps were not perfect aligned
with the images, and had an alignment error of about 2 depth patches. Also, the depthmaps
had a maximum range of81m (the maximum range of the laser scanner), and had minor
additional errors due to reflections and missing laser scans. Prior to running our learning
algorithms, we transformed all the depths to a log scale so asto emphasize multiplica-
tive rather than additive errors in training. In our earlierexperiments (not reported here),
learning using linear depth values directly gave poor results.

5.2 Results

We tested our model on real-world test-set images of forests(containing trees, bushes, etc.),
campus areas (buildings, people, and trees), and indoor places (such as corridors). The al-
gorithm was trained on a training set comprising of images fromall of these environments.
Table 1 shows the test-set results when using different feature combinations. We see that
using multiscale and column features significantly improves the algorithm’s performance.

Including the interaction terms further improved its performance, and the Laplacian model
performs better than the Gaussian one. Empirically, we alsoobserved that the Laplacian
probability model does indeed give depthmaps with significantly sharper boundaries (as
in our discussion in Section 4.1) (See Fig. 3) Table 1 shows the errors obtained by our
algorithm on a variety of forest, campus, and indoor images.The results on the test set
show that the algorithm estimates the depthmaps with a average error of0.132 orders of
magnitude. It works well even in the varied set of environments as shown in Fig. 3 (last
column). It also appears to be very robust towards variations caused by shadows.

Informally, our algorithm appears to predicts the relativedepths of objects very well (i.e.,
their relative distances to the camera), although it makes some errors in predicting absolute
depth of a structure. Some of the reasons of failure can be attributed to errors or limitations
of the training set. For example, the training set images anddepthmaps are slightly mis-
aligned, and therefore the edges in the learned depthmap arenot very sharp. Further, the
maximum value of the depths in the training set is 81m; therefore, far-away objects are all
mapped to the one distance of81m.

Our algorithm appears to incur the largest errors on images which contain very irregular
trees, in which most of the 3-D structure apparent in the image is dominated by the shapes
of the leaves and branches. However, argubly even human-level performance would be
poor in these images.



Figure 3: Results for a varied set of environments, showing original image (column 1),
ground truth depthmap (column 2), predicted depthmap by Gaussian model (column 3),
predicted depthmap by Laplacian model (column 4). (Best viewed in color)



Table 1: Effect of multiscale and column features on accuracy. The average errors (rms
errors gave similar results) are in log scale (base 10).H1 and H2 represent summary
statistics fork = 1, 2. S1, S2 andS3 represent the 3 scales.C represents the column
features. Baseline is trained with only the bias term (no features).

FEATURE ALL FOREST CAMPUS INDOOR

BASELINE .295 .283 .343 .228
GAUSSIAN (S1,S2,S3, H1,H2,no neighbors) .162 .159 .166 .165
GAUSSIAN (S1, H1,H2) .171 .164 .189 .173
GAUSSIAN (S1,S2, H1,H2) .155 .151 .164 .157
GAUSSIAN (S1, S2,S3, H1,H2) .144 .144 .143 .144
GAUSSIAN (S1,S2,S3, C , H1) .139 .140 .141 .122
GAUSSIAN (S1,S2,S3, C , H1,H2) .133 .135 .132 .124
LAPLACIAN .132 .133 .142 .084

6 Conclusions
We have presented a discriminatively trained MRF model for depth estimation from single
monocular images. Our model uses image features at multiplescales to capture monocular
cues, and also incorporates interaction terms modeling relative depths at different scales. In
addition to a Gaussian MRF model, we also presented a Laplacian MRF model on which
MAP inference can be solved using linear programming. We demonstrated that our algo-
rithm gives good 3-D depth estimation performance on a variety of images.
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