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Abstract

We consider the task of depth estimation from a single moaodm-
age. We take a supervised learning approach to this prolitewhich
we begin by collecting a training set of monocular imagesufustruc-
tured outdoor environments which include forests, treasdings, etc.)
and their corresponding ground-truth depthmaps. Then, ppéyasu-
pervised learning to predict the depthmap as a function efirtiage.
Depth estimation is a challenging problem, since localfez alone are
insufficient to estimate depth at a point, and one needs teidenthe
global context of the image. Our model uses a discriminititrained
Markov Random Field (MRF) that incorporates multiscaleale@nd
global-image features, and models both depths at indiVidoits as
well as the relation between depths at different points. Yawsthat,
even on unstructured scenes, our algorithm is frequenttytalrecover
fairly accurate depthmaps.

1 Introduction

Recovering 3-D depth from images is a basic problem in coerpuision, and has impor-
tant applications in robotics, scene understanding andr8eDnstruction. Most work on
3-D reconstruction has focused on binocular vision (s{esis) [1] and other algorithms
that require multiple images such as structure from mot&rof depth from defocus [3].
Depth estimation from a singleonocular image is a difficult task, which requires that
we take into account the global structure of the image. Is plaiper, we apply supervised
learning to the problem of estimating depth from single ntartar images of unconstrained
outdoor environments, including forests, trees, buildjmeople, buses, bushes, etc.

In related work, Michels, Saxena & Ng [4] used supervisednieg to estimate 1-D dis-
tances to obstacles, for the application of driving a reraotgrol car autonomously. Nagai
et al. [5] performed surface reconstruction from singlegesfor known fixed objects like
hands and faces. Gini & Marchi [6] used single-camera vigiadrive an indoor robot, but
relied heavily on known ground colors and textures. Shapm 8hading [7] offers another
method for monocular depth reconstruction, but is diffitalapply to scenes that do not
have fairly uniform color and texture. In work done indepenmitly of ours, Hebert (personal
communication) also considered monocular 3-D reconstmicbut focused on generating
3-D graphical images rather than accurate metric depthmiapiis paper, we address the
task of learning full depthmaps from single images in untansed environments.

Markov Random Fields (MRFs) and their variants are a workdaf machine learning,



and have been successfully applied to numerous applicaitiorwhich local features were
insufficient and more contextual information must be use@niples include text segmen-
tation [8], object classification [9], and image labelin@]1To model spatial dependencies
in images, Kumar and Hebert’s Discriminative Random Fielgerithm [11] uses logistic
regression to identify man-made structures in natural BsagBecause MRF learning is
intractable in general, most of these model are trainedyysseudo-likelihood.

Our approach is based on capturing depths and relationséipgen depths using an MRF.
We began by using a custom designed 3-D scanner to collécintyjadata comprising a
large set of images and their corresponding ground-trughhaleaps. Using this training
dataset, the MRF is discriminatively trained to predictttiephus, rather than modeling
the joint distribution of image features and depths, we rhode the posterior distribu-
tion of the depths given the image features. Our basic moskt L, (Gaussian) terms
in the MRF interaction potentials, and captures depths atetdction between depths at
multiple spatial scales. We also present a second model#est., (Laplacian) interac-
tion potentials. Learning in this model is approximate, éxsct MAP posterior inference
is tractable (similar to Gaussian MRFs) via linear prograngnand it gives significantly
better depthmaps than the simple Gaussian model.

2 Monocular Cues

Humans have an amazing ability to judge depth from a singleanalar image [12]. This is

done using monocular cues such as texture variationsréegtadients, occlusion, known
object sizes, haze, defocus, etc. [4, 13, 14]. For exampdgynobjects’ texture appear
different depending on the distance to it. Texture gragienhich capture the distribution
of the direction of edges, also help to indicate deptdaze is another cue resulting from
atmospheric light scattering.

Most of these monocular cues are “contextual informatiorthe sense that they are global
properties of an image and cannot be inferred from small @pgches. For example, oc-
clusion cannot be determined if we look at just a small partid an occluded object.
Although local information such as the texture and colors gfatch can give some in-
formation about its depth, this is usually insufficient tc@a@tely determine its absolute
depth. For another example, if we take a patch of a clear layetss difficult to tell if this
patch is infinitely far away (sky), or if it is part of a blue @gf. Due to ambiguities like
these, one needs to look at thxeerall organization of the image to determine depths.

3 Feature Vector

In our approach, we divide the image into small patches, atichate a single depth value
for each patch. We use two types of featurassol ute depth features—used to estimate the
absolute depth at a particular patch—addtive features, which we use to estimate relative
depths (magnitude of the difference in depth between twohes)). We chose features that
capture three types of local cues: texture variationsutexjradients, and haze.

Texture information is mostly contained within the imageeirsity channet,so we apply

Laws’ masks [15, 4] to this channel to compute the textureg@n@ig. 1). Haze is reflected
in the low frequency information in the color channels, arelaapture this by applying a
local averaging filter (the first Laws mask) to the color chedan Lastly, to compute an

'For example, a tiled floor with parallel lines will appear to have tilted lines in aménahe
distant patches will have larger variations in the line orientations, and ypatbhes having smaller
variations in line orientations. For textured environments which may na teall-defined edges,
texture gradient is a generalization of the edge directions. For examglass field when viewed at
different distances has a different texture gradient distributions.

2\We represent each image in YCbCr color space, where Y is the intensityieh and Cb and Cr
are the color channels.



Figure 1: The convolutional filters used for texture enesgiad gradients. The first 9 are
3x3 Laws’ masks. The last 6 are the oriented edge detect8f8 aThe nine Law’s masks
do local averaging, edge detection and spot detection.
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Figure 2: The absolute depth feature vector for a patch, winicludes immediate neigh-
bors, and distant neighbors in larger scales. The relatmhdfeatures for each patch
compute full histograms of the filter outputs.

estimate of texture gradient that is robust to noise, we @epvthe intensity channel with
six oriented edge filters (shown in Fig. 1).

3.1 Featuresfor absolute depth

Given some patchin the imagel(z, y), we compute summary statistics for it as follows.
We use the output of each of the 17 (9 Laws’ masks, 2 color adlarand 6 texture gra-
dients) filtersF,, (z,y), n = 1,...,17 as: E;(n) = 32, s eparen(i) (@ 9) * Fu(z, )",
wherek = {1, 2} give the sum absolute energy and sum squared energy respectihis
gives us an initial feature vector of dimension 34.

To estimate the absolute depth at a patch, local image &satentered on the patch are
insufficient, and one has to use more global properties dfthge. We attempt to capture
this information by using image features extracted at ipldtscales (image resolutions).
(See Fig. 2). Objects at different depths exhibit very défe behaviors across different
resolutions, and using multi-scale features allows us pauze these variations [18].In
addition to capturing more global information, computirgtures at various scales also
accounts for relative sizes of objects. A closer object appéarger in the image, and
hence will be captured in the larger scale features. The sdijeet when far away will
be small and hence be captured in the small scale featureb. f€atures could be strong
indicators of depth values.

To capture additional global features (e.g. occlusiontiaiahips), the features used to
predict the depth of a particular patch are computed fror gagch as well as the four

3For example, blue sky may appear similar at different scales; butrezkgrass would not.



neighboring patches. This is repeated at each of the thedessso that the feature vector
at a patch includes features of its immediate neighbors,itani@r neighbors (at larger

scale), and its very-far neighbors (at the largest scateyhawn in Fig. 2. Lastly, many

structures (such as trees and buildings) found in outdaarescshow vertical structure, in
the sense that they are vertically connected to themsehieg$ cannot hang in empty air).
Thus, we also add to features of a patch the summary featfites column it lies in.

After including summary features from each of a patch and iteighbors at 3 scales, and
summary features for 4 column patches, our vector of featimeestimating depth at a
particular patch i49 * 34 = 646 dimensional.

3.2 Featuresfor relative depth

We use a different feature vector to learn the dependenciselen two neighboring
patches. Instead of computing summary statistics, we ugé histogram (with 10 bins)
for each filter outpufl (x, y)* F,,(z, y)|, giving us a total of 170 features for each patcl.
Our goal is to estimate how different depths at two diffefenations are related. Doing so
requires less global information than predicting absotigpth? but more detail from the
individual patches. Hence we use as our features the differef the histograms between
two neighboring patcheg; = v; — v;.

4 TheProbabilistic M odel

The depth of a particular patch depends on the features gfateh, but is also related to
the depths of other parts of the image. For example, the degittwo adjacent patches
lying in the same building will be highly correlated. Theyed, we use an MRF to model
the relation between the depth of a patch and its immediaghbers. In addition to the
interactions with the immediately neighboring patchegréhare sometimes also strong
interactions between depths of patches which are not imatediighbors. For example,
consider the depths of patches that lie on a large buildinty.ofAhese patches will be
at similar depths, even if there are small discontinuitgeck as a window on the wall of
a building). However, when viewed at the smallest scale,esadjacent patches are not
easily recognized to be parts of the same object. Thus, wenwilel interactions between
depths at multiple scales.

Our first model will be a jointly Gaussian MRF. To capture theltirscale depth relations,
let us defined;(s) as follows. For each of three scales= 1,2, 3, defined;(s + 1) =
(1/5) X2 jeqin, i)y 4i(s). Here,N,(i) are the 4 neighbors of patahat scales. I.e., the
depth at a higher scale is constrained to be the average defitbs at lower scales. Our
model over depths is as follows:

1 Mo(di(1) = 270,)2 S

i=1 1r s=11i=1 jeN,(i)

2
20’27’5

(1)
Here, M is the total number of patches in the image (at the lowese¥ealis the absolute
depth feature vector for pateh andfd ando are parameters of the model. In detail, we
use different parameter8,( o1,., o2,) for each row in the image, because the images we
consider are taken from a horizontally mounted camera, hud different rows of the
image have different statistical propertieg. is the normalization constant for the model.

“For example, given two adjacent patches of a distinctive, unique cotbtexture, we may be
able to safely conclude that they are part of the same object, and thtiseinatepths are close, even
without more global features.

SFor example, a blue patch might represent sky if it is in upper part ajénand might be more
likely to be water if in the lower part of the image.



We estimate thef, parameters in Egq. 1 by maximizing the conditional likelidoo
p(d|X;6,) of the training data. In a multivariate Gaussian, the maxmniikelihood es-
timate of parametet,. is given by the least squares solution.

The first term in the exponent above models depth as a funefiorultiscale features of a
single patch. The second term in the exponent places a soft “constramthe depths to
be smooth. If the variance ters3, , is a fixed constant, the effect of this term is that it tends
to smooth depth estimates across nearby patches. Howevaadtice the dependencies
between patches are not the same everywhere, and our expatte for(d; — d;)? may
depend on the features of the local patches.

Therefore, to improve accuracy we model the “variance” teém in the denominator of
the second term as a linear function of the patchasd j's relative depth featureg;;
(discussed in Section 3.2) a$,, = ul,|y;;s|. This helps determine which neighboring
patches are likely to have similar depths. E.qg., the “smiagtheffect is much stronger if
neighboring patches are similar. This idea is applied atiplalscales, so that we learn
differento3, . for the different scales (and rowsr of the image). The parameteis, are
chosen to fi3, , to the expected value ¢fl;(s) — d;(s))? with constraint ofu,; > 0, to
keep estimated?, , positive.

Similar to our discussion onZ, , we also learn the variance parametéy = v’ z; as a
linear function of the features. The paramtersre chosen to fit?, to the expected value
of (d;(r) — 6T x;)? with constraint ofv,, > 0.8 This o2, term gives a measure of uncertain-
tity in the first term, dependent on the features. This is vat#id by the observation that
in some cases, depth cannot be reliably estimated from ta¢ figatures. In this case, one
has to rely more on neighboring patches’ depths to infer ehfsatlepth (as modelled by
the second term in the exponent).

After learning the parameters, given a new test-set imageandind the MAP estimate of
the depths by maximizing Eq. 1 in terms@fSince Eq. 1 is Gaussialug P(d|X; 6, 0) is
guadratic ind, and thus its maximum is easily found easily in a closed faatm{ost 2-3
seconds per image including feature computation time).

4.1 Laplacian models

We now present a second model that uses Laplacians insteadusisians to model the

posterior distribution of the depth. Our motivation for dgiso is three-fold. First, the

histogram of relative depthsi{ — d;) has a Laplacian distribution, which strongly sug-
gests that it is better modeled as one. Second, the Lapldsaibution has heavier tails,

and is therefore more robust to outliers in the image feataral error in the training-set

depthmaps (collected with a laser scanner; see Section™hityl, the Gaussian model was
generally unable to give depthmaps with sharp edges; inastt.aplacians tend to model

sharp transitions/outliers better. Our model is as foltows

P(d|X;0,)) = —exp Z'd ”"9' ZZ yo A2 dits) ~ 4,51} )

s=11i=1 jEN, (i)

Here, the terms are the same as for Eqg. 1, except for the eart@nms. Herej,,. and
Aoy are thelLaplacian spread parameters. Maximum-likehood parameter estimation for
the Laplacian model is not tractable (since the partitiamcfion depends o8,.). But by
analogy to the Gaussian case, we approximate this by sdivérgear system of equations
X,.0, ~ d,. to minimize L, (instead ofL,) error. Following the Gaussian model, we also
learn the Laplacian spread parameters in the denominatbeisame way, except that the
instead of estimating the expected valug&f — d;)?, we estimate the expected value of

®The absolute depth features. are all positive, therefore, the estimateg]. is always positive.



|d; — d;|. Even though parameter estimation in the Laplacian modetriactable, given a
new test-set image, MAP inference for the depilistractable. Specifically?(d|X; 6, \)
is easily maximized in terms a@f using linear programming.

Remark. We can also extend these models to combine Gaussian andclaaptarms in
the exponent, for example by usingla norm term for absolute depth, andla norm
term for the interaction terms. MAP inference remains #hlg in this setting, and can be
solved using convex optimization as an QP (quadratic progra

5 Experiments

5.1 Datacollection

We used a custom-built 3-D scanner for collecting images t&ir corresponding
depthmaps. The scanner uses a SICK 1-D laser range findert@doomn a motor to get
2D scans. We collected a total of 425 image+depthmap paitk,am image resolution
of 1704x2272 and a depthmap resolution of 86x107. In theraxpatal results reported
here, 75% of the images/depthmaps were used for trainird)trremaining 25% for
hold-out testing. Due to noise in the motor system, the depfis were not perfect aligned
with the images, and had an alignment error of about 2 deptthea. Also, the depthmaps
had a maximum range &flm (the maximum range of the laser scanner), and had minor
additional errors due to reflections and missing laser sc@rier to running our learning
algorithms, we transformed all the depths to a log scale so anphasize multiplica-
tive rather than additive errors in training. In our eargperiments (not reported here),
learning using linear depth values directly gave poor tesul

5.2 Resaults

We tested our model on real-world test-set images of fofestgaining trees, bushes, etc.),
campus areas (buildings, people, and trees), and indooceplauch as corridors). The al-
gorithm was trained on a training set comprising of imagesfall of these environments.
Table 1 shows the test-set results when using differentifeatombinations. We see that
using multiscale and column features significantly impsothee algorithm’s performance.

Including the interaction terms further improved its penfiance, and the Laplacian model
performs better than the Gaussian one. Empirically, we alts®rved that the Laplacian
probability model does indeed give depthmaps with signitigasharper boundaries (as
in our discussion in Section 4.1) (See Fig. 3) Table 1 showsetiors obtained by our
algorithm on a variety of forest, campus, and indoor imagHEse results on the test set
show that the algorithm estimates the depthmaps with a geexeror 0f0.132 orders of
magnitude. It works well even in the varied set of environtaeas shown in Fig. 3 (last
column). It also appears to be very robust towards variatt@used by shadows.

Informally, our algorithm appears to predicts the relatiepths of objects very well (i.e.,
their relative distances to the camera), although it makeeeserrors in predicting absolute
depth of a structure. Some of the reasons of failure can bbuatd to errors or limitations

of the training set. For example, the training set imagesdamhmaps are slightly mis-
aligned, and therefore the edges in the learned depthmapotkery sharp. Further, the
maximum value of the depths in the training set is 81m; tlegeeffar-away objects are all
mapped to the one distance&ifm.

Our algorithm appears to incur the largest errors on imadgshacontain very irregular
trees, in which most of the 3-D structure apparent in the emaglominated by the shapes
of the leaves and branches. However, argubly even humahevformance would be
poor in these images.



Figure 3: Results for a varied set of environments, showingjral image (column 1),
ground truth depthmap (column 2), predicted depthmap bys&an model (column 3),
predicted depthmap by Laplacian model (column BEs{ viewed in color)



Table 1: Effect of multiscale and column features on acourdte average errors (rms
errors gave similar results) are in log scale (base 1H). and H, represent summary
statistics fork = 1,2. Sy, Sy and.S; represent the 3 scale€. represents the column
features. Baseline is trained with only the bias term (ntuies).

FEATURE ALL FOREST CAMPUS [NDOOR
BASELINE .295 .283 .343 .228
GAUSSIAN (51,52,53, H1,H2,n0 neighbors) .162 .159 .166 .165
GAUSSIAN (S1, H1,H>) 171 .164 .189 173
GAUSSIAN (51,52, H1,H>) .155 151 .164 157
GAUSSIAN (S1, S2,S3, H1,H2) 144 .144 .143 144
GAUSSIAN (51,52,55, C, Hy) .139 .140 141 122
GAUSSIAN (51,542,553, C, H1,H>3) .133 .135 .132 124
LAPLACIAN .132 .133 .142 .084

6 Conclusions

We have presented a discriminatively trained MRF model &pth estimation from single
monocular images. Our model uses image features at mustiples to capture monocular
cues, and also incorporates interaction terms modeliagiveldepths at different scales. In
addition to a Gaussian MRF model, we also presented a Lapl&dRF model on which
MAP inference can be solved using linear programming. Weatestnated that our algo-
rithm gives good 3-D depth estimation performance on a ssaagkimages.
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