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11.1 Introduction

The luminance of a surface results from the combined effect of its
reflectance (albedo) and its conditions of illumination.  Luminance can be
directly observed, but reflectance and illumination can only be derived by
perceptual processes.  Human observers are good at judging an object's
reflectance in spite of large changes in illumination; this skill is known as
"lightness constancy."

Most research on lightness constancy has used stimuli consisting of grey
patches on a single flat plane. The models are typically based on the
assumption that slow variations in luminance are due to illumination
gradients, while sharp changes in luminance are due to reflectance edges.
The retinex models for use with "Mondrian" stimuli are good examples
(Land and McCann, 1971; Horn, 1974).  But in three-dimensional scenes,
sharp luminance changes can arise from either reflectance or from
illumination, as illustrated in Figure 11.1(a).  The edge marked (1) is due to a
reflectance change, such as might result from a different shade of paint.
The edge marked (2) results from a change in surface normal which leads
to a change in the angle of incidence of the light -- an effect that we may
simply refer to as "shading."  As Gilchrist and his colleagues have
emphasized (Gilchrist et al., 1983), three-dimensional scenes introduce
large and important effects that are completely missed in the traditional
approach to lightness perception.

11.2 Intrinsic image analysis

Using the terminology of Barrow and Tenenbaum (1978) we may cast the
perceptual task as a problem of computing intrinsic images -- images that
represent the underlying physical properties of a scene. To correctly
interpret the scene of Figure11.1(a),  one must derive a reflectance image, as
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Fig. 11.1.  (a) The two luminance edges marked 1 and 2 are exactly equivalent at a
2-D level, but are given different perceptual interpretations.  Edge 1 is seen as a
change in reflectance, while edge 2 is seen as a change in illumination due to a
change in surface orientation.  In an intrinsic image analysis, the image would be
decomposed into the reflectance image (b) and the shading image (c).

shown in Figure 11.1(b), and a shading image, as shown in Figure 11.1(c).
In addition one may derive images representing surface depth and
orientation, which Marr called the 2 1/2 D sketch  (Marr 1982).

In a scene consisting of Lambertian surfaces illuminated by a single
distant light source, the observed luminance image I(x,y) is the product of
the reflectance image, r(x,y), and the shading image (also termed the
illuminance image), s(x,y),

                                         I(x,y)  =  r(x,y)s(x,y)               (11.1)

where the variables (x,y) index the various points in these images.  The
shading image itself is the product of the luminous flux, l, and the cosine of
the angle of incidence, i.e.  the dot product  (".") of the surface normal,
N(x,y), and the illumination direction , L.  Thus,

                                          s(x,y)  =  λN(x,y) ⋅ L               (11.2)

Note that both the  surface normal N(x,y)  and  the illumination  direction L
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Fig. 11.2.  (a) When the parallelograms are skewed horizontally, edge 1 is seen as
a reflectance edge, while edge 2 is seen as a shading edge.  (c) When the parallelo-
grams are skewed vertically, edge 1 is seen as a shading edge, while edge 2 is seen
as a reflectance edge.  (c) Subjects adjusted the center-most patch to match the
apparent reflectance of the patches above and below it.  The matches were very
different for the two images.

are three-dimensional vectors, but because they are defined as having unit
length they have only two degrees of freedom.

A visual system must begin with the observed luminance image, I(x,y),
and infer the underlying shading and reflectance images, s(x,y) and r(x,y).
Since there is no way to undo the multiplication by which the two images
were combined, any mechanism for achieving the decomposition must
make assumptions about regularities in the natural world.

The importance of three-dimensionality is further illustrated in Figure
11.2.  Figure 11.2(a) and (b) each consist of 3x3 arrays of grey
parallelograms, with the same shades of grey and the same adjacency
relationships.  The only difference between the images is the direction in
which the parallelograms are skewed: horizontally in Figure 11.2(a) and
vertically in Figure 11.2(b).  If considered as mere 2-D arrangements of
grey polygons, these images are quite similar.  But our perceptual readings
of these images are quite different.

In Figure 11.2(a), edge 1 is interpreted as a reflectance edge, while edge 2
is interpreted as a shading edge.  On the other hand, in Figure 11.2(b), edge
1 is interpreted as a shading edge, while edge 2 is interpreted as a
reflectance edge.  The edges themselves, at the level of a local 2-D analysis,
are equivalent.  But the perturbations in the 2-D geometry lead to large
changes in the 3-D interpretation, and these in turn lead to large changes
in the way the edges are perceived.

The perceptual effects can be described in terms of intrinsic images.  The
Figure 11.3(a) the central vertical strip is seen as consisting of a single color
in the 3-D object, while in Figure 11.3(b) the central vertical strip is seen as
consisting of three distinct sections, the middle section being darker than
the top or bottom.

It is worth nothing that the Retinex model will not correctly parse this
image.  It  interprets  sharp edges  as  belonging  to  reflectance boundaries,



412                              E. H. Adelson & A. P. Pentland

Fig. 11.3. The solution proposed by the painter. The scene consists of a flat
surface, uniformly illuminated.  All the image information is accounted for by
variations in the grey tone (reflectance) of the paint.

and since all of the edges are sharp they will all be interpreted in terms of
reflectance.  In essence, the Retinex model interprets the image as a set of
grey polygons on a flat surface, as it knows nothing about three
dimensionality or the sharp illumination edges that can exist in 3-D scenes.

To deal with scenes in a three-dimensional world, one must employ three-
dimensional constraints.  We now discuss some approaches that can
analyze polyhedral scenes of the sort shown in Figures 11.1 and 11.2. (See
chapter 6 by Knill et al. for the use of geodesic constraint.)

11.3 The workshop metaphor

We begin by describing a "workshop" metaphor.  Suppose that we are
given the task of constructing a physical scene that will produce the image
of Figure 11.2(b).  We go to a workshop where a set of specialists build the
scenery for the stage sets used in dramatic productions.  One is a lighting
designer; another is a painter; and a third is a sheet-metal worker.  There is
also a supervisor who can coordinate the actions of the individual
specialists.  We show them the desired image, and ask them to determine
how to  build a  scene that will look the same.  They are  faced with a prob-
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lem analogous to the one faced by the human visual system: given an
image, try to figure out how it could have come about.

Let us imagine that the specialists charge according to a set of fixed
prices.  Simple and common operations are cheap, while more complex and
unusual operations are more expensive.   We can then cast the problem in
terms of minimizing a cost function. The notion that a percept should
correspond to the simplest or likeliest explanation of a scene has a long
history in the perception literature (Helmholtz, 1962;  Hochberg and
McAlister, 1953; Attneave, 1959; Leeuwenberg, 1969; Restle, 1982;), and it
has more recently been shown that formal concepts of simplicity (e.g.
minimal length descriptions) and likelihood (e.g. maximum likelihood
estimators) are fundamentally related (Pentland, 1989; Leclerc, 1989).
These approaches can both be formalized as minimizing a cost function .

Consider the following fee structure:

Spray Painter Fees:
Paint rectang.patch:  $5 each.
Paint general polygon: $5 / side.

Sheet metal Worker Fees:
Right angle cuts $2 each.
Odd angle cuts $5 each.
Right angle bends $2 each.
Odd angle bends $5 each.

Lighting Designer Fees:
Flood light $5 each
Custom spot light $30 each.

Supervisor Fees
Consultation $30 / job.

Now there will be many different ways of constructing scenes that
produce the same image.  Indeed, each of the specialists can construct a
model almost entirely without the help of the other specialists.  For
example, the painter could simply paint the appropriate arrangement of
parallelograms on a flat sheet of metal and ask the lighting designer to
illuminate  it  with a  single  flood;  this solution is  illustrated in Figure 11.3.
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Fig. 11.4. The solution proposed by the lighting designer.  The scene is assumed to
be flat and of constant reflectance.  All the image information is accounted for by
variations in local illumination.

The lighting designer could start with a plain white sheet and project a set
of nine custom spot lights onto it, having constructed a set of masks with
just the right shapes, and projected at just the right positions and
intensities so as to produce the desired image.  Figure 4 shows this
solution.  It is also possible for the sheet metal worker to bend some metal
sheets into very special shapes so that, when illuminated and viewed from
precisely the correct angle, they will give rise to the desired image.  This
solution is shown in fig. 5.  Finally, of course, the image could be produced
by painting a square of metal with strips of two different shades of grey,
and then bending the square into a zig-zag shape; this is the solution that
leaps immediately to mind for a human observer. This last solution depends
on the cooperation of the various specialists.

The prices for these solutions will be as follows:

Painter's solution:
Paint 9 general polygons:  $180.
Setup 1 flood light $5.
Cut 1 rectangle $8
Total   $193.
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Fig. 11.5. The solution proposed by the sheet-metal worker.  The scene is assumed
to be of constant reflectance, illuminated by a single distant light source.  All the
image information is accounted for by the shading that results from the different
surface normals.  This scene can only be viewed from a single position, in order for
the surfaces to line up properly.

Lighting Designer's solution:
Cut 1 Rectangle $8.
Set up 9 Custom spots $270.
Total $278.

Sheet metal worker's solution:
Cut 24 odd angles $120
Bend 6 odd angles $30
Set up 1 flood light $5
Total $155.

Supervisor's solution:
Cut 1 rectangle $8
Paint 3 rectangles $5
Bend 2 right angles $4
Supervisor's fee $30
Total $47.

It is clear that when each specialist tries to generate a solution on his
own, the result works but is expensive. The lowest cost solution is the one
suggested by  the  supervisor, which  involves the efficient  combination of
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all the skills of the specialists.  Although the supervisor charges a fee of his
own, it is more than offset by the savings that his cooperative solution
allows.

The workshop metaphor is an example of a system that evaluates the
cost of solutions and seeks the minimum.  We do not intend it as a serious
model of visual perception, but we feel it does highlight some important
issues in vision.

One interesting point is the multiplicity of available solutions.  This is
related to the problem is inverse optics: there are many scenes that could
produce a given image.   And there are some solutions that are trivial to
produce.  Once we allow a painter into our stable of specialists, there is
nothing to prevent him from explaining everything with paint.  After all,
any image we see might merely be a skillful piece of trompe de l'oeil.  For
that matter, it might be the result of a pattern of light cast by a slide
projector on a white screen, or it might be the pattern of self-luminous dots
on a CRT.  Since these are legal solutions that are easy to construct they
must be discouraged by other means.  In terms of cost functions, we must
make them expensive, indicating our preconception that they are less
likely or less useful than other solutions.  At the same time we must not
make paint or light so generally expensive that they are never used; we
need to find a balance in which they are used appropriately.

Another issue is how to assign the costs.  In the example above the costs
were simply chosen to make the story come out right.  In a real system
assigning the costs would have to be done more carefully.  There are
several ways that one might proceed.  First, one could try out various cost
schedules, tweaking them experimentally to see which ones led to the
"right" answers, meaning the answers that humans see when they look at
the same images.  Second, one could do psychophysical experiments on
humans, attempting to determine the costs that they assign to various
aspects of the solutions.  Third, one could empirically or theoretically
determine the conditional probabilities that relate images to objects, and
thereby estimate the proper costs that should be assigned so as to
encourage likely interpretations and discourage unlikely ones [Dickenson,
Pentland, and Rosenfeld 1992].  These all represent interesting avenues of
exploration, but no one has yet undertaken them for the painted
polyhedral objects we are using here.

Another problem becomes evident from the workshop metaphor.  We
have a well-defined cost function, which allows us to evaluate possible
solutions, but we have no way of generating promising candidate
solutions to be evaluated.  When each specialist operates alone it is fairly
easy to find a candidate solution but these solutions are usually poor.  The
good solutions -- the cooperative ones -- are much more difficult to find.
In our story above the correct solution was simply announced by the
supervisor, who unfortunately did not tell us how he found it.  The
problem can be described as one of searching the solution space and
finding the point  with minimum cost.  But the space is enormous and there
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is no hope of simply searching it.
We have devised an algorithm that can correctly interpret images like

those of figure 2.  It begins with a description of the image in terms of a set
of 2-D grey polygons, and generates a description of the 3-D shape, along
with intrinsic images of the reflectance and the shading.  The algorithm
attempts to construct an internal model that  accounts for the image data
with minimum cost, where cost is defined so as to capture some of the
intuitive notions of "simplest," or "most likely."  

Our algorithm is based on a set of specialists, each of which is a
subprocess utilizing knowledge about some particular aspect of visual
scenes.  For the problem at hand we employ a shape specialist, a lighting
specialist, and a reflectance specialist.  Each specialist seeks to explain
what it can within its particular domain of expertise, and the three
converge on a single solution.

The system that we will describe here is not actually cooperative across
specialists.  The shape process goes to work first and generates its best
guess about the shape, seeking the 3-D configuration that explains the 2-D
shapes with minimal cost.  Then the lighting specialist seeks to explain as
many grey-level edges as possible by adjusting the light source direction.
Finally the reflectance specialist is allowed to explain whatever is left over.
This particular hierarchy gives good solutions to many simple polyhedral
images.

(1) The shape specialist:  We assume the image was created by
orthographic projection.  The shape process is constrained by the
observed (x,y) coordinates of edges and vertices, but it is free to vary the z
coordinates, since these are not observed.   The operation of the shape
process may be understood by reference to the example in Figure 11.6.
The input stimulus is shown in Figure 11.6(a); it is a 2-D image consisting
of two parallelograms.  Observers typically interpret this figure three-
dimensionally, seeing it as folded in space.  How can the 3-D percept be
generated from the 2-D image?  Our shape specialist uses a representation
like that shown in Fig. 11.6(b).  The vertices are like beads sliding on rods,
and the lines between them are like infinitely elastic strings (cf. Arnheim,
1954; Barrow and Tenenbaum, 1981; Ullman 1984).  The beads are
constrained to maintain the observed (x,y) coordinates, but are free to
move along the z-coordinate.  The shape specialist can explore these
configurations at will, since they all project orthographically to the same 2-
D image.

We have experimented with various simplicity measures.  In the case of
quadrilaterals, such as the grey patches of Figure 11.2, one plausible notion
of simplicity is that angles tend to be 90° angles, since squares and
rectangles are the simplest quadrilaterals.  A penalty (cost) is assigned to
non-right angles, and the shape process seeks the 3-D configuration that
minimizes this cost.  This mechanism leads to the correct behavior for
Figure 11.2, but it leads to incorrect configurations for other figures.

Barrow and Tenenbaum (1981) and Marill (1991) have proposed to inter-
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(a) (b)

Fig. 11.6.  (a)  This 2-D image could be the result of projecting many possible 3-D
shapes into the plane.  In orthographic projection, the x and y coordinates are
completely constrained by the image, but the z coordinate is completely
unconstrained.  (b)  One may imagine a set of beads sliding on pegs, where the
pegs constrain the beads to remain in the correct (x,y) position, but allow them to
assume arbitrary z positions.  All such configurations are legal interpretations of the
image, but some configurations are simpler or more likely than others.

pret wire-frame drawings by minimizing a cost function that is proportional
to the variance of the vertex angles.  In the special case of quadralaterals it
tends to prefer rectangles, and more generally it favors regular
interpretations.  But this approach leads to unsatisfactory configurations
for many wire-frame figures.   The main problem seems to be that humans
prefer interpretations with planar faces, whereas the angle-variance cost
function takes no account of whether the faces are planar or not.  

We have found that by combining the angle-variance constraint with a
planarity constraint, the behavior of the model is much improved.  It is also
advantageous to add a compactness constraint, so the the algorithm does
not select configurations that are elongated along the line of sight (Sinha
and Adelson, 1992, 1993).  A similar algorithm has been described by
Fischler and Leclerc (1992).

(2) The lighting specialist:  The lighting specialist knows about the
interaction of light with reflectance and surface orientation, as embodied in
equation (1).  It is given a single distance light source and is permitted to
move it around so as to illuminate the object from various directions. (See
chapter 9 by Freeman.)

The lighting specialist also knows about the shape specialist's current
estimate of 3-D shape, and it uses that estimate to calculate the effects of
different  lighting directions.  The optimal  lighting direction is the one  that
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explains as much of the luminance variation as possible in terms of shading,
thereby minimizing the need for reflectance edges.

The lighting specialist starts by assuming the current estimate of surface
reflectance r(x,y), surface normal N(x,y), and illuminant intensity l.  Then for
each image edge the specialist produces two equations, one for each side
of the edge:

                                      I1 = r1λN1 ⋅ L                                       (11.3)
                                      I2 = r2λN2 ⋅L                                       (11.4)

Each variable in these two equations is known except the two
components that make up the light direction L so that for each edge we
have two linear equations in two unknowns and so may directly solve for
L.  By combining the equations from all the image edges into a single
linear regression we can, therefore, determine the best overall estimate      
of L.

(3) The reflectance specialist:  This process assigns a reflectance to each
region of the image.  It must take care of any image data that is not
explained by the shape process and the lighting process. The cost associa-
ted with reflectance edges is not explicitly evaluated. It is the responsibil-
ity of the lighting specialist to minimize the need for paint; it is the
responsibility of the reflectance specialist to take care of any luminance
variation not explained by the lighting specialist.

11.4 An example

We ran the algorithm on the zig-zag shape shown in Figure 11.7(a). The
starting interpretation is shown in Figure 11.7 (b-e).  The 3-D shape, shown
in an oblique view in Figure 11.7(b), is initially assumed to be flat, as if the
object were merely a 2-D painting lying on a table.  (The image in Figure
11.7(b) may appear to be slightly folded, but it is actually flat, consisting of
a set of adjoining parallelograms).  The light source is initially assumed to
be head-on, from the direction of the eye, as indicated in the spherical plot
of Figure 11.7(c).  In these conditions there is no opportunity for shading
to produce luminance variation, and so the shading image is completely
uniform, as in Figure 11.7(d).  The reflectance specialist is therefore initially
responsible for explaining all of the image luminance information, which in
this case means that it  replicates the original image, as shown in Figure
11.7(e).  In summary, when the algorithm begins it assumes that the image
is just a painting that is flat and uniformly lit.

After the algorithm is run, the interpretation settles into the configuration
shown in Figure 11.7(f-i).  The shape specialist finds a 3-D shape , shown in
side-view in Figure 11.7(f), in which the panels are square in shape, and the
folds are at right angles, and which therefore has minimal cost. The lighting
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Fig. 11.7. (a) The original image that is to be analyzed.  (b) The algorithm initially
represents the object as being flat; the observed parallelograms are assumed to be
actual parallelograms which are literally the shape of the panels in the image.  The
shape is shown here from an oblique view  (c)   The light source direction is
initially assumed to be head-on, as diagrammed here by position on the surface of a
sphere.  (d) Since the object is initially taken to be flat, there is no variation in
illumination across the surface, and so the shading image is constant.  (e) The
reflectance image is left with the task of explaining all of the luminance variation.
(f) After the algorithm has arrived at a minimal cost configuration, the object is
represented as a set of square panels which join each other in a zig-zag
configuration.  (g) The light source moves up into a position such that shading can
account for as much luminance variation as possible.  (h) The shading image
accounts for the horizontally oriented luminance edges.  (i)  The reflectance image
accounts for the remaining luminance variation.  Only two colors are required.  (j)
An alternate final state, with the same minimum cost, occurs when the object is
reversed in depth.  (k)  The light source moves down, rather than up, in this case.
(l)  The shading image and (m) the reflectance image are exactly the same in the
depth-reversed case as they are in the first case.
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specialist finds that by placing the light at the position shown in Figure
11.7(g), a maximum number of luminance edges can be explained in terms
of shading rather than reflectance.  This leads to the shading image of
Figure 7(h). Finally, the reflectance specialist takes care of the remaining
luminance variation by assigning the reflectances shown in Figure        
7(i).  The final interpretation is similar to that reported by human  obser-
vers.

Another interesting aspect of the human percept is bistability:  if one
looks at the figure for a while it will spontaneously reverse in depth.
Although our algorithm does not undergo spontaneous reversals, it does
assign the same cost to each of the reversed states, and considers each to
be an equally good global minimum.  It will randomly settle into one or the
other interpretation depending on the starting conditions.  The reversed-
depth percept is shown in Figure 7(j). When the shape specialist chooses
this interpretation, the lighting specialist automatically moves the light
source to the correspondingly reversed angle, thereby maintaining a
consistent interpretation, as shown in Figure 7(k).  This again is consistent
with the perceptual reports of human observers.  Note that when the 3-D
shape and the light source direction both reverse, the shading and
reflectance images, Figure 7 (l) and (m), settle into the same states as before,
as they should.

The search for a minimum cost in the above example is particularly simple
because the cost function for this scene has no local minima, and has only
two global minima, corresponding to the two depth-reversed solutions.
For this reason we were able to solve the example without confronting the
complexities that will necessarily emerge with more convoluted cost
functions.  In order to deal with more complex scenes, such as those
involving curved surfaces or occlusions, as well as complicated forms of
lighting, one will need more sophisticated specialists and more
sophisticated control structures.  Nonetheless we are encouraged by the
capabilities of the simple algorithm described here.

11.5 Conclusions

Most models of human lightness perception have been designed to deal
with images consisting of simple arrays of grey patches on a flat field.
These stimuli are devoid of cues about three dimensionality, and the
corresponding models are unable to deal with the percepts of reflectance
edges and illuminance edges as they are seen in ordinary three dimensional
scenes.

At the same time, models for shape-from-shading typically assume that
the world is all of a constant reflectance, and that three-dimensional shape
is responsible for all the luminance variation observed. Such models cannot
deal with patches of varying reflectance.

To  model  the perception of  lightness and  shading in  three dimensional
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scenes, we must turn to systems that have richer vocabularies. This means
that there are many ways to explain the luminance variation in a given
image; the representation language is highly overcomplete. We introduce
the "workshop" metaphor as a way of exploring the possibilities and
problems of such systems. We imagine a set of specialists who have
particular expertise about  paint, or lighting, or 3-D shape, and each of
which can explain the observed images without the help of the others.
The problem then becomes selecting a description that makes proper use of
these various sources of expertise. We have also developed an algorithm
based on these ideas to illustrate one concrete instantiation. The output
consists of a three-dimensional model, a reflectance image, a shading image,
and a light source direction.  For some simple scenes, the algorithm can
produce interpretations similar to those reported by human observers; it is
also consistent with the perception of reversible figures, and when depth
reversal occurs it infers an appropriate change in lighting conditions.
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