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The spatial receptive fields of simple cells in mammalian striate cortex
have been reasonably well described physiologically [1, 2, 3, 4] and can be
characterized as being localized, oriented, and bandpass (selective to structure
at different spatial scales), comparable to the basis functions of wavelet
transforms [5, 6]. One approach to understanding such response properties
of visual neurons has been to consider their relationship to the statistical
structure of natural images in terms of efficient coding [7, 8, 9, 10, 11, 12].
Along these lines, a number of studies have undertaken to train unsu-
pervised learning algorithms on natural images in the hope of developing
receptive fields with similar properties [13, 14, 15, 16, 17, 18], but none has
succeeded in producing a full set that spans the image space and contains
all three of the above properties. Here, we investigate the proposal [8, 12]
that a coding strategy which maximizes sparseness is sufficient to account
for these properties. We show that a learning algorithm that attempts to
find sparse linear codes for natural scenes will develop a complete family of
localized, oriented, bandpass receptive fields, similar to those found in the
striate cortex. The resulting sparse image code provides a more efficient
representation for later stages of processing because it possesses a higher
degree of statistical independence among its outputs.

We start with the basic assumption that an image, /(x,y), can be represented in
terms of a linear superposition of (not necessarily orthogonal) basis functions, ¢;(x,y):

I(z,y) =3 aidi(z,y). (1)
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The image code is determined by the choice of basis functions, ¢;. The coefficients, a;,
are dynamic variables that change from one image to the next. The goal of efficient
coding is to find a set of ¢; that forms a complete code (i.e., spans the image space)
and results in the coefficient values being as statistically independent as possible over
an ensemble of natural images. The reasons for desiring statistical independence have
been elaborated elsewhere [12, 19, 9], but can be briefly summarized as providing a
strategy for extracting structure in sensory signals.

One line of approach to this problem is based on principal components analysis [20,
14, 15], in which the goal is to find a set of mutually orthogonal basis functions that
capture the directions of maximum variance in the data and for which the coefficients
are pairwise decorrelated, (a;a;) = (a;) {(a;). The receptive fields that result from this
process are not localized, however, and the vast majority do not at all resemble any
known cortical receptive fields (Fig. 1). Principal components analysis is appropriate
for capturing the structure of data that are well described by a Gaussian cloud, or
in which the linear pairwise correlations are the most important form of statistical
dependence in the data. However, natural scenes contain many higher-order forms of
statistical structure, and there is good reason to believe they form an extremely non-
Gaussian distribution that is not at all well captured by orthogonal components [12].
Lines and edges, especially curved and fractal-like edges, cannot be characterized
by linear pairwise statistics [6, 21|, and so a method is needed for evaluating the
representation that can take into account higher-order statistical dependencies in the



Figure 1: Principal components calculated on 8x8 image patches extracted from
natural scenes using Sanger’s rule [14]. The full set of 64 components are shown,
ordered by their variance (by columns, then by rows). The oriented structure of the
first few principal components does not arise as a result of the oriented structures in
natural images, but rather because these functions are composed of a small number
of low frequency components (the lowest spatial frequencies account for the greatest
part of the variance in natural scenes [8]). Reconstructions based solely on the first
row of functions will merely yield blurry images. Identical looking components are
obtained for images with the same amplitude spectrum as natural images but with
randomized phases (i.e., 1/f noise).



data.

The existence of any statistical dependencies among a set of variables may be
discerned whenever the joint entropy is less than the sum of individual entropies,
H(ay,az,...,a,) < ¥; H(a;), otherwise the two quantities will equal. Assuming we
have some way of ensuring that information in the image (joint entropy) is preserved,
then, a possible strategy for reducing statistical dependencies is to lower the individual
entropies, H(a;), as much as possible. In Barlow’s terms [19], we seek a minimum
entropy code. We conjecture that natural images have “sparse structure”—that is,
any given image can be represented in terms of a small number of descriptors out of a
large set [8, 12]-—and so we shall seek a specific form of low-entropy code in which the
probability distribution of each coefficient’s activity is uni-modal and peaked around
zZero.

The search for a sparse code may be formulated as an optimization problem by
constructing the following cost functional to be minimized:

E = —[preserve information] — A[sparseness of a;] , (2)

where A is a positive constant that determines the importance of the second term
relative to the first. The first term measures how well the code describes the image,
and we choose this to be the mean square of the error between the actual image and
the reconstructed image:
2
[preserve information] = — Y [I(z,y) — > a;i di(z,y)| - (3)
)y i

The second term assesses the sparseness of the code for a given image by assigning a
cost depending on how activity is distributed among the coefficients: those represen-
tations in which activity is spread over many coefficients should incur a higher cost
than those in which only a few coefficients carry the load. The cost function we have
constructed to meet this criterion takes the sum of each coefficient’s activity passed
through a non-linear function S(z):

[sparseness of a;] = — Z S <%) ) (4)

where ¢ is a scaling constant. The choices for S(z) that we have experimented with
include —e=*", log(1+2?), and |z|, and all yield qualitatively similar results (described
below). The reasoning behind these choices is that they will favor among activity
states with equal variance those with the fewest number of non-zero coefficients. This
is illustrated in geometric terms in Figure 2.

Learning is accomplished by minimizing the total cost functional, £ (Eq. 2) in
two phases: First, for each image presentation, £ is minimized with respect to the a;;
the ¢; then evolve by gradient descent on E averaged over many image presentations.
For a given image, then, the a; are determined from the equilibrium solution to the
differential equation

G = bi—ZCijaj—gs'@)] , (5)
J
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Cost

Figure 2: The cost function for sparseness, plotted as a function of the joint activity
of two coefficients, a; and a;. In this example, S(z) = log(1 4+ z?). An activity vector
that points towards a corner, where activity is distributed equally among coefficients,
will incur a higher cost than a vector with the same length that lies along one of
the axes, where the total activity is loaded onto one coefficient. The gradient tends
to “sparsify” activity by differentially reducing the value of low-activity coefficients
more than high-activity coefficients. Alternatively, the sparseness cost function has a
probabilistic interpretation in terms of a log-prior on the a; that assumes statistical
independence (factorial distribution), with the shape of the distribution specified by
S (in this case, a Cauchy distribution)[22].



where b; = 3, ¢i(z,y)I(z,y) and Cy; = 3, , di(z,y)¢;(z,y). The learning rule for
updating the ¢’s is then

Ai(@myyn) = 1 (@i [1(@msyn) = (@, ya)]) - (6)

where I is the reconstructed image, j($m, Yn) = i @; $i( T, yn ), and 7 is the learning
rate. One can see from inspection of Equations 5 and 6 that the dynamics of the a; as
well as the learning rule for the ¢; have a local network implementation. An intuitive
way of understanding the algorithm is that it is seeking a set of ¢; for which the a;
can tolerate “sparsification” with minimum reconstruction error. Importantly, the
algorithm allows for the basis functions to be overcomplete (i.e., more basis functions
than meaningful dimensions in the input) and non-orthogonal [5] without reducing
the degree of sparseness in the representation. This is because the sparseness cost
function, S, forces the system to choose, in the case of overlaps, which basis functions
are most effective for describing a given structure in the image.

The learning rule (Eq. 6) was tested on several artificial datasets containing con-
trolled forms of sparse structure, and the results of these tests (Fig. 3) confirm that
the algorithm is indeed capable of discovering sparse structure in input data, even
when the sparse components are non-orthogonal. The result of training the system
on 16x16 image patches extracted from natural scenes is shown in Figure 4a. The
vast majority of basis functions are well localized within each array (with the excep-
tion of the low frequency functions which, as expected, occupy a larger spatial ex-
tent). Moreover, the functions are oriented and broken into different spatial-frequency
bands. This result should not come as a surprise, because it simply reflects the fact
that natural images contain localized, oriented structures with limited phase align-
ment across spatial-frequency [6]. The functions ¢; shown are the feedforward weights
that, in addition to other terms, contribute to the value of each a; (refer to term b; in
Eq. 5). To establish the correspondence to physiologically measured receptive fields,
we mapped out the response of each a; to spots at every position, and the results
of this analysis show that the receptive fields are very similar in form to the basis
functions (Fig. 4b). The entire set of basis functions forms a complete image code
that spans the joint space of spatial position, orientation, and scale (Fig. 4¢) in a
manner similar to wavelet codes, which have previously been shown to form sparse
representations of natural images [8, 12, 23]. Average spatial-frequency bandwidth
is 1.1 octaves (std. dev.=0.5) with an average aspect ratio (length/width) of 1.3
(std. dev.=0.5), which are characteristics reasonably similar to those of simple cell
receptive fields (ca. 1.5 octaves, length/width~2) [5]. The resulting histograms have
sparse distributions (Fig. 4d), reduced entropy (2.8 nats vs. 3.2 nats before training),
and increased kurtosis (20 vs. 7.0) for a mean square reconstruction error that is 10%
of the image variance.

These results demonstrate that localized, oriented, bandpass receptive fields emerge
when only two global objectives are placed on a linear coding of natural images: that
information be preserved, and that the representation be sparse. These two ob-
jectives alone are sufficient to account for the principal spatial properties of simple
cell receptive fields. Recently, a number of unsupervised learning algorithms based
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Figure 3: Test cases. In a,b, and ¢, representative training images are shown at left,
and the resulting basis functions that were learned from these examples are shown
at right. In a, images were composed of sparse pixels: each pixel was activated
independently according to an exponential distribution, P(z) = e~1¥1/Z. In b, images
were composed similar to a, except using gratings instead of pixels (i.e., “sparse pixels”
in the Fourier domain). In ¢, images were composed of sparse, non-orthogonal Gabor
functions using the method described by Field [12]. In all cases, the basis functions
were initialized to random initial conditions. The learned basis functions successfully
recover the sparse components from which the images were composed. The form of
the sparseness cost function was S(z) = —e™*", but other choices (see text) yield the
same results.
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Figure 4: Results from training a system of 192 basis functions on 16x 16 pixel image patches
extracted from natural scenes. The scenes were 10 512x512 images of natural surroundings
in the American northwest, preprocessed by filtering with the zero-phase whitening/lowpass
filter R(f) = fe~ Ul fo =200 cy/picture (see also [9]). Whitening counteracts the fact
that the rms error preferentially weights low frequencies for natural scenes, while low-pass
filtering prevents diagonal spatial frequencies from extending higher than the horizontal and
vertical spatial frequencies (due sampling with a rectangular lattice). The a; were computed
via the conjugate gradient method, halting when the change in £ was less than 1%. The
¢; were initialized to random values and were updated every 100 image presentations. The
vector length (gain) of each basis function, ¢;, was adapted over time so as to maintain
equal variance on each coefficient. A stable solution was arrived at after approximately
4000 updates (~ 4 days of execution time on an SGI Indy workstation). The parameter
A was set so that A\/o = 0.14, with o% set to the variance of the images. The form of
the sparseness cost function was S(z) = log(1 + #2). @, The learned basis functions are
shown, scaled in magnitude so that each function fills the grey scale, but with zero always
represented by the same grey-level (black is negative, white is positive). b, The receptive
fields corresponding to the last row of basis functions in «, obtained by mapping with
spots (single pixels preprocessed identically to the images). The principal difference may
be accounted for by the sparsifying of activity making units more selective in what aspects
of the stimulus they respond to. ¢, The organization of the learned basis functions in space,
orientation, and scale. The functions were subdivided into high, medium, and low spatial-
frequency bands (in octaves), according to the peak frequency in their power spectra, and
their spatial location was plotted within the corresponding plane. Orientation preference
is denoted by line orientation. d, Activity histograms averaged over all coeflicients for the
learned basis functions (solid line) and for random initial conditions (dashed line). In both
cases, A/o = 0.14, showing that the learned basis functions can accommodate a higher
degree of sparsification. Width of each bin in the histogram is 0.04.

on similar principles have been proposed for finding efficient representations of data [22,
24, 25, 26, 27, 28, 29], all of which would seem to have the potential to arrive at re-
sults like those shown here. What remains as a challenge for these algorithms, as well
as ours, is to provide an account of other response properties of simple cells (e.g.,
direction selectivity), as well as the complex response properties of neurons at later
stages of the visual pathway which are noted for a high degree of non-linearity. An
important question, then, is whether these higher-order properties can be understood
by considering the remaining forms of statistical dependence that exist in natural
images.
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