CS 267 Applications of Parallel Computers
Hierarchical Methods for the N-Body problem

James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spr16

04/19/2016 CS267 Lecture 25

Big Idea
° Suppose the answer at each point depends on data at all
the other points

« Electrostatic, gravitational force
« Solution of elliptic PDEs
« Graph partitioning

° Seems to require at least O(n2) work, communication

° If the dependence on “distant” data can be compressed
« Because it gets smaller, smoother, simpler...

° Then by compressing data of groups of nearby points, can
cut cost (work, communication) at distant points

« Apply idea recursively: cost drops to O(n log n) or even O(n)

° Examples:
« Barnes-Hut or Fast Multipole Method (FMM) for electrostatics/gravity/...
* Multigrid for elliptic PDE

« Multilevel graph partitioning (METIS, Chaco,...)
04/19/2016 €S267 Lecture 25 2

Outline

°

°

°

°

°

Motivation

« Obvious algorithm for computing gravitational or electrostatic force on N bodies
takes O(N<) work

How to reduce the number of particles in the force sum
+ We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 ...)

Basic Data Structures: Quad Trees and Oct Trees

The Barnes-Hut Algorithm (BH)
« An O(N log N) approximate algorithm for the N-Body problem

The Fast Multipole Method (FMM)
« An O(N) approximate algorithm for the N-Body problem

° Parallelizing BH, FMM and related algorithms

04/19/2016 CS267 Lecture 25

Particle Simulation

t=0
while t < t_final
fori=1ton ... N = number of particles
compute f(i) = force on particle i
fori=1ton
move particle i under force f(i) for time dt ... using F=ma
compute interesting properties of particles (energy, etc.)
t=t+dt
end while

° f(i) = external_force + nearest_neighbor_force + N-Body_force

« External_force is usually embarrassingly parallel and costs O(N) for all particles

- external current in Sharks and Fish
» Nearest_neighbor_force requires interacting with a few neighbors, so still O(N)

- van der Waals, bouncing balls
* N-Body_force (gravity or electr i quires all-to-all i

- f()= = f(ik) f(i,k) = force on i from k

K#i

- f(i,k) = c*v/||v]|® in 3 dimensions or f(i,k) = c*v/||v|[2 in 2 dimensions
— v = vector from particle i to particle k , ¢ = product of masses or charges
— |Ivll = length of v
- Obvious algorithm costs O(n2), but we can do better...
03/014/2013 CS267 Lecture 25 4

What do commercial and CSE applications have in common?

Motif/Dwarf: Common Computational Methods
(Red Hot — Blue Cool)
= uﬂl =F

Image Speech Music Browser

Embed
SPEC
DB
Games
ML)
HPC

1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
2D ic Proa
{ o N-Body
10 MapReduce
11 Backtrack/ B&B

12 Graphical Models
13 Unstructured Grid

04/19/2016 (CS267 Lecture 25

o

Applications (2/2)

° Molecular Dynamics

° Plasma Simulation

° Electron-Beam Lithography Device Simulation
° Hair ...

» www.fxguide.com/featured/brave-new-hair/
« graphics.pixar.com/library/CurlyHairA/paper.pdf

Applications (1/2)

° Astrophysics and Celestial Mechanics - 1992
« Intel Delta = 1992 supercomputer, 512 Intel i860s
* 17 million particles, 600 time steps, 24 hours elapsed time
— M. Warren and J. Salmon
— Gordon Bell Prize at Supercomputing 1992
« Sustained 5.2 Gigaflops = 44K Flops/particle/time step
* 1% accuracy
« Direct method (17 Flops/particle/time step) at 5.2 Gflops would have
taken 18 years, 6570 times longer
° Vortex particle simulation of turbulence — 2009
« Cluster of 256 NVIDIA GeForce 8800 GPUs
* 16.8 million particles
- T. Hamada, R. Yokota, K. Nitadori. T. Narumi, K. Yasoki et al
- Gordon Bell Prize for Price/Performance at Supercomputing 2009
« Sustained 20 Teraflops, or $8/Gigaflop

04/19/2016 (CS267 Lecture 25 6

Reducing the number of particles in the force sum

° All later divide and conquer algorithms use same intuition

° Consider computing force on earth due to all celestial bodies
» Look at night sky, # terms in force sum = number of visible stars

« Oops! One “star” is really the Andromeda galaxy, which contains
billions of real stars

- Seems like a lot more work than we thought ...
° Don’ t worry, ok to approximate all stars in Andromeda by a
single point at its center of mass (CM) with same total mass (TM)
» D = size of box containing Andromeda , r = distance of CM to Earth

* Require that D/r be “small enough”
Viewing the Andromeda Galaxy from Earth

..
Earth o

D Andomeda
r = distance to center of mass Se e

x = location of center of mass

« Idea not new: Newton approximated earth and falling apple by CMs
04/19/2016 CS267 Lecture 25 8

What is new: Using points at CM recursively

° From Andromeda’ s point of view, Milky Way is also a point mass

° Within Andromeda, picture repeats itself

» As long as D1/r1 is small enough, stars inside smaller box can be
replaced by their CM to compute the force on Vulcan

» Boxes nest in boxes recursively
Replacing Clusters by their Centers of Mass Recursively

{magnify)

04/19/2016 CS267 Lecture 25 9

Outline

« Obvious algorithm for computing gravitational or electrostatic force on N bodies
takes O(N<) work

+ We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 ...)

° Basic Data Structures: Quad Trees and Oct Trees

« An O(N log N) approximate algorithm for the N-Body problem

04/19/2016 CS267 Lecture 25 10

Quad Trees

° Data structure to subdivide the plane
» Nodes can contain coordinates of center of box, side length
« Eventually also coordinates of CM, total mass, etc.

o

In a complete quad tree, each nonleaf node has 4
children

A Complete Quadtree with 4 Levels

04/19/2016 CS267 Lecture 25 11

Oct Trees

° Similar Data Structure to subdivide space

2 Levels of an Octree

04/19/2016 CS267 Lecture 25 12

Using Quad Trees and Oct Trees

° All our algorithms begin by constructing a tree to
hold all the particles

° Interesting cases have nonuniformly distributed
particles
* In a complete tree most nodes would be empty, a waste of space
and time

° Adaptive Quad (Oct) Tree only subdivides space
where particles are located

04/19/2016 CS267 Lecture 25 13

Example of an Adaptive Quad Tree

Adaptive quadtree where no square contains more than 1 particle

Child nodes counter
from SW corner, empty ones excluded

In practice, have g>1 particles/square; tuning parameter

03/014/2013 CS267 Lecture 25 14

Adaptive Quad Tree Algorithm (Oct Tree analogous)

Procedure Quad_Tree_Build
Quad_Tree = {emtpy}

forj=1toN ... loop over all N particles
Quad_Tree_lInsert(j, root) ... insert particle j in QuadTree
endfor

. At this point, each leaf of Quad_Tree will have 0 or 1 particles
. There will be 0 particles when some sibling has 1
Traverse the Quad_Tree eliminating empty leaves ... via, say Breadth First Search

Procedure Quad_Tree_lInsert(j, n) ... Try to insert particle j at node n in Quad_Tree
if n an internal node ... n has 4 children
determine which child c of node n contains particle j
Quad_Tree_Insert(j, c)
else if n contains 1 particle ... nis aleaf Easy change for q> 1 particles/leaf
add n’ s 4 children to the Quad_Tree
move the particle already in n into the child containing it
let ¢ be the child of n containing j
Quad_Tree_Insert(j, c)
else ... nempty
store particle j in node n
end

04/19/2016 CS267 Lecture 25 15

Cost of Adaptive Quad Tree Constrution

° Cost < N * maximum cost of Quad_Tree_Insert
= O(N * maximum depth of Quad_Tree)

° Uniform Distribution of particles
* Depth of Quad_Tree = O(log N)
*Cost<O(N*logN)

° Arbitrary distribution of particles
« Depth of Quad_Tree = O(# bits in particle coords) = O(b))
*Cost<O(bN)

04/19/2016 CS267 Lecture 25 16

Outline

« Obvious algorithm for computing gravitational or electrostatic force on N bodies
takes O(N<) work

+ We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 ...)

° The Barnes-Hut Algorithm (BH)
« An O(N log N) approximate algorithm for the N-Body problem

04/19/2016 CS267 Lecture 25 17

Barnes-Hut Algorithm

° “A Hierarchical 0|g|n Ioa n) force calculation algorithm”,
J. Barnes and P. Hut, Nature, v. 324 (1986), many later papers

° Good for low accuracy calculations:
RMS error = (Z || approx f(k) - true f(k) |2/ || true f(k) |2 /N)1/2
~ 1%
(other measures better if some true f(k) ~ 0)

° High Level Algorithm (in 2D, for simplicity)

1) Build the QuadTree using QuadTreeBuild

... already described, cost = O(N log N) or O(b N)
2) For each node = subsquare in the QuadTree, compute the

CM and total mass (TM) of all the particles it contains

.. “post order traversal” of QuadTree, cost = O(N log N) or O(b N)

3) For each particle, traverse the QuadTree to compute the force on it,

using the CM and TM of “distant” subsquares

... core of algorithm

... cost depends on accuracy desired but still O(N log N) or O(bN)

04/19/2016 CS267 Lecture 25 18

Step 2 of BH: compute CM and total mass of each node

... Compute the CM = Center of Mass and TM = Total Mass of all the particles
... in each node of the QuadTree
(TM, CM) = Compute_Mass(root)

function (TM, CM) = Compute_Mass(n) ... compute the CM and TM of node n
if n contains 1 particle
... the TM and CM are identical to the particle’ s mass and location
store (TM, CM) at n
return (TM, CM)
else ... “post order traversal”: process parent after all children
for all children c(j) of n ... j=1,2,3,4
(TM(j), CM(j)) = Compute_Mass(c(j))
endfor
TM = TM(1) + TM(2) + TM(3) + TM(4)
... the total mass is the sum of the children’ s masses
CM = (TM(1)*CM(1) + TM(2)*CM(2) + TM(3)*CM(3) + TM(4)*CM(4)) / TM
... the CM is the mass-weighted sum of the children’ s centers of mass
store (TM, CM) atn
return (TM, CM)
end if

Cost = O(# nodes in QuadTree) = O(N log N) or O(b N)

04/19/2016 CS267 Lecture 25 19

Step 3 of BH: compute force on each particle

° For each node = square, can approximate force on particles
outside the node due to particles inside node by using the
node’s CM and TM

° This will be accurate enough if the node if “far away enough”
from the particle

° For each particle, use as few nodes as possible to compute
force, subject to accuracy constraint
° Need criterion to decide if a node is far enough from a particle
« D = side length of node
« r = distance from particle to CM of node
« 0 = user supplied error tolerance < 1
+ Use CM and TM to approximate force of node on box if D/r < 6

Viewing the Andromeda Galaxy from Earth

r = distance to center of mass

x = location of eenter of mass
04/19/2016 CS267 Lecture 25 20

Computing force on a particle due to a node

° Suppose node n, with CM and TM, and particle k,
satisfy D/Ir < 6

° Let (xk, Yk, Zk) be coordinates of k, m its mass
° Let (Xxcm> Yems Zcm) be coordinates of CM
°r=((xk-xcm)? + (Yk - Ycm)? + (2« - zcm)?)12

° G = gravitational constant

° Force on k =
G*m*TM* (XcM-Xk , YeM - Yk »ZcM—2k) / 1*3

04/19/2016 CS267 Lecture 25 21

Details of Step 3 of BH

... for each particle, traverse the QuadTree to compute the force on it
fork=1toN
f(k) = TreeForce(k, root)
... compute force on particle k due to all particles inside root (except k)
endfor

function f = TreeForce(k, n)
... compute force on particle k due to all particles inside node n (except k)
f=0
if n contains one particle (not k) ... evaluate directly
f = force computed using formula on last slide
else
r = distance from particle k to CM of particles in n
D =size of n
if DIr <6 ... ok to approximate by CM and TM
compute f using formula from last slide
else ... need to look inside node
for all children ¢ of n
f=f+ TreeForce (k,c)
end for
end if
end if
04/19/2016 CS267 Lecture 25 22

Analysis of Step 3 of BH

° Correctness follows from recursive accumulation of
force from each subtree

« Each particle is accounted for exactly once, whether it is in a leaf
or other node
° Complexity analysis
+ Cost of TreeForce(k, root) = O(depth in QuadTree of leaf

contalnlng Sample Barnes- Hut Foree ealculation
For particle in lower right corner

* Proof by Example (for 6>1): ‘Assurming thata» 1
— For each undivided node = square,
(except one containing k), D/r<1 <6
— There are 3 nodes at each level of
the QuadTree
— There is O(1) work per node
— Cost =O(level of k)
« Total cost = O(Z level of k) = O(N log N)
- Strongly depends on 6 _|_.
04/19/2016 CS267 Lecture 25 23

Outline

« Obvious algorithm for computing gravitational or electrostatic force on N bodies
takes O(N<) work

+ We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 ...)

« An O(N log N) approximate algorithm for the N-Body problem

° The Fast Multipole Method (FMM)
« An O(N) approximate algorithm for the N-Body problem

04/19/2016 CS267 Lecture 25 24

Fast Multiple Method (FMM)

o

“A fast algorithm for particle simulation”, L. Greengard and V.
Rokhlin, J. Comp. Phys. V. 73, 1987, many later papers

* Many awards

° Differences from Barnes-Hut

o

+ FMM computes the potential at every point, not just the force

« FMM uses more information in each box than the CM and TM, so it is both
more accurate and more expensive

* In compensation, FMM accesses a fixed set of boxes at every level,
independent of D/r

« BH uses fixed information (CM and TM) in every box, but # boxes increases
with accuracy. FMM uses a fixed # boxes, but the amount of information per
box increase with accuracy.

FMM uses two kinds of expansions

« Outer expansions represent potential outside node due to particles inside,
analogous to (CM,TM)

« Inner expansions represent potential inside node due to particles outside;
Computing this for every leaf node is the computational goal of FMM

First review potential, then return to FMM

04/19/2016 CS267 Lecture 25 25

Gravitational/Electrostatic Potential

° FMM will compute a compact expression for potential ¢(tx,y,z)
which can be evaluated and/or differentiated at any poin

° In 3D with x,y,z coordinates
« Potential = ¢(x,y,2) = -1/r = -1/(x2 + y2 + z2)1/2

« Force = -grad ¢(x,y,2) = - (d¢/dx , do/dy , dp/dz) = -(x,y,z)/r3
° In 2D with x,y coordinates

« Potential = ¢(x,y) = log r = log (x2 + y2)1/2

« Force = -grad ¢(x,y) = - (dd/dx , do/dy) = -(x,y)/r2
° In 2D with z = x+iy coordinates, i = sqrt(-1)

» Potential = ¢(z) = log |z| = Real(log z)

... because log z = log |z|ei® = log |z| + i
* Drop Real() from calculations, for simplicity
+ Force = -(x,y)/r2 = -z ||2

° Later: Kernel Independent FMM
04/19/2016 8267 Lecture 25 26

2D Multipole Expansion (Taylor expansion in 1/z) (1/2)

¢(z) = potential due to zk k=1,....n
= Zx mk * log |z - z|
= Real(2k mk * log (z - zx))
... since log z = log |z|ei® = log |z| + i0
... drop Real() from now on
=Xk mg * [log(z) + log (1 - zy/2)]
... how logarithms work

=M * log(z) + =k mg * log (1 - zx/z)
... where M =Xk mg
=M * log(z) - Zk Mk * = e21 (zk/2)%le
... Taylor expansion converges if |zx/z| <1
=M * log(2) - = ex1 2°© Zk Mk 2x°le
... swap order of summation
=M*10g(2) - X ea12°® e
... where 0 =2k mg zk®/e ... called Multipole Expansion

04/19/2016 CS267 Lecture 25 27

2D Multipole Expansion (Taylor expansion in 1/z) (2/2)

¢(z) = potential due to zk k=1,....n

= Zx mk * log |z - z|

= Real(2k mk * log (z - zx))
... drop Real() from now on

=M*log(z) -Z e212® e ... Taylor Expansion in 1/z
... where M =2k mg = Total Mass and
. ae =Sk m % le
... This is called a Multipole Expansion in z

=M *log(z) - = rzex1 2€ e + error(r)
... r = number of terms in Truncated Multipole Expansion
... and error(r) = - (<ez€ 0¢

= Note that aq = =k mg zx = CM*M
so that M and a4 terms have same info as Barnes-Hut

= error(r) = O({maxy |zx| /|z[}r*1) ... bounded by geometric sum

04/19/2016 CS267 Lecture 25 28

Error in Truncated 2D Multipole Expansion

° error(r) = O({max |z /]z]}™*1)
° Suppose max |zx|/ [z] =c <1, so
error(r) = O(cr+1)
° Suppose all particles z lie inside a D-by-D
square centered at origin Error outside larger box is
° Suppose z is outside a 3D-by-3D O(c™(-r))
square centered at the origin sy
°c=(DIsqrt(2)) / (1.5*D) ~.47<.5
° each term in expansion adds

1 bit of accuracy I
° 24 terms enough for single precision, ! e [P
53 terms for double precision + * :
: T :
° In 3D, can use spherical harmonics H
or other expansions PR m """"" :
+ = origin
04/19/2016 CS267 Lecture 25 29

3D

Outer(n) and Outer Expansion

®(z) ~M* log(z - zn) - Z rze=1 (2-2n)€ 0e

° Outer(n)=(M, 04,02, ...,0r,2Zn)
« Stores data for evaluating potential ¢(z) outside
node n due to particles inside n
* zp = center of node n
* Error small for z outside dotted line in previous plot
» Cost of evaluating ¢(z) is O(r), independent of
the number of particles inside n
« Cost grows linearly with desired number of bits of
precision ~r
° Will be computed for each node in QuadTree
° Analogous to (TM,CM) in Barnes-Hut
° M and 01 same information as Barnes-Hut

04/19/2016 CS267 Lecture 25 30

Inner(n) and Inner Expansion

° Outer(n) used to evaluate potential outside node n
due to particles inside n

° Inner(n) will be used to evaluate potential inside
node n due to particles outside n
°Z osesr Be * (z-zn)®
° zp = center of node n, a D-by-D box
° Inner(n) = (Bo, B1, ..., Br,2zn)

° Particles outside n must lie outside 3D-by-3D box centered
at z,

04/19/2016 31

Top Level Description of FMM

(1) Build the QuadTree
= (2) Call Build_Outer(root), to compute outer expansions
of each node n in the QuadTree
... Traverse QuadTree from bottom to top,
... combining outer expansions of children
... to get out outer expansion of parent
(3) Call Build_ Inner(root), to compute inner expansions
of each node n in the QuadTree
... Traverse QuadTree from top to bottom,
... converting outer to inner expansions
... and combining them
(4) For each leaf node n, add contributions of nearest particles
directly into Inner(n)
... final Inner(n) is desired output: expansion for potential at
each point due to all particles

04/19/2016 CS267 Lecture 25 32

Step 2 of FMM: Outer_shift: converting Outer(n4) to Outer(nz) (1/3)

° For step 2 of FMM (as in step 2 of BH{ we want to compute
Outer(n) cheaply from Outer(c) for all children c of n

How to combine outer expansions around different points?
* ¢k(z) ~ Mk * log(z-zk) - = rze21 (z-2k)© cek €xpands around zk , k=1,2
« First step: make them expansions around same point

o

‘Using Owter_STift to eonvert Ouier(nL) to Guter(n2)
°

nq is a child (subsquare) of ny

o

zy = center(ng) for k=1,2

° Outer(nq) expansion accurate outside

blue dashed square, so also accurate
outside black dashed square : =
° So there is an Outer(ny) expansion |

with different ax and center z; which

represents the same potential as

Outer(nq) outside the black dashed box
04/19/2016 8267 Lecture 25 33

Outer_shift: Details (2/3)

° Given expansion centered at z4 (= child)
$1(2) = M1 *log(z-21) + = rze=1 (2-21)"€ Ce1
° Solve for M2 and a2 in expansion centered at z (= parent)
61(2) ~ ¢2(2) = M * log(z-23) + Z rzea1 (2-22)€ cle2
° Get M2 = M1 and each o2 is a linear combination of the aigq
» multiply r-vector of 01 values by a fixed r-by-r matrix to get c.¢2

°(M2,012, ... , 02 ,22) = Outer_shift(Outer(nq) , z2)
= desired Outer(n3)

04/19/2016 CS267 Lecture 25 34

Step 2 of FMM: compute Outer(n) for each node n in QuadTree (3/3)

... Compute Outer(n) for each node of the QuadTree
outer = Build_Outer(root)

function (M, a,...,0r , zn) = Build_Outer(n) ... compute outer expansion of node n
if nif a leaf ... it contains 1 (or a few) particles
compute and return Outer(n) = (M, a1,...,0r , Zn) directly from
its definition as a sum

else ... “post order traversal”: process parent after all children
Outer(n)=0
for all children c(k) of n ... k=1,2,3,4 Inner Loop of Build_Outer
Outer(c(k)) = Build_Outer(c(k)) o e
Outer(n) = Outer(n) + n

Outer_shift(Outer(c(k)) , center(n))

... just add component by component Outer(e(4)) Outer(e(3))
endfor Outer-SHif™y, " Ouer-Shitt
return Outer(n)

end if Ouigr(n)

Cost = O(# nodes in QuadTree) = O(N) ouer s 7 S\ o

Outerfe(1)) Outer(e(2))

same as for Barnes-Hut

e(l) e(2)
04/19/2016 CS267 Lecture 25 35

Top Level Description of FMM

(1) Build the QuadTree
(2) Call Build_Outer(root), to compute outer expansions
of each node n in the QuadTree
... Traverse QuadTree from bottom to top,
... combining outer expansions of children
... to get out outer expansion of parent
- (3) Call Build_ Inner(root), to compute inner expansions
of each node n in the QuadTree
... Traverse QuadTree from top to bottom,
... converting outer to inner expansions
... and combining them
(4) For each leaf node n, add contributions of nearest particles
directly into Inner(n)
... final Inner(n) is desired output: expansion for potential at
each point due to all particles

04/19/2016 CS267 Lecture 25 36

Step 3 of FMM: Computing Inner(n) from other expansions

° Which other expansions?
» As few as necessary to compute the potential accurately

« Inner expansion of p = parent(n) will account for potential from
particles far enough away from parent (red nodes below)

» Outer expansions will account for potential from particles in boxes
at same level in Interaction Set (nodes labeled i below)

Interaction_Set(n) for the Fast Multipole Method

P = parent(n)

04/19/2016 (C8267 Lecture 25 3

Step 3 of FMM: Compute Inner(n) for each n in QuadTree

° Need Innerém) = ° Need Inner(ny) =
Inner_shift(Inner(nz), nq) Convert(Outer(ns), ng)

Converting Inner(n2) to Inner(n1)

Converting Outer(n3) to Inner(nd)

]
.
.
.
:
"’ :
2 I
.
1
1
1
.
.
.
.
.

n3 in Interaction_set(n4)
n2 = parent(n1)
04/19/2016 8267 Lecture 25 38

Step 3 of FMM: Inner(n4) = Inner_shift(Inner(nz), n4)

Converting Inner(n2) to Inner(n1)

°Inner(ng) =

(Bok > Btk s -~ » Brk » 2)

°Inner expansion = Z gee<r Pek * (z-2))¢

°Solve X Osesr Be1 * (z-z1)¢ = pX Osesr Be2 * (z-22)¢

for Be1 given zy, B¢, and z;

°(r+1) x (r+1) matrix-vector multiply
04/19/2016 CS267 Lecture 25 39

Step 3 of FMM: Inner(ng) = Convert(Outer(ns), n4)

° In ner(n4) = Converting Outer(n3) to [nner(nd)

(60!31!"'![5[‘!24) i i
° Outer(nz) = - :
(M,a1sa2,---,ar;23) E ¥ E =

© Solve = 0sesr Be * (2-24)¢ = M*log (z-23) + 2 ggesr Qe * (2-23)

for B given z4 , 0, and z3
°(r+1) x (r+1) matrix-vector multiply

04/19/2016 CS267 Lecture 25 40

10

Step 3 of FMM: Computing Inner(n) from other expansions

° We will use Inner_shift and Convert to build each
Inner(n) by combining expansions from other nodes

° Which other nodes?

» As few as necessary to compute the potential accurately

* Inner_shift(Inner(parent(n)), center(n)) will account for potential
from particles far enough away from parent (red nodes below)

« Convert(Outer(i), center(n)) will account for potential from particles
in boxes at same level in Interaction Set (nodes labeled i below)

Interaction_Set{n) for the Fast Multipole Method

p = parent(n)

04/19/2016 CS267 Lecture 25 41

Step 3 of FMM: Interaction Set

« Interaction Set ={ nodes i that are children of a neighbor of
parent(n), such that i is not itself a neighbor of n}

» For each i in Interaction Set , Outer(i) is available, so that
Convert(Outer(i),center(n)) gives contribution to Inner(n) due to
particles in i

» Number of i in Interaction Set is at most 62 - 32 = 27 in 2D
» Number of i in Interaction Set is at most 63 - 33 = 189 in 3D

Interaction_Set(n) for the Fast Multipole Method

p = parent(n)

i
i1

04/19/2016 " 42

Step 3 of FMM: Compute Inner(n) for each n in QuadTree

... Compute Inner(n) for each node of the QuadTree
outer = Build_ Inner(root)

function (B4,...,8r , zn) = Build_Inner(n) ... compute inner expansion of node n
p = parent(n) ... p=nil if n = root
Inner(n) = Inner_shift(Inner(p), center(n)) ... Inner(n) =0 if n = root
for all i in Interaction_Set(n) ... Interaction_Set(root) is empty
Inner(n) = Inner(n) + Convert(Outer(i), center(n))
... add component by component
end for
for all children c of n ... complete preorder traversal of QuadTree
Build_Inner(c)
end for

Cost = O(# nodes in QuadTree)
=O(N)

04/19/2016 CS267 Lecture 25 43

Top Level Description of FMM

(1) Build the QuadTree
(2) Call Build_Outer(root), to compute outer expansions
of each node n in the QuadTree
... Traverse QuadTree from bottom to top,
... combining outer expansions of children
... to get out outer expansion of parent
(3) Call Build_ Inner(root), to compute inner expansions
of each node n in the QuadTree
... Traverse QuadTree from top to bottom,
... converting outer to inner expansions
... and combining them
-(4) For each leaf node n, add contributions of
nearest particles directly into Inner(n)

... if 1 node/leaf, then each particles accessed once,
...socost=0(N)
... final Inner(n) is desired output: expansion for potential at

each point due to all particles
04/19/2016 8267 Lecture 25 44

11

Outline

° Parallelizing BH, FMM and related algorithms

04/19/2016 CS267 Lecture 25 45

Parallelizing Hierachical N-Body codes
° Barnes-Hut, FMM and related algorithm have similar computational
structure:
1) Build the QuadTree
2) Traverse QuadTree from leaves to root and build outer expansions
(just (TM,CM) for Barnes-Hut)
3) Traverse QuadTree from root to leaves and build any inner expansions
4) Traverse QuadTree to accumulate forces for each particle

° One parallelization scheme will work for them all
+ Based on D. Blackston and T. Suel, Supercomputing 97
- UCB PhD Thesis, David Blackston, “Pbody”
- Autotuner for N-body codes
Assign regions of space to each processor
Regions may have different shapes, to get load balance
- Each region will have about N/p particles

» Each processor will store part of Quadtree containing all particles (=leaves) in its
region, and their ancestors in Quadtree

- Top of tree stored by all processors, lower nodes may also be shared

Each processor will also store adjoining parts of Quadtree needed to compute forces
for particles it owns

- Subset of Quadtree needed by a processor called the Locally Essential Tree (LET)

« Given the LET, all force accumulations (step 4)) are done in parallel, without
communication

04/19/2016 CS267 Lecture 25

46

Programming Model - BSP

° BSP Model = Bulk Synchronous Programming Model
» All processors compute; barrier; all processors communicate;
barrier; repeat
° Advantages
« easy to program (parallel code looks like serial code)
« easy to port (MPI, shared memory, TCP network)

° Possible disadvantage
 Rigidly synchronous style might mean inefficiency?

° OK with few processors; communication costs low
+ FMM 80% efficient on 32 processor Cray T3E
* FMM 90% efficient on 4 PCs on slow network
* FMM 85% efficient on 16 processor SGI SMP (Power Challenge)
« Better efficiencies for Barnes-Hut, other algorithms

04/19/2016 CS267 Lecture 25 47

Load Balancing Scheme 1: Orthogonal Recursive Bisection (ORB)

° Warren and Salmon, Supercomputing 92

° Recursively split region along axes into regions
containing equal numbers of particles

° Works well for 2D, not 3D (available in Pbody)

Orthogonal Recursive Bisection

Partitioning
for 16 procs:

04/19/2016 CS267 Lecture 25 8

12

Load Balancing Scheme 2: Costzones

° Called Costzones for Shared Memory
« PhD thesis, J.P. Singh, Stanford, 1993

° Called “Hashed Oct Tree” for Distributed Memory

+ Warren and Salmon, Supercomputing 93
° We will use the name Costzones for both; also in Pbody

° ldea: partition QuadTree instead of space
+ Estimate work for each node, call total work W
+ Arrange nodes of QuadTree in some linear order (lots of choices)
« Assign contiguous blocks of nodes with work W/p to processors: locality
* Works well in 3D using costzones to layout a quadtree on 4 processors

Leaves are color coded by processor color

(TN

04/19/2016 49
CS267 Lecture 25

Linearly Ordering Quadtree nodes for Costzones (1/2)

° Hashed QuadTrees (Warren and Salmon)

° Assign unique key to each node in QuadTree, then compute hash(key) to
get integers that can be linearly ordered

° If (x,y) are coordinates of center of node, interleave bits to get key
+ Put1 atleft as “sentinel”
+ Nodes near root of tree have shorter keys

Building a key for a hashed Quadtree

=110
v%;/p

CRL
key =111 01 0010 0011
Asiging Koys o Quadiree Nodes

o001 | goun | o |

10100 | 10110 | arn00 | 11ure

10001 | 10011 | w001 | 1on

10000 | 10010 | 11000 | 11010

04/19/2016 CS267 Lecture 25 50

°

°

°

°

Linearly Ordering Quadtree nodes for Costzones (2/2)

Asdsign unique key to each node in QuadTree, then compute hash(key) to get a linear
order

key = interleaved bits of x,y coordinates of node, prefixed by 1

Assigning Keys to Quadiree Nodas

oo | aennn | oo | an

Ty T T

soo0r | 1e011 | noo | wson

o000 | 1w010 | oo | 11010

04/19/2016 51

CS267 Lecture 25

Determining Costzones in Parallel

° Not practical to compute QuadTree, in order to
compute Costzones, to then determine how to best
build QuadTree

° Random Sampling:

« All processors send small random sample of their particles to
Proc 1

* Proc 1 builds small Quadtree serially, determines its Costzones,
and broadcasts them to all processors

« Other processors build part of Quadtree they are assigned by
these Costzones

¢ All processors know all Costzones; we need this
later to compute LETs

° As particles move, may need to occasionally repeat
construction, so should not be too slow

04/19/2016 CS267 Lecture 25 52

13

Computing Locally Essential Trees (LETs)

° Warren and Salmon, 1992; Liu and Bhatt, 1994

° Everg rocessor needs a subset of the whole
QuadTree, called the LET, to compute the force on
all particles it owns

° Shared Memory
* Receiver driven protocol

» Each processor reads part of QuadTree it needs from shared
memory on demand, keeps it in cache

» Drawback: cache memory appears to need to grow proportionally
to P to remain scalable
° Distributed Memory
« Sender driven protocol

» Each processor decides which other processors need parts of its
local subset of the Quadtree, and sends these subsets

04/19/2016 CS267 Lecture 25 53

Locally Essential Trees in Distributed Memory

° How does each processor decide which other
processors need parts of its local subset of the
Quadtree?

° Barnes-Hut:
« Let j and k be processors, n a node on processor j; Does k need n?
« Let D(n) be the side length of n
« Let r(n) be the shortest distance from n to any point owned by k
« If either
(1) D(n)/r(n) < 8 and D(parent(n))/r(parent(n)) = 6, or
(2) D(n)/r(n) = 0
then node n is part of k’s LET, and so proc j should send n to k

« Condition (1) means (TM,CM) of n can be used on proc k, but this is
not true of any ancestor

« Condition (2) means that we need the ancestors of type (1) nodes too

°FMM

< Simpler rules based just on relative pzc5>sitions in QuadTree

04/19/2016 CS267 Lecture 54

Recall Step 3 of FMM

° We will use Inner_shift and Convert to build each
Inner(n) by combining expansions from other nodes

° Which other nodes?

» As few as necessary to compute the potential accurately

+ Inner_shift(Inner(parent(n)), center(n)) will account for potential
from particles far enough away from parent (red nodes below)

« Convert(Outer(i), center(n)) will account for potential from particles
in boxes at same level in Interaction Set (nodes labeled i below)

Interaction_Set(n) for the Fast Multipole Method

p = parent(n)

04/19/2016 CS267 Lecture 25 55

Performance Results - 1

° 512 Proc Intel Delta
* Warren and Salmon, Supercomputing 92, Gordon Bell Prize
+ 8.8 M particles, uniformly distributed
* .1% to 1% RMS error, Barnes-Hut
* 114 seconds = 5.8 Gflops

- Decomposing domain 7 secs
- Building the OctTree 7 secs
- Tree Traversal 33 secs
- Communication during traversal 6 secs
- Force evaluation 54 secs
- Load imbalance 7 secs

* Rises to 160 secs as distribution becomes nonuniform

04/19/2016 CS267 Lecture 25 56

14

Performance Results - 2

° Cray T3E, running FMM
« Blackston, 1999
+ 104 RMS error
» Generally 80% efficient on up to 32 processors
» Example: 50K particles, both uniform and nonuniform
- preliminary results; lots of tuning parameters to set

Uniform Nonuniform

1 proc 4 procs 1 proc 4 procs
Tree size 2745 2745 5729 5729
MaxDepth 4 4 10 10
Time(secs) 172.4 38.9 14.7 24
Speedup 4.4 6.1
Speedup >50 >500

vs O(n2)

° Ultimate goal - portable, tunable code including all useful variants
04/19/2016 CS267 Lecture 25 57

Performance Results - 3 Georgia Golk
Tech| Gompur

g

Optimizing and Tuning the
Fast Multipole Method for Multicore
and Accelerator Systems

Georgia Tech
— Aparna Chandramowlishwaran, Aashay Shringarpure, llya Lashuk;
George Biros, Richard Vuduc

Lawrence Berkeley National Laboratory
- Sam Williams, Lenny Oliker

° Presented at IPDPS 2010

° Source: Richard Vuduc
04/19/2016 CS267 Lecture 25 58

Summary

» First cross-platform single-node multicore study of
tuning the fast multipole method (FMM)

Explores data structures, SIMD, mixed-precision, multithreading, and
tuning

Show
25x speedups on Intel Nehalem —
2-sockets x 4-cores/socket x 2-thr/core = 16 threads
9.4x on AMD Barcelona
2-sockets x 4-cores/socket x 1-thr/core = 8 threads
37.6x on Sun Victoria Falls
2-sockets x 8-cores/socket x 8-thr/core = 128 threads

» Surprise? Multicore ~ GPU in performance & energy
efficiency for the FMM

04/19/2016 CS267 Lecture 25 Source: Richard Yuduc

Optimizations tried (manual and autotuning)
* Uses KIFMM = Kernel Independent FMM

- Applies to “any” kernel, not just gravity/electrostatics
* Requires subroutine to evaluate kernel, builds own expansions
« Ex: (modified) Laplace, Stokes
« Approximate particles inside square/box by evenly spaced
particles on circle/sphere
* FFT used to build expansions; tunable

»Single-core, manually coded & tuned
Low-level: SIMD vectorization (x86)
Numerical: r SQrtps + Newton-Raphson (x86)
Data: Structure reorg. (transpose or “SOA”)
Traffic: Matrix-free via interprocedural loop fusion
FFTW plan optimization

»OpenMP parallelization

»Algorithmic tuning of max particles per box, q
04/19/2016 CS267 Lecture 25 Source: Richard 8uduc

15

Single-core Optimizations
Double-Precision, Non-uniform (ellipsoidal)

500%
400%
g 300% 1
°
o
2 200% -
]
100% -
0% 1
-100%
= > > 3 x §
I +sivDization +Newton-Raphson [| +Structure of Arays [l +Matrix-Free] +erTW
Approximation Computation
Reference: kifmm3d [Ying, Langston, Zorin, Biros] 61

Algorithmic Tuning of g = Max pts / box - Nehalem

600 Force Evaluation Only

5 ~e—Reference Serial
~®-Optimized Serial
~#-Optimized Parallel
v

4u

o[
-t

Seconds

100

0.4 —
0 -V
50 100 250 500 750
Maximum Particles per Box

Shape of curve changes as we introduce optimizations.

04/19/2016 €S267 Lecture 25 .
eoture Source: RichardVuduc

Cross-Platform Performance Comparison (Summary)
Single Precision

2
o2
3E
52 GPU:
¥ NCSA Lincoln Cluster
L]
¢ ‘;: NVIDIA T10P +
£S dual socket Xeon
L
S
t o
g3
a0
£ @ L > w0 E @ L > v
s65§”°%5z2 ©6§~5%z
23 - 9 23 - 9
o o
[¥ N T ° ¥ N
z 8 + z 3 +
Uniform Elliptical
Distribution Distribution
- Reference - +Optimized [: +OpenMP \:I +Tree Construction

Amortized
Nehalem outperforms 1-GPU case, a little slower than 2-GPU case. ;
Source: Richard Vuduc

Minimizing Communication in N-Body Problem

o

Hierarchical Methods
» Reducing arithmetic good for reducing communication too!
» Deriving communication lower bounds is an open problem

- Answer is approximate, so lower bound may depend on desired
accuracy

- Lower bound may also depend on particle distribution
- Open problem (probably hard)

° Direct methods

« Thm: Suppose p processors compute interactions among n particles,
using local memories of size M. If each processor does an equal
amount of work (n2/p interactions) then the number of words that a
processor must communicate is Q((n?/p)/M), and the number of
messages is Q((n?/p)/M2)

* If not computing all n2 interactions (eg cutoff distance),
replace n? by #interactions in Thm

» For which values of M is this attainable?

04/19/2016 CS267 Lecture 25 64

16

Traditional (Naive n?) Nbody Algorithm
(using a 1D decomposition)

 —

P n
— — | — | — — T \0‘

° Given n particles, p processors e\' nemory
° Each processor has n/p part’

° Algorithm: shift copy o* 60 .o the left p times,
calculating all pairw’ e
° Computation ce

¢ Communica*’ O .«dth: O(n) words
- Lower b o% p)/IM) =Q(n), attained

° Communica. «atency: O(p) messages
« Lower bouna = Q((n2/p)/M2) = Q(p), attained

65

Communication Avoiding Version

(using a “1.5D” decomposition: assume memory for c copies)
Driscoll, Georganas, Koanantakool, Solomonik, Yelick

plc——

° Divide p into ¢ groups. Start with all n particles on p/c processors
° Make a copy of each group of n*c/p particles
° Pass copy to the 0...c-1st neighbor depending on row
° Main Algorithm: for p/c? steps
« Compute pairwise interactions for owned vs. shifted particles
« Shift copy of n*c/p particles to cth neighbor
° Reduce across c to produce final value for each particle

Communication Avoiding Version

(usgg a “1.5D” decomposition: assume memory for c copies)
Drisco

, Georganas, Koanantakool, Solomonik, Yelick

° Divide p into c groups. Replicate particles in each group.
* Memory: M = O(n*c/p) particles per processor
° Make, pass copies: Latency: O(log c) Bandwidth: O(n*c/p)
° Main Algorithm: for p/c? steps
* Per step, Latency: O(1) Bandwidth: O(n*c/p)
« Overall, Latency: O(p/c?) = O((n2/p)/M?)
Bandwidth: O(n/c) = O((n%/p)/M)

° Attains Bandwidth, latency lower bound for 1 < ¢ < p'2

Communication Avoiding Version

(2D decomposition is Limit)
Driscoll, Georganas, Koanantakool, Solomonik, Yelick

p112 _

12
WU (U R p"

s — — |

° Limit is when c= p'/2
* Memory: M = O(n/p'/2)
« Startup/Finish: Latency: O(log c) = O(log p);
Bandwidth O(n/p72)
° Main part of Algorithm has 1 step
* Latency: O(1) Bandwidth: O(n/p'?)

Same as “parallelizing in the force direction” in NAMD [Hendrickson, Plimpton95]

17

N-Body Speedups on IBM-BG/P (Intrepid)

8K cores, 32K particles

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

Execution Time vs. Replication Factor

E’; 0.25 T T T T T T T

k23 mm Communication (Reduce)

o Communication (Shift)

% 0.2 = Computation 1
o

£

= 015 B
1]

a

(o] -] -
£ 0.1

=

c

S 005 s
5

(5]

% an i 1 1 §f § §F 1 BN
i 0

c=1 c=1 c=2 c=4 c=8 c=16 ¢=32 c=64

UEUEAC) Replication Factor

11.8x speedup

How general are these
communication lower bounds

and optimal algorithms?

04/19/2016 CS267 Lecture 25

70

Recall optimal sequential Matmul

° Naive code
for i=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,j)

° “Blocked” code
for i1 =1:b:n, forj1 =1:b:n, for k1=1:b:n
fori2 = 0:b-1, for j2 = 0:b-1, for k2 = 0:b-1

i=i1+i2, j=j1+j2, k = k1+k2 }
b x b matmul

C(i.j)+=A(i,k)"B(k.j)

° Thm: Picking b = M2 attains lower bound:
#words_moved = Q(n3/M1/2)
° Where does 1/2 come from?

New Thm applied to Matmul

¢ for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k.j)
° Record array indices in matrix A

ik
1 0 1 YA
A=lo0o 1 1 |B
1 1 0o Jc

° Solve LP for x = [xi,xj,xk]™: max1™x s.t. Ax<1
« Result: x=[1/2, 1/2,1/2]",1T™x=3/2=§

° Thm: #words_moved = 1'2(n3/MS'1)= Q(n3/M1/2)
Attained by block sizes Mxi,Mxi,Mxk = M12,M"/2, M*/2

18

New Thm applied to Direct N-Body

° for i=1:n, for j=1:n, F(i) += force(P(i) , P(j))
° Record array indices in matrix A

i j

1 0 F
A= |1 o P

0 1) P()

° Solve LP for x = [xi,xj]": max 1™x s.t. Ax<1
« Result: x=[1,1],1Tx=2=8

° Thm: #words_moved = Q(nleS'1)= Q(nle1)
Attained by block sizes MX,M* = M1,M"

N-Body Speedups on IBM-BG/P (Intrepid)

8K™cores, 32K particles
K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

Execution Time vs. Replication Factor

E’; 0.25 T T T T T T T

k23 mm Communication (Reduce)

o Communication (Shift)

% 0.2 = Computation 1
o

£

= 015 B
1]

a

(o] - . -
£ 0.1

=

c

S 005 s
5

(5] .

% an i 1 1 §f § §F 1 BN
i 0

c=1 c=1 c=2 c=4 c=8 c=16 ¢=32 c=64

UEUEAC) Replication Factor

11.8x speedup

New Thm applied to Random Code

° for i1=1:n, for i2=1:n, ..., for i6=1:n
A1(i1,i3,i6) += func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6))
A5(i2,i6) += func2(A6(i1,i4,i5),A3(i3,i4,i6))

° Record array indices '11 'j ij‘ ';‘ ij i? N
in matrix A 1 1 0 1 o ol a2
A= 0 1 1 0 1 0 A3

0 0 1 1 0 1 A3,A4
0 0 1 1 0 1 A5
1 0 0 1 1 0 A6

° Solve LP for x = [x1,...,x6]": max1™x s.t. Ax<1
« Result: x = [2/7,3/7,1/7,2/7,3/7,4/7,, 1" x = 15/7 = 5

° Thm: #words_moved = Q(n®/MS-1)= Q(n®/m8/7)
Attained by block sizes M27,M37, M7, M27, M3/, M47

Approach to generalizing lower bounds

° Matmul
for i=1:n, for j=1:n, for k=1:n,
C(i.j)+=A(i,k)*B(k.j)
=> for (i,j,k) in S = subset of Z3
Access locations indexed by (i,j), (i,k), (k.j)
° General case
for i1=1:n, fori2 =i1:m, ... for ik = i3:i4

C(i1+2*i3-i7) = func(A(i2+3%14,i1,i2,i1+i2,...),B(pnt(3*i4)),...

D(something else) = func(something else), ...
=> for (i1,i2,...,ik) in S = subset of Zk
Access locations indexed by “projections”, eg
@c (i1,i2,...,ik) = (i11+2*i3-i7)
@4 (i1,i2,...,ik) = (i2+3*14,i1,i2,i1+i2,...), ...

)

19

General Communication Bound

° Def: Holder-Brascamp-Lieb Linear Program (HBL-LP)
for s,,...,s:
for all subgroups H <Z%, rank(H) < Z; s;*rank(¢;(H))
° Thm: Given a program with array refs given by o,
_?_rr:oose s; to minimize s,5, = Z; s;subject to HgL-LP.
en

#words_moved = Q (#iterations/Ms+s.-1)

* Proof depends on recent result in pure mathematics by
Christ/Tao/Carbery/Bennett

Is this bound attainable? (1/2)

° But first: Can we write it down?
* One inequality per subgroup H < Z%, but still finitely many!

* Thm: (bad news) Writing down all inequalities equivalent
to Hilbert’s 10t problem over Q

- conjectured to be undecidable

* Thm: (good news) Can decidably write down a subset of
the constraints with the same solution s 5,

* Thm: (better news) Can write it down “explicitly” in many
cases of interest

- Ex: when all ¢; = {subset of indices}
- Ex: when at most 3 arrays
- Ex: when at most 4 indices

Is this bound attainable? (2/2)

° Depends on loop dependencies
° Best case: none, or reductions (matmul)

° Thm: When all ; = {subset of indices}, dual of HBL-LP
gives optimal tile sizes:

HBL-LP: minimize 1™s s.t. s*A 217
Dual-HBL-LP: maximize 1™x s.t. A*x<1
Then for sequential algorithm, tile i; by Mxi
°Ex: Matmul: s =[1/2,1/2,1/2]"=x
° Extends to unimodular transforms of indices

Intuition behind LP for matmul
¢ for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k.j)
° for i1= 1:MXi:n, for j1=1:Mi:n, for k1=1:M*k:n
fori2 = 0: MXi -1, for j2 = 0: M -1, for k2=0: Mk -1
C(i1+i2, j1+j2) += A(i1+i2,k1+k2)*B(k1+k2,j1+j2)
° How do we choose x = [xi,xj,xk]?
« C(i,j) has blocks of size M*i by M¥, or M**X words, so xi + xj < 1
to fit in fast memory of size M
« Similarly A(i,k) requires xi + xk < 1, B(k,j) requires xk + xj <1
*Sameas Ax=s1
» Number of inner 3 loop iterations = M*i x MXi x Mxk = [yxi +xj +xk
* Goal: maximize number of inner 3 loop iterations given blocks of
A,B,C in fast memory
* Same as maximizing s = xi + xj + xk = 17x s.t. Ax<1
« Solution: x=[", %, 2], s =3/2
» Overall communication cost

= number of times inner 3 loops executed * M = n3/Ms * M = n3/M12

20

Proof of Communication Lower Bound on C = A-B (1/5)

° Proof from Irony/Toledo/Tiskin (2004)
° Think of instruction stream being executed
« Looks like “ ... add, load, multiply, store, load, add, ...”
- Each load/store moves a word between fast and slow memory

« We want to count the number of loads and stores, given that we
are multiplying n-by-n matrices C = A-B using the usual 2n® flops,
possibly reordered assuming addition is commutative/associative

« Assuming that at most M words can be stored in fast memory
° Outline:

« Break instruction stream into segments, each with M loads and
stores

« Somehow bound the maximum number of flops that can be done
in each segment, call it F

* So F-#segments=T = total flops =2-n3, so #segments=T/F
* So #loads & stores =M - #segments =M -T/F

04/19/2016 CS267 Lecture 25 81

Proof of Communication Lower Bound on C = A-B (2/5)

“C face”
Cube representing
C(1,1) +=A(1,3)-B(3,1)
C(2,3)
c(1,1)
pecd
)
A(1,3) o
A(1,2) % &l i
5 7
5 s
A(2,1) A(1,1) o &
. @
i — 54
“A face”

« If we have at most 2M “A squares”, “B squares”, and

“C squares” on faces, how many cubes can we have? 82

Proof of Communication Lower Bound on C = A-B (3/5)

° Given segment of instruction stream with M loads & stores,
how many adds & multiplies (F) can we do?

+ At most 2M entries of C, 2M entries of A and/or 2M entries of B can be
accessed
° Use geometry:
« Represent n® multiplications by n x n x n cube
* One n x n face represents A
- each 1 x 1 subsquare represents one A(i,k)
* One n x n face represents B
- each 1 x 1 subsquare represents one B(k,j)
* One n x n face represents C
- each 1 x 1 subsquare represents one C(i,j)
« Each 1 x 1 x 1 subcube represents one C(i,j) += A(i,k) - B(k,j)
- May be added directly to C(i,j), or to temporary accumulator

83

Proof of Communication Lower Bound on C = A-B (4/5)

tk

X C shadow
.y @

’660 /

e
24 "v §? S

A shadow

i «—
(i,k) is in A shadow if (i,j,k) in 3D set
(k) is in B shadow if (i,j,k) in 3D set
(i,j) isin C shadow if (i,j,k) in 3D set

cubes in black box with
side lengths x, y and z

= Volume of black box Thm (Loomis & Whitney, 1949)

=Xy-z # cubes in 3D set = Volume of 3D set
=(xz-zy - yx)2 < (area(A shadow) - area(B shadow) -
= (#Aos - #Bos - #Cos)12 area(C shadow)) 12

84

21

Proof of Communication Lower Bound on C = A-B (5/5)

° Consider one “segment” of instructions with M loads, stores
° Can be at most 2M entries of A, B, C available in one segment

° Volume of set of cubes representlnzg p033|ble multlply/adds in
one segment is < (2M - 2M

°# Segments = [2n3/F|
° # Loads & Stores = M - #Segments = M - |2n3 / F|
=n3/2M)Y2_M = Q(n3/ M12)

« Parallel Case: apply reasoning to one processor out of P
« # Adds and Muls = 2n3 / P (at least one proc does this)
« M= n2/ P (each processor gets equal fraction of matrix)
- # “Load & Stores” = # words moved from or to other procs
=M- (2n3 /P)/F=M - (2n3 /P)/ (2M)32 = n2 | (2P)"2

Ongoing Work

° Develop algorithm to compute lower bound in general
° Automate generation of approximate LPs

° Extend “perfect scaling” results for time and energy by
using extra memory

° Have yet to find a case where we cannot attain lower
bound — can we prove this?

° Handle dependencies

° Incorporate into compilers

Future Lectures

° April 26: Big Bang, Big Data, Big Iron: HPC and the
Cosmic Microwave Backgroun

« Julian Borrill, LBNL

° April 28: The Future of High Performance Computing
+ Kathy Yelick, UCB and LBNL
* HKN Class Survey too!

04/19/2016 CS267 Lecture 25 87

22

