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Big Idea 
° Suppose the answer at each point depends on data at all 

the other points 
•  Electrostatic, gravitational force 
•  Solution of elliptic PDEs 
•  Graph partitioning 

° Seems to require at least O(n2) work, communication 
°  If the dependence on “distant” data can be compressed 

•  Because it gets smaller, smoother, simpler… 

° Then by compressing data of groups of nearby points, can 
cut cost (work, communication) at distant points 

•  Apply idea recursively: cost drops to O(n log n) or even O(n) 

° Examples:  
•  Barnes-Hut or Fast Multipole Method (FMM) for electrostatics/gravity/… 
•  Multigrid for elliptic PDE 
•  Multilevel graph partitioning (METIS, Chaco,…) 
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Outline 
°  Motivation 

•  Obvious algorithm for computing gravitational or electrostatic force on N bodies 
takes O(N2) work 

°  How to reduce the number of particles in the force sum 
•  We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 …) 

°  Basic Data Structures: Quad Trees and Oct Trees 
°  The Barnes-Hut Algorithm (BH) 

•  An O(N log N) approximate algorithm for the N-Body problem 

°  The Fast Multipole Method (FMM) 
•  An O(N) approximate algorithm for the N-Body problem 

°  Parallelizing BH, FMM and related algorithms 
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Particle Simulation 

°  f(i) = external_force + nearest_neighbor_force + N-Body_force 
•  External_force is usually embarrassingly parallel and costs O(N) for all particles 

-  external current in Sharks and Fish 
•  Nearest_neighbor_force requires interacting with a few neighbors, so still O(N) 

-  van der Waals, bouncing balls 
•  N-Body_force (gravity or electrostatics)  requires all-to-all interactions 

-  f(i) =     Σ     f(i,k)        …     f(i,k) = force on i from k 
    
-  f(i,k) = c*v/||v||3   in 3 dimensions or   f(i,k) = c*v/||v||2   in 2 dimensions   

–  v = vector from particle i to particle k , c = product of masses or charges 
–  ||v|| = length of v  

-  Obvious algorithm costs O(n2), but we can do better... 

t = 0 
while t < t_final 
      for i = 1 to n               … n = number of particles 
          compute f(i) = force on particle i 
      for i = 1 to n 
          move particle i under force f(i) for time dt    … using F=ma 
      compute interesting properties of particles (energy, etc.) 
      t = t + dt 
end while 

k ≠ i 
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Motif/Dwarf: Common Computational Methods    
(Red Hot → Blue Cool) 
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1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

What  do commercial and CSE applications have in common? 
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Applications (1/2) 

° Astrophysics and Celestial Mechanics - 1992 
•  Intel Delta = 1992 supercomputer, 512 Intel i860s 
•  17 million particles, 600 time steps, 24 hours elapsed time 

–  M. Warren and J. Salmon 
–  Gordon Bell Prize at Supercomputing 1992 

•  Sustained 5.2 Gigaflops = 44K Flops/particle/time step 
•  1% accuracy 
•  Direct method (17 Flops/particle/time step) at 5.2 Gflops would have 

taken 18 years, 6570 times longer 

° Vortex particle simulation of turbulence – 2009 
•  Cluster of 256 NVIDIA GeForce 8800 GPUs 
•  16.8 million particles 

-  T. Hamada, R. Yokota, K. Nitadori. T. Narumi, K. Yasoki et al 
-  Gordon Bell Prize for Price/Performance at Supercomputing 2009 

•  Sustained 20 Teraflops,  or $8/Gigaflop 
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Applications (2/2) 

° Molecular Dynamics 
° Plasma Simulation 
° Electron-Beam Lithography Device Simulation 
° Hair ...    

•  www.fxguide.com/featured/brave-new-hair/ 
•  graphics.pixar.com/library/CurlyHairA/paper.pdf 
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Reducing the number of particles in the force sum 

°  All later divide and conquer algorithms use same intuition 
°  Consider computing force on earth due to all celestial bodies 

•  Look at night sky, # terms in force sum ≥ number of visible stars 
•  Oops! One “star” is really the Andromeda galaxy, which contains 

billions of real stars 
-  Seems like a lot more work than we thought …  

°  Don’t worry, ok to approximate all stars in Andromeda by a 
single point at its center of mass (CM) with same total mass (TM) 

•  D = size of box containing Andromeda , r = distance of CM to Earth 
•  Require that D/r be “small enough” 

•  Idea not new: Newton approximated earth and falling apple by CMs 
8 
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What is new: Using points at CM recursively 

°  From Andromeda’s point of view, Milky Way is also a point mass 
°  Within Andromeda, picture repeats itself 

•  As long as D1/r1 is small enough, stars inside smaller box can be 
replaced by their CM to compute the force on Vulcan 

•  Boxes nest in boxes recursively 
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Outline 
°  Motivation 

•  Obvious algorithm for computing gravitational or electrostatic force on N bodies 
takes O(N2) work 

°  How to reduce the number of particles in the force sum 
•  We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 …) 

°  Basic Data Structures: Quad Trees and Oct Trees 
°  The Barnes-Hut Algorithm (BH) 

•  An O(N log N) approximate algorithm for the N-Body problem 

°  The Fast Multipole Method (FMM) 
•  An O(N) approximate algorithm for the N-Body problem 

°  Parallelizing BH, FMM and related algorithms 
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Quad Trees 

° Data structure to subdivide the plane 
•  Nodes can contain coordinates of center of box, side length 
•  Eventually also coordinates of CM, total mass, etc. 

°  In a complete quad tree, each nonleaf node has 4 
children 
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Oct Trees 

° Similar Data Structure to subdivide space 
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Using Quad Trees and Oct Trees 

° All our algorithms begin by constructing a tree to 
hold all the particles 

°  Interesting cases have nonuniformly distributed 
particles 

•  In a complete tree most nodes would be empty, a waste of space 
and time 

° Adaptive Quad (Oct) Tree only subdivides space 
where particles are located  
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Example of an Adaptive Quad Tree 

Child nodes enumerated counterclockwise 
from SW corner, empty ones excluded 

In practice, have q>1 particles/square; tuning parameter 
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Adaptive Quad Tree Algorithm (Oct Tree analogous) 
Procedure Quad_Tree_Build  
    Quad_Tree = {emtpy} 
    for j = 1 to N                               … loop over all N particles 
         Quad_Tree_Insert(j, root)        … insert particle j in QuadTree 
    endfor 
    …   At this point, each leaf of Quad_Tree will have 0 or 1 particles  
    …   There will be 0 particles when some sibling has 1 
    Traverse the Quad_Tree eliminating empty leaves  … via, say Breadth First Search 
 
Procedure Quad_Tree_Insert(j, n) … Try to insert particle j at node n in Quad_Tree 
    if n an internal node              … n has 4 children 
        determine which child c of node n contains particle j 
        Quad_Tree_Insert(j, c) 
   else if n contains 1 particle   …  n is a leaf 
        add n’s 4 children to the Quad_Tree 
        move the particle already in n into the child containing it 
        let c be the child of n containing j 
        Quad_Tree_Insert(j, c) 
    else                                         …  n empty  
        store particle j in node n 
    end 

Easy change for  q > 1 particles/leaf 
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Cost of Adaptive Quad Tree Constrution 

° Cost ≤ N * maximum cost of Quad_Tree_Insert  
        = O( N * maximum depth of Quad_Tree) 

° Uniform Distribution  of particles 
•  Depth of Quad_Tree = O( log N ) 
•  Cost ≤ O( N * log N ) 

° Arbitrary distribution of particles  
•  Depth of Quad_Tree = O( # bits in particle coords ) = O( b ) 
•  Cost ≤ O( b N ) 

16 
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Outline 
°  Motivation 

•  Obvious algorithm for computing gravitational or electrostatic force on N bodies 
takes O(N2) work 

°  How to reduce the number of particles in the force sum 
•  We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 …) 

°  Basic Data Structures: Quad Trees and Oct Trees 
°  The Barnes-Hut Algorithm (BH) 

•  An O(N log N) approximate algorithm for the N-Body problem 

°  The Fast Multipole Method (FMM) 
•  An O(N) approximate algorithm for the N-Body problem 

°  Parallelizing BH, FMM and related algorithms 
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Barnes-Hut Algorithm 

°  “A Hierarchical O(n log n) force calculation algorithm”,                 
J. Barnes and P. Hut, Nature, v. 324 (1986), many later papers 

°  Good for low accuracy calculations: 
    RMS error  =  (Σk || approx f(k) - true f(k) ||2 / || true f(k) ||2 /N)1/2 
                        ~  1% 
         (other measures better if some true f(k) ~ 0) 
°  High Level Algorithm (in 2D, for simplicity) 

1) Build the QuadTree using QuadTreeBuild 
     … already described, cost = O( N log N) or O(b N) 
2) For each node = subsquare in the QuadTree, compute the  
    CM and total mass (TM)  of all the particles it contains 
    … “post order traversal” of QuadTree, cost = O(N log N) or O(b N) 
3) For each particle, traverse the QuadTree to compute the force on it,  
    using the CM and TM of “distant” subsquares 
    … core of algorithm  
    … cost depends on accuracy desired but still O(N log N) or O(bN) 
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Step 2 of BH: compute CM and total mass of each node 

Cost = O(# nodes in QuadTree) = O( N log N ) or O(b N) 

… Compute the CM = Center of Mass and TM = Total Mass of all the particles  
… in each node of the QuadTree 
( TM, CM ) = Compute_Mass( root ) 
 
function ( TM, CM ) = Compute_Mass( n )    … compute the CM and TM of node n 
      if n contains 1 particle 
           … the TM and CM are identical to the particle’s mass and location 
           store (TM, CM) at n 
           return (TM, CM) 
      else       … “post order traversal”: process parent after all children 
           for all children c(j) of n  … j = 1,2,3,4 
                 ( TM(j), CM(j) ) = Compute_Mass( c(j) ) 
           endfor 
           TM = TM(1) + TM(2) + TM(3) + TM(4)   
                  … the total mass is the sum of the children’s masses 
           CM = ( TM(1)*CM(1) + TM(2)*CM(2) + TM(3)*CM(3) + TM(4)*CM(4) ) / TM 
                  … the CM is the mass-weighted sum of the children’s centers of mass 
           store ( TM, CM ) at n 
           return ( TM, CM ) 
       end if 
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Step 3 of BH: compute force on each particle 

°  For each node = square, can approximate force on particles 
outside the node due to particles inside node by using the 
node’s CM and TM 

°  This will be accurate enough if the node if “far away enough” 
from the particle 

°  For each particle, use as few nodes as possible to compute 
force, subject to accuracy constraint 

°  Need criterion to decide if a node is far enough from a particle 
•  D = side length of node 
•  r = distance from particle to CM of node 
•  θ = user supplied error tolerance < 1 
•  Use CM and TM to approximate force of node on box if D/r < θ 

20 
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Computing force on a particle due to a node 

° Suppose node n, with CM and TM, and particle k, 
satisfy D/r < θ 

° Let (xk, yk, zk) be coordinates of k, m its mass 
° Let (xCM, yCM, zCM) be coordinates of CM 
°  r = ( (xk - xCM)2 + (yk - yCM)2 + (zk - zCM)2 )1/2  
° G = gravitational constant 
° Force on k ≈ 

 G * m * TM *  (  xCM - xk  ,  yCM - yk  , zCM – zk ) / r^3  
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Details of Step 3 of BH 

… for each particle, traverse the QuadTree to compute the force on it 
for k = 1 to N 
    f(k) = TreeForce( k, root )    
                   … compute force on particle k due to all particles inside root (except k) 
endfor 
 
function f = TreeForce( k, n )    
    … compute force on particle k due to all particles inside node n (except k) 
    f = 0 
    if n contains one particle (not k)  … evaluate directly 
        f = force computed using formula on last slide 
    else 
        r = distance from particle k to CM of particles in n 
        D = size of n 
        if  D/r  < θ     … ok to approximate by CM and TM 
             compute f using formula from last slide 
        else              … need to look inside node 
             for all children c of n 
                   f = f + TreeForce ( k, c ) 
             end for 
        end if 
    end if 
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Analysis of Step 3 of BH 

° Correctness follows from recursive accumulation of 
force from each subtree 

•  Each particle is accounted for exactly once, whether it is in a leaf 
or other node 

° Complexity analysis 
•  Cost of TreeForce( k, root )  = O(depth in QuadTree of leaf 

containing k) 
•  Proof by Example (for θ>1):  

–  For each undivided node = square,  
      (except one containing k), D/r < 1 < θ	
–  There are 3 nodes at each level of 
      the QuadTree 
–  There is O(1) work per node 
–  Cost = O(level of k) 

•  Total cost = O(Σk level of k) = O(N log N)  
-  Strongly depends on θ 

k 
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Outline 
°  Motivation 

•  Obvious algorithm for computing gravitational or electrostatic force on N bodies 
takes O(N2) work 

°  How to reduce the number of particles in the force sum 
•  We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 …) 

°  Basic Data Structures: Quad Trees and Oct Trees 
°  The Barnes-Hut Algorithm (BH) 

•  An O(N log N) approximate algorithm for the N-Body problem 

°  The Fast Multipole Method (FMM) 
•  An O(N) approximate algorithm for the N-Body problem 

°  Parallelizing BH, FMM and related algorithms 
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Fast Multiple Method (FMM) 

°  “A fast algorithm for particle simulation”, L. Greengard and V. 
Rokhlin, J. Comp. Phys. V.  73, 1987, many later papers 

•  Many awards 

°  Differences from Barnes-Hut 
•  FMM computes the potential at every point, not just the force 
•  FMM uses more information in each box than the CM and TM, so it is both  

more accurate and more expensive 
•  In compensation, FMM accesses a fixed set of boxes at every level, 

independent of D/r 
•  BH uses fixed information (CM and TM) in every box, but # boxes increases 

with accuracy. FMM uses a fixed # boxes, but the amount of information per 
box increase with accuracy. 

°  FMM uses two kinds of expansions 
•  Outer expansions represent potential outside node due to particles inside, 

analogous to (CM,TM) 
•  Inner expansions represent potential inside node due to particles outside; 

Computing this for every leaf node is the computational goal of FMM 

°  First review potential, then return to FMM 
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Gravitational/Electrostatic Potential 

°  FMM will compute a compact expression  for potential φ(x,y,z) 
which can be evaluated and/or differentiated at any point 

°  In 3D with x,y,z coordinates 
• Potential  =   φ(x,y,z) = -1/r = -1/(x2 + y2 + z2)1/2 

•  Force = -grad φ(x,y,z) = - (dφ/dx , dφ/dy , dφ/dz) = -(x,y,z)/r3 

°  In 2D with x,y coordinates 
• Potential  =   φ(x,y) = log r = log (x2 + y2)1/2 

•  Force = -grad φ(x,y) = - (dφ/dx , dφ/dy ) = -(x,y)/r2 

°  In 2D with z = x+iy coordinates,  i = sqrt(-1) 
• Potential  =   φ(z) = log  |z| = Real( log z ) 
     … because log z = log |z|eiθ = log |z| + iθ	
• Drop Real( ) from calculations, for simplicity 

•  Force = -(x,y)/r2  =  -z / |z|2  
°  Later: Kernel Independent FMM 
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2D Multipole Expansion (Taylor expansion in 1/z)  (1/2) 
φ(z) = potential due to zk, k=1,…,n 
       =  Σk mk * log |z - zk| 
       = Real( Σk mk * log (z - zk) )  
             … since log z = log |z|eiθ = log |z| + iθ	
              … drop Real() from now on 
       = Σk mk * [ log(z) + log (1 - zk/z) ] 
             … how logarithms work  
     = M * log(z) + Σk mk * log (1 - zk/z) 
             … where M = Σk mk  
       = M * log(z) - Σk mk * Σ e≥1 (zk/z)e/e 
             … Taylor expansion converges if |zk/z| < 1 
       = M * log(z) - Σ e≥1 z-e Σk mk zke/e 
             … swap order of summation 
       = M * log(z) - Σ e≥1 z-e αe 
             … where αe = Σk mk zke/e   …   called Multipole Expansion 
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2D Multipole Expansion (Taylor expansion in 1/z)  (2/2) 
φ(z) = potential due to zk, k=1,…,n 
       =  Σk mk * log |z - zk| 
       = Real( Σk mk * log (z - zk) )  
            … drop Real() from now on 
       = M * log(z) - Σ e≥1 z-e αe      …  Taylor Expansion in 1/z 
             … where M = Σk mk = Total Mass  and  
            …             αe = Σk mk zke /e 
             … This is called a Multipole Expansion in z 
       = M * log(z) - Σ r≥e≥1 z-e αe + error( r ) 
             … r = number of terms in Truncated Multipole Expansion 
             … and error( r ) = -Σ r<ez-e αe  
              
§  Note that α1 = Σk mk zk = CM*M 
   so that  M and α1 terms have same info as Barnes-Hut 

§  error( r ) = O( {maxk |zk| /|z|}r+1 )   … bounded by geometric sum 

28 
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Error in Truncated 2D Multipole Expansion 

°  error( r ) = O( {maxk |zk| /|z|}r+1 )     
°  Suppose maxk |zk|/ |z| ≤ c < 1, so       

 error( r ) = O(cr+1) 
°  Suppose all particles zk lie inside a D-by-D 

 square centered at origin 
°  Suppose z is outside a 3D-by-3D 

 square centered at the origin  
°  c = (D/sqrt(2)) / (1.5*D)  ~ .47 < .5 

°  each term in expansion adds           
 1 bit of accuracy  

°   24 terms enough for single precision, 
      53 terms for double precision 

°  In 3D, can use spherical harmonics  
    or other expansions 

Error outside larger box is 
O( c^(-r) ) 
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Outer(n) and Outer Expansion 

   φ(z) ~ M * log(z - zn) - Σ r≥e≥1 (z-zn)-e αe 
   
°  Outer(n) = (M, α1 , α2 , … , αr , zn ) 

•  Stores data for evaluating potential φ(z) outside 
     node n due to particles inside n 
•  zn = center of node n  
•  Error small for z outside dotted line in previous plot 
•  Cost  of evaluating φ(z)  is O( r ), independent of  

             the number of particles inside n 
•  Cost grows linearly with desired number of bits of 
      precision ~r 

°  Will be computed for each node in QuadTree 
°  Analogous to (TM,CM) in Barnes-Hut 

°  M and α1 same information as Barnes-Hut 
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Inner(n) and Inner Expansion 

° Outer(n) used to evaluate potential outside node n 
due to particles inside n 

°  Inner(n) will be used to evaluate potential inside  
node n due to particles outside n 

° Σ 0≤e≤r βe * (z-zn)e  

°  zn = center of node n, a D-by-D box 
°  Inner(n) = ( β0 , β1 , … , βr , zn ) 
°  Particles outside n  must lie outside 3D-by-3D box centered 

at zn 
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Top Level Description of FMM 

(1) Build the QuadTree 
(2) Call Build_Outer(root), to compute outer expansions 
      of each node n in the QuadTree 
             … Traverse QuadTree from bottom to top, 
             … combining outer expansions of children 
             …  to get out outer expansion of parent 
(3) Call Build_ Inner(root), to compute inner expansions 
      of each node n in the QuadTree 

 … Traverse QuadTree from top to bottom, 
             … converting outer to inner expansions 
             … and combining them 
(4) For each leaf node n, add contributions of nearest particles 
      directly into Inner(n) 
             … final Inner(n) is desired output: expansion for potential at 
                  each point due to all particles 
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Step 2 of FMM: Outer_shift: converting Outer(n1) to Outer(n2)   (1/3) 

°  For step 2 of FMM (as in step 2 of BH) we want to compute 
Outer(n) cheaply from Outer( c ) for all children c of n 

°  How to combine outer expansions around different points? 
•  φk(z) ~ Mk * log(z-zk) - Σ r≥e≥1 (z-zk)-e αek   expands around zk , k=1,2 
•  First step: make them expansions around same point 

°  n1 is a child (subsquare) of n2 
°  zk = center(nk) for k=1,2 
°  Outer(n1) expansion accurate outside  
     blue dashed square, so also accurate  
     outside black dashed square 
°  So there is an Outer(n2) expansion 
    with different αk and center z2 which 
    represents the same potential as 
    Outer(n1) outside the black dashed box 
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Outer_shift: Details  (2/3) 

°  Given expansion centered at z1 (= child) 

°  Solve for M2 and αe2  in expansion centered at z2 (= parent) 

°  Get M2 = M1 and each αe2  is a linear combination of the αe1 
•  multiply r-vector of  αe1 values by a fixed r-by-r matrix to get αe2 

°  ( M2 , α12 , …  , αr2  , z2 ) = Outer_shift( Outer(n1) , z2 ) 

                                                = desired Outer( n2 ) 

φ1(z) = M1 * log(z-z1) + Σ r≥e≥1 (z-z1)-e αe1 

φ1(z)  ~ φ2(z) = M2 * log(z-z2) + Σ r≥e≥1 (z-z2)-e αe2 
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Step 2 of FMM: compute Outer(n) for each node n in QuadTree (3/3) 
… Compute Outer(n) for each node of the QuadTree 
outer = Build_Outer( root ) 
 
function ( M, α1,…,αr , zn) = Build_Outer( n )    … compute outer expansion of node n 
      if n if a leaf  … it contains 1 (or a few) particles 
           compute and return Outer(n) = ( M, α1,…,αr , zn) directly from 
                its definition as a sum 
      else       … “post order traversal”: process parent after all children 
           Outer(n) = 0 
           for all children c(k) of n  … k = 1,2,3,4 
                 Outer( c(k) ) = Build_Outer( c(k) ) 
                 Outer(n) = Outer(n) +  
                        Outer_shift( Outer(c(k)) , center(n)) 
                        … just add component by component  
           endfor 
           return Outer(n) 
end if 

Cost = O(# nodes in QuadTree)  = O( N ) 
         same as for Barnes-Hut 
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Top Level Description of FMM 

(1) Build the QuadTree 
(2) Call Build_Outer(root), to compute outer expansions 
      of each node n in the QuadTree 
             … Traverse QuadTree from bottom to top, 
             … combining outer expansions of children 
             …  to get out outer expansion of parent 
(3) Call Build_ Inner(root), to compute inner expansions 
      of each node n in the QuadTree 

 … Traverse QuadTree from top to bottom, 
             … converting  outer to inner expansions 
             … and combining them 
(4) For each leaf node n, add contributions of nearest particles 
      directly into Inner(n) 
             … final Inner(n) is desired output: expansion for potential at 
                  each point due to all particles 

36 



10 

Step 3 of FMM:  Computing Inner(n) from other expansions 

° Which other expansions?  
•  As few as necessary to compute the potential accurately 
•  Inner expansion of p = parent(n) will account for potential from 

particles far enough away from parent (red nodes below) 
•  Outer expansions will account for potential from particles in boxes 

at same level in Interaction Set (nodes labeled i below)  

04/19/2016 CS267 Lecture 25 
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Step 3 of FMM: Compute Inner(n) for each n in QuadTree  

°  Need Inner(n1) = 
Inner_shift(Inner(n2), n1) 

°  Need Inner(n4) = 
Convert(Outer(n3), n4)  

Converting Inner(n2) to Inner(n1) 

38 

n2 = parent(n1) 
n3 in Interaction_set(n4) 

04/19/2016 CS267 Lecture 25 

Step 3 of FMM:     Inner(n1) = Inner_shift(Inner(n2), n1) 

° Inner(nk) =  
     ( β0k , β1k , … , βrk , zk ) 

° Inner expansion = Σ 0≤e≤r βek * (z-zk)e 

°  Solve Σ 0≤e≤r βe1 * (z-z1)e = Σ 0≤e≤r βe2 * (z-z2)e  

      for βe1  given z1, βe2 , and z2 
° (r+1) x (r+1) matrix-vector multiply 

 

Converting Inner(n2) to Inner(n1) 
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Step 3 of FMM:     Inner(n4) = Convert(Outer(n3), n4)  

° Inner(n4) =  
     ( β0 , β1 , … , βr , z4 ) 
° Outer(n3) =  
     (M, α1 , α2 , … , αr , z3 ) 
  

°  Solve Σ 0≤e≤r βe * (z-z4)e = M*log (z-z3) + Σ 0≤e≤r αe * (z-z3)-e  

      for βe  given z4 , αe , and z3 
° (r+1) x (r+1) matrix-vector multiply 
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Step 3 of FMM:  Computing Inner(n) from other expansions 

° We will use Inner_shift and Convert to build each 
Inner(n) by combining expansions from other nodes 

° Which other nodes?  
•  As few as necessary to compute the potential accurately 
•  Inner_shift(Inner(parent(n)), center(n)) will account for potential 

from particles far enough away from parent (red nodes below) 
•  Convert(Outer(i), center(n)) will account for  potential from particles 

in boxes at same level in Interaction Set (nodes labeled i below)  

41 04/19/2016 

CS267 Lecture 15 

Step 3 of FMM: Interaction Set 

•  Interaction Set  = { nodes i that are children of a neighbor of 
parent(n), such that i is not itself a neighbor of n} 

•  For each i in Interaction Set , Outer(i) is available, so that 
Convert(Outer(i),center(n)) gives contribution to Inner(n) due to 
particles in i 

•  Number of i in Interaction Set  is at most 62 - 32 = 27 in 2D 
•  Number of i in Interaction Set  is at most 63 - 33 = 189 in 3D 

42 
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Step 3 of FMM: Compute Inner(n) for each n in QuadTree 

… Compute Inner(n) for each node of the QuadTree 
outer = Build_ Inner( root ) 
 
 
function (  β1,…,βr , zn) = Build_ Inner( n )    … compute inner expansion of node n 
     p = parent(n)    … p=nil if n = root 
     Inner(n) = Inner_shift( Inner(p), center(n) )      … Inner(n) = 0 if n = root  
     for all i in Interaction_Set(n)     …  Interaction_Set(root) is empty 
           Inner(n) = Inner(n) + Convert( Outer(i), center(n) )    
                         … add component by component 
     end for 
     for all children c of n   … complete preorder traversal of QuadTree 
           Build_Inner( c ) 
     end for 

Cost = O(# nodes in QuadTree)  
         = O( N ) 

43 04/19/2016 CS267 Lecture 25 

Top Level Description of FMM 

(1) Build the QuadTree 
(2) Call Build_Outer(root), to compute outer expansions 
      of each node n in the QuadTree 
             … Traverse QuadTree from bottom to top, 
             … combining outer expansions of children 
             …  to get out outer expansion of parent 
(3) Call Build_ Inner(root), to compute inner expansions 
      of each node n in the QuadTree 

 … Traverse QuadTree from top to bottom, 
             … converting outer to inner expansions 
             … and combining them 
(4) For each leaf node n, add contributions of 
      nearest particles directly into Inner(n) 
          … if 1 node/leaf, then each particles accessed once,  
            … so cost = O( N ) 
            … final Inner(n) is desired output: expansion for potential at 
                  each point due to all particles 

44 
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Outline 
°  Motivation 

•  Obvious algorithm for computing gravitational or electrostatic force on N bodies 
takes O(N2) work 

°  How to reduce the number of particles in the force sum 
•  We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 …) 

°  Basic Data Structures: Quad Trees and Oct Trees 
°  The Barnes-Hut Algorithm (BH) 

•  An O(N log N) approximate algorithm for the N-Body problem 

°  The Fast Multipole Method (FMM) 
•  An O(N) approximate algorithm for the N-Body problem 

°  Parallelizing BH, FMM and related algorithms 

45 04/19/2016 CS267 Lecture 25 

Parallelizing Hierachical N-Body codes 
°  Barnes-Hut, FMM and related algorithm have similar computational 

structure: 
1) Build the QuadTree 
2) Traverse QuadTree from leaves to root and build outer expansions   

 (just (TM,CM) for Barnes-Hut) 
3) Traverse QuadTree from root to leaves and build any inner expansions 
4) Traverse QuadTree  to accumulate forces for each particle 

°  One parallelization scheme will work for them all 
•  Based on D. Blackston and T. Suel, Supercomputing 97 

-  UCB PhD Thesis, David Blackston, “Pbody”  
-  Autotuner for N-body codes 

•  Assign regions of space to each processor 
•  Regions may have different shapes, to get load balance 

-  Each region will have about N/p particles 
•  Each processor will store part of Quadtree containing all  particles (=leaves) in its 

region, and their ancestors in Quadtree 
-  Top of tree stored by all processors, lower nodes may also be shared 

•  Each processor  will also store adjoining parts of Quadtree needed to compute forces 
for particles it owns 

-  Subset of Quadtree needed by a processor called the Locally Essential Tree (LET) 
•  Given the LET, all force accumulations (step 4)) are done in parallel, without 

communication 
46 
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Programming Model - BSP 

° BSP Model  = Bulk Synchronous Programming Model 
•  All processors compute; barrier; all processors communicate; 

barrier; repeat 

° Advantages 
•  easy to program (parallel code looks like serial code) 
•  easy to port (MPI, shared memory, TCP network) 

° Possible disadvantage 
•  Rigidly synchronous style might mean inefficiency? 

° OK with few processors; communication costs low 
•  FMM 80% efficient on 32 processor Cray T3E 
•  FMM 90% efficient on 4 PCs on slow  network 
•  FMM 85% efficient on 16 processor SGI SMP (Power Challenge) 
•  Better efficiencies for Barnes-Hut, other algorithms 

47 04/19/2016 CS267 Lecture 25 

Load Balancing Scheme 1: Orthogonal Recursive Bisection (ORB) 

° Warren and Salmon, Supercomputing 92 
° Recursively split region along axes into regions 

containing equal numbers of particles 
° Works well for 2D, not 3D (available in Pbody) 

Partitioning 
for 16 procs: 

48 
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Load Balancing Scheme 2: Costzones 

°  Called Costzones for Shared Memory 
•  PhD thesis, J.P. Singh, Stanford, 1993 

°  Called “Hashed Oct Tree” for Distributed Memory 
•  Warren and Salmon, Supercomputing 93 

°  We will use the name Costzones for both; also in Pbody 
°  Idea: partition QuadTree instead of space 

•  Estimate work for each node, call total work W 
•  Arrange nodes of QuadTree in some linear order (lots of choices) 
•  Assign contiguous blocks of nodes with work W/p to processors: locality 
•  Works well in 3D 

49 04/19/2016 CS267 Lecture 25 

Linearly Ordering Quadtree nodes for Costzones (1/2) 
°  Hashed QuadTrees (Warren and Salmon) 
°  Assign unique key to each node in QuadTree, then compute hash(key) to 

get integers that can be linearly ordered 
°  If (x,y) are coordinates of center of node, interleave bits to get key 

•  Put 1 at left as “sentinel” 
•  Nodes near root of tree have shorter keys 

50 

04/19/2016 
CS267 Lecture 25 

Linearly Ordering Quadtree nodes for Costzones (2/2) 
°  Assign unique key to each node in QuadTree, then compute hash(key) to get a linear 

order 
°  key = interleaved bits of x,y coordinates of node, prefixed by 1 

°  Hash(key) = bottom h bits of key (eg h=4) 
°  Assign contiguous blocks of hash(key) to same processors 

51 04/19/2016 CS267 Lecture 25 

Determining Costzones in Parallel 

° Not practical to compute QuadTree, in order to 
compute Costzones, to then determine how to best 
build QuadTree 

° Random Sampling: 
•  All processors send small random sample of their particles to 

Proc 1 
•  Proc 1 builds small Quadtree serially, determines its Costzones, 

and broadcasts them to all processors 
•  Other processors build part of Quadtree they are assigned by 

these Costzones 

° All processors know all Costzones; we need this 
later to compute LETs 

° As particles move, may need to occasionally repeat 
construction, so should not be too slow 

52 
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Computing Locally Essential Trees (LETs) 

° Warren and Salmon, 1992; Liu and Bhatt, 1994 
° Every processor needs a subset of the whole 

QuadTree, called the LET, to compute the force on 
all particles it owns 

° Shared Memory 
•  Receiver driven protocol 
•  Each processor reads part of QuadTree it needs from shared 

memory on demand, keeps it in cache 
•  Drawback: cache memory appears to need to grow proportionally 

to P to remain scalable 

° Distributed Memory  
•  Sender driven protocol 
•  Each processor decides which other processors need parts of its 

local subset of the Quadtree, and sends these subsets 

53 04/19/2016 CS267 Lecture 25 

Locally Essential Trees in Distributed Memory 
° How does each processor decide which other 

processors need parts of its local subset of the 
Quadtree? 

° Barnes-Hut: 
•  Let j and k be processors, n a node on processor j;    Does k need n? 
•  Let D(n) be the side length of n  
•  Let r(n) be the shortest distance from n to any point owned by k 
•  If either  

(1) D(n)/r(n) < θ and D(parent(n))/r(parent(n)) ≥ θ, or 
(2) D(n)/r(n) ≥ θ   
then node n is part of k’s LET, and so proc j should send n to k 

•  Condition (1) means (TM,CM) of n can be used on proc k, but this is 
not true of any ancestor 

•  Condition (2) means that we need  the ancestors of type (1) nodes too 

° FMM 
•  Simpler rules based just on relative positions in QuadTree 

54 
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Recall Step 3 of FMM 

° We will use Inner_shift and Convert to build each 
Inner(n) by combining expansions from other nodes 

° Which other nodes?  
•  As few as necessary to compute the potential accurately 
•  Inner_shift(Inner(parent(n)), center(n)) will account for potential 

from particles far enough away from parent (red nodes below) 
•  Convert(Outer(i), center(n)) will account for  potential from particles 

in boxes at same level in Interaction Set (nodes labeled i below)  

55 04/19/2016 CS267 Lecture 25 

Performance Results - 1 

° 512 Proc Intel Delta 
•  Warren and Salmon, Supercomputing 92, Gordon Bell Prize 
•  8.8 M particles, uniformly distributed 
•  .1% to 1% RMS error, Barnes-Hut 
•  114 seconds = 5.8 Gflops 

-  Decomposing domain                      7 secs 
-  Building the OctTree                        7 secs 
-  Tree Traversal                                 33 secs 
-  Communication during traversal    6 secs 
-  Force evaluation                             54 secs 
-  Load imbalance                                7 secs 

•  Rises to 160 secs as distribution becomes nonuniform 

56 



15 

04/19/2016 CS267 Lecture 25 

Performance Results - 2 

° Cray T3E, running FMM 
•  Blackston, 1999 
•  10-4  RMS error 
•  Generally 80% efficient on up to 32 processors 
•  Example: 50K particles, both uniform and nonuniform 

-  preliminary results; lots of tuning parameters to set 

°  Ultimate goal - portable, tunable  code including all useful variants 

                              Uniform                              Nonuniform 
                  1 proc   4 procs                    1 proc    4 procs 
 
Tree size            2745       2745                        5729         5729 
MaxDepth                4             4                            10             10 
Time(secs)       172.4         38.9                         14.7           2.4 
Speedup                              4.4                                            6.1 
Speedup                             >50                                         >500 
    vs O(n2) 

57 

Optimizing and Tuning the  
Fast Multipole Method for Multicore  
and Accelerator Systems  
Georgia Tech �
– Aparna Chandramowlishwaran,  Aashay Shringarpure, Ilya Lashuk;�
 George Biros, Richard Vuduc �
�
Lawrence Berkeley National Laboratory�
– Sam Williams, Lenny Oliker�
	

° Presented at IPDPS 2010 
° Source: Richard Vuduc  

Performance Results - 3 

04/19/2016 CS267 Lecture 25 58 

Summary 

04/19/2016 CS267 Lecture 25 

"  First cross-platform single-node multicore study of 
tuning the fast multipole method (FMM) 

"  Explores data structures, SIMD, mixed-precision, multithreading, and 
tuning 

"  Show  
"  25x speedups on Intel Nehalem –  

"  2-sockets x 4-cores/socket x 2-thr/core  =    16 threads 
"  9.4x on AMD Barcelona   

"  2-sockets x 4-cores/socket x 1-thr/core  =      8 threads                                                                          
"  37.6x on Sun Victoria Falls 

"  2-sockets x 8-cores/socket x 8-thr/core  =  128 threads 

"  Surprise? Multicore ~ GPU in performance & energy 
efficiency for the FMM 

Source: Richard Vuduc  59 

Optimizations tried (manual and autotuning) 

04/19/2016 CS267 Lecture 25 

•  Uses KIFMM = Kernel Independent FMM 
•  Applies to “any” kernel, not just gravity/electrostatics 
•  Requires subroutine to evaluate kernel, builds own expansions 

•  Ex: (modified) Laplace, Stokes  
•  Approximate particles inside square/box by evenly spaced 

particles on circle/sphere 
•  FFT used to build expansions;  tunable 

"  Single-core, manually coded & tuned 
"  Low-level: SIMD vectorization (x86) 

"  Numerical: rsqrtps + Newton-Raphson (x86) 
"  Data: Structure reorg. (transpose or “SOA”) 
"  Traffic: Matrix-free via interprocedural loop fusion 
"  FFTW plan optimization 

" OpenMP parallelization 
"  Algorithmic tuning of max particles per box, q 

Source: Richard Vuduc  60 



16 

Reference: kifmm3d [Ying, Langston, Zorin, Biros] 

Single-core Optimizations 
Double-Precision, Non-uniform (ellipsoidal) 

Source: Richard Vuduc  03/08/2012 CS267 Lecture 15 

61 

Algorithmic Tuning of q = Max pts / box  -  Nehalem 

Shape of curve changes as we introduce optimizations. 

Source: Richard Vuduc  04/19/2016 CS267 Lecture 25 62 

Cross-Platform Performance Comparison (Summary) 

Nehalem outperforms 1-GPU case, a little slower than 2-GPU case. 

GPU: 
  NCSA Lincoln Cluster 
  NVIDIA T10P +         
     dual socket Xeon 
   
 

Source: Richard Vuduc  
03/08/2012 CS267 Lecture 15 

63 

0.1 

Minimizing Communication in N-Body Problem 

° Hierarchical Methods 
•  Reducing arithmetic good for reducing communication too! 
•  Deriving communication lower bounds is an open problem 

-  Answer is approximate, so lower bound may depend on desired 
accuracy 

-  Lower bound may also depend on particle distribution 
-  Open problem (probably hard) 

° Direct methods 
•  Thm: Suppose p processors compute interactions among n particles, 

using local memories of size M. If each processor does an equal 
amount of work (n2/p interactions) then the number of words that a 
processor must communicate is Ω( (n2/p)/M ), and the number of 
messages is Ω( (n2/p)/M2 ) 

•  If not computing all n2 interactions (eg cutoff distance),             
replace n2 by #interactions in Thm 

•  For which values of M is this attainable? 

04/19/2016 CS267 Lecture 25 64 
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Traditional (Naïve n2) Nbody  Algorithm 
(using a 1D decomposition) 

° Given n particles, p processors,  M=O(n/p) memory 
° Each processor has n/p particles  

° Algorithm: shift copy of particles to the left p times, 
calculating all pairwise forces 

° Computation cost: n2/p 
° Communication bandwidth: O(n) words 

•  Lower bound = Ω( (n2/p)/M ) = Ω( n ) , attained 

° Communication latency: O(p) messages 
•  Lower bound = Ω( (n2/p)/M2 ) = Ω( p ) , attained 

65 

............ ............ ............ ............ ............ ............ ............ ............ 
p 

Can we do bette
r? 

Communication Avoiding Version  
(using a “1.5D” decomposition: assume memory for c copies) 
Driscoll, Georganas, Koanantakool, Solomonik, Yelick 

°  Divide p into c groups. Start with all n particles on p/c processors 
°  Make a copy of each group of n*c/p particles 
°  Pass copy to the 0th…c-1st neighbor depending on row 
°  Main Algorithm: for p/c2 steps 

•  Compute pairwise interactions for owned vs. shifted particles 
•  Shift copy of n*c/p particles to cth neighbor 

°  Reduce across c to produce final value for each particle 

............ ............ ............ ............ ............ ............ ............ ............ 

c 

p/c 

............ ............ ............ ............ ............ ............ ............ ............ 

............ ............ ............ ............ ............ ............ ............ ............ 

............ ............ ............ ............ ............ ............ ............ ............ 

Replicate particles within group. 

Same as “parallelizing in the force direction” in NAMD [Plimpton95] 

Communication Avoiding Version  
(using a “1.5D” decomposition: assume memory for c copies) 
Driscoll, Georganas, Koanantakool, Solomonik, Yelick 

°  Divide p into c groups.  Replicate particles in each group. 
•  Memory: M = O(n*c/p) particles per processor 

°  Make, pass copies: Latency: O(log c)   Bandwidth: O(n*c/p) 
°  Main Algorithm: for p/c2 steps 

•  Per step, Latency: O(1)    Bandwidth: O(n*c/p) 
•  Overall, Latency:      O(p/c2)  = O((n2/p)/M2) 
                 Bandwidth: O(n/c)   = O((n2/p)/M) 

°  Attains Bandwidth, latency lower bound for  1 ≤ c ≤ p1/2 

............ ............ ............ ............ ............ ............ ............ ............ 

c 

p/c 

............ ............ ............ ............ ............ ............ ............ ............ 

............ ............ ............ ............ ............ ............ ............ ............ 

............ ............ ............ ............ ............ ............ ............ ............ 

Communication Avoiding Version  
(2D decomposition is Limit) 
Driscoll, Georganas, Koanantakool, Solomonik, Yelick 

° Limit is when c= p1/2 

• Memory: M = O(n/p1/2) 
• Startup/Finish: Latency: O(log c) = O(log p);  
                              Bandwidth O(n/p1/2) 

° Main part of Algorithm has 1 step 
• Latency: O(1)   Bandwidth: O(n/p1/2) 

............ ............ ............ ............ 
p1/2 ............ ............ ............ ............ 

............ ............ ............ ............ 

............ ............ ............ ............ 

p1/2 

Same as “parallelizing in the force direction” in NAMD [Hendrickson, Plimpton95] 
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N-Body Speedups on IBM-BG/P (Intrepid) 
8K cores, 32K particles 

11.8x speedup 

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik 

How general are these  
communication lower bounds 

and optimal algorithms? 

04/19/2016 CS267 Lecture 25 70 

Recall optimal sequential Matmul 
° Naïve code 
     for i=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,j) 
 
° “Blocked” code 
     for i1 = 1:b:n,  for j1 = 1:b:n,   for k1 = 1:b:n 
       for i2 = 0:b-1,  for j2 = 0:b-1,   for k2 = 0:b-1 
          i=i1+i2,  j = j1+j2,  k = k1+k2 
          C(i,j)+=A(i,k)*B(k,j) 
 
° Thm: Picking b = M1/2 attains lower bound: 
      #words_moved = Ω(n3/M1/2) 
° Where does 1/2 come from? 

b x b matmul 

New Thm applied to Matmul 

°  for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j) 
° Record array indices in matrix Δ 

 
° Solve LP for x = [xi,xj,xk]T:  max 1Tx   s.t.   Δ x ≤ 1 

•  Result: x = [1/2, 1/2, 1/2]T, 1Tx = 3/2 = S 

° Thm: #words_moved = Ω(n3/MS-1)= Ω(n3/M1/2) 
    Attained by block sizes Mxi,Mxj,Mxk = M1/2,M1/2,M1/2 

i j k 
1 0 1 A 

Δ   = 0 1 1 B 
1 1 0 C 
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New Thm applied to Direct N-Body 

°  for i=1:n, for j=1:n, F(i) += force( P(i) , P(j) ) 
° Record array indices in matrix Δ 

 
 
° Solve LP for x = [xi,xj]T:  max 1Tx  s.t. Δ x ≤ 1 

•  Result: x = [1,1], 1Tx = 2 = S 

° Thm: #words_moved = Ω(n2/MS-1)= Ω(n2/M1) 
    Attained by block sizes Mxi,Mxj = M1,M1 

i j 
1 0 F 

Δ   = 1 0 P(i) 
0 1 P(j) 

N-Body Speedups on IBM-BG/P (Intrepid) 
8K cores, 32K particles 

11.8x speedup 

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik 

New Thm applied to Random Code 

°  for i1=1:n, for i2=1:n, … , for i6=1:n 
      A1(i1,i3,i6) += func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6)) 
      A5(i2,i6) += func2(A6(i1,i4,i5),A3(i3,i4,i6)) 
° Record array indices  
     in matrix Δ 
 

 
° Solve LP for x = [x1,…,x6]T:  max 1Tx  s.t. Δ x ≤ 1 

•  Result: x = [2/7,3/7,1/7,2/7,3/7,4/7], 1Tx = 15/7 = s 

° Thm: #words_moved = Ω(n6/MS-1)= Ω(n6/M8/7) 
    Attained by block sizes M2/7,M3/7,M1/7,M2/7,M3/7,M4/7 
 
 
 
 

i1 i2 i3 i4 i5 i6 

1 0 1 0 0 1 A1 

1 1 0 1 0 0 A2 

Δ = 0 1 1 0 1 0 A3 

0 0 1 1 0 1 A3,A4 

0 0 1 1 0 1 A5 

1 0 0 1 1 0 A6 

Approach to generalizing lower bounds 

°  Matmul 
        for i=1:n, for j=1:n, for k=1:n,  
              C(i,j)+=A(i,k)*B(k,j) 
 =>   for (i,j,k) in S = subset of Z3 

              Access locations indexed by (i,j), (i,k),  (k,j) 
°  General case 
       for i1=1:n,  for i2 = i1:m, … for ik = i3:i4 
             C(i1+2*i3-i7) = func(A(i2+3*i4,i1,i2,i1+i2,…),B(pnt(3*i4)),…) 
             D(something else) = func(something else),  … 
 =>  for (i1,i2,…,ik) in S = subset of Zk 
             Access locations indexed by “projections”, eg 
                φC (i1,i2,…,ik) = (i1+2*i3-i7) 
                φA (i1,i2,…,ik) = (i2+3*i4,i1,i2,i1+i2,…),  … 

°  Can we bound #loop_iterations / points in S 
      given bounds on #points in its images φC (S), φA (S), …   ?  
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General Communication Bound 

° Def: Hölder-Brascamp-Lieb Linear Program (HBL-LP)  
    for s1,…,sm:   
    for all subgroups H < Zk,     rank(H) ≤ Σj sj*rank(φj(H)) 
° Thm: Given a program with array refs given by φj, choose sj to minimize sHBL = Σj sj subject to HBL-LP. 

Then 
                #words_moved = Ω (#iterations/MsHBL-1) 

• Proof depends on recent result in pure mathematics by   
Christ/Tao/Carbery/Bennett 

° Given S subset of Zk, group homomorphisms φ1, φ2, …,             bound |S| in terms of |φ1(S)|,  |
φ2(S)|, … , |φm(S)| 

° Thm (Christ/Tao/Carbery/Bennett): Given s1,…,sm 
                                |S| ≤ Πj |φj(S)|sj 

Is this bound attainable? (1/2) 

° But first: Can we write it down? 
• One inequality per subgroup H < Zk, but still finitely many! 
• Thm: (bad news) Writing down all inequalities equivalent  

to Hilbert’s 10th problem over Q 
-   conjectured to be undecidable 

• Thm: (good news) Can decidably write down a subset of 
the constraints with the same solution sHBL 

• Thm: (better news) Can write it down “explicitly” in many 
cases of interest 

-  Ex: when all φj = {subset of indices} 
-  Ex: when at most 3 arrays 
-  Ex: when at most 4 indices 

 

•  Thm: (good news) Easy to approximate 
-   If you miss a constraint, the lower bound may be too large (i.e. 

sHBL too small) but still worth trying to attain, because your 
algorithm will still communicate less  

-  Tarski-decidable to get superset of constraints (may get    . sHBL too 
large) 

Is this bound attainable? (2/2) 

° Depends on loop dependencies 
° Best case: none, or reductions (matmul) 
° Thm: When all φj = {subset of indices}, dual of HBL-LP 

gives optimal tile sizes: 
        HBL-LP:           minimize  1T*s   s.t.  sT*Δ ≥ 1T 

            Dual-HBL-LP:  maximize 1T*x  s.t.    Δ*x ≤ 1 
     Then for sequential algorithm, tile ij by Mxj 
° Ex: Matmul: s = [ 1/2 , 1/2 , 1/2 ]T = x 
° Extends to unimodular transforms of indices 

Intuition behind LP for matmul 
°  for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j) 
°  for i1= 1:Mxi:n, for j1=1:Mxj:n, for k1=1:Mxk:n 
      for i2 = 0: Mxi -1, for j2 = 0: Mxj -1, for k2=0: Mxk -1  
         C(i1+i2, j1+j2) += A(i1+i2,k1+k2)*B(k1+k2,j1+j2) 
°  How do we choose x = [xi,xj,xk]? 

•  C(i,j) has blocks of size Mxi by Mxj, or Mxi+xj words, so xi + xj ≤ 1   
to fit in fast memory of size M 

•  Similarly A(i,k) requires xi + xk ≤ 1 , B(k,j) requires xk + xj ≤ 1  
•  Same as Δ x ≤ 1  
•  Number of inner 3 loop iterations  = Mxi x Mxj x Mxk  =  Mxi + xj + xk 

•  Goal: maximize number of inner 3 loop iterations given blocks of 
A,B,C in fast memory 

•  Same as maximizing s = xi + xj + xk =  1Tx   s.t.   Δ x ≤ 1 
•  Solution:  x = [ ½, ½, ½ ], s = 3/2 
•  Overall communication cost 
    = number of times inner 3 loops executed * M = n3/Ms * M  = n3/M1/2 

 

i j k 
1 0 1 A 

Δ   = 0 1 1 B 
1 1 0 C 
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Proof of Communication Lower Bound on C = A·B (1/5)  

°  Proof from Irony/Toledo/Tiskin (2004) 
°  Think of instruction stream being executed 

•  Looks like “ …  add,  load, multiply, store, load, add, …” 
-  Each load/store moves a word between fast and slow memory 

•  We want to count the number of loads and stores, given that we 
are multiplying n-by-n matrices C = A·B using the usual 2n3 flops, 
possibly reordered assuming addition is commutative/associative 

•  Assuming that at most M words can be stored in fast memory 
°  Outline: 

•  Break instruction stream into segments, each with M loads and 
stores      

•  Somehow bound the maximum number of flops that can be done 
in each segment, call it F 

•  So    F · # segments ≥ T = total flops = 2·n3 ,  so  # segments ≥ T / F 
•  So    # loads & stores = M · #segments  ≥ M · T / F 
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Proof of Communication Lower Bound on C = A·B (2/5)  
k 

“A face” 
“B

 fa
ce
” 

“C face” 
Cube representing 

C(1,1) += A(1,3)·B(3,1) 

 
•  If we have at most 2M “A squares”, “B squares”, and       
“C squares” on faces, how many cubes can we have? 

i 

j 

A(2,1) 

A(1,3) 

B
(1

,3
) 

B
(3

,1
) 

C(1,1) 

C(2,3) 

A(1,1) B
(1

,1
) 

A(1,2) 

B
(2

,1
) 
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Proof of Communication Lower Bound on C = A·B (3/5)  

° Given segment of instruction stream with M loads & stores, 
how many adds & multiplies (F) can we do? 

•    At most 2M entries of C, 2M entries of A and/or 2M entries of B  can be 
accessed 

° Use geometry: 
•  Represent n3 multiplications by n x n x n cube 
•  One n x n face represents A  

-  each 1 x 1 subsquare represents one A(i,k) 
•  One n x n face represents B 

-  each 1 x 1 subsquare represents one B(k,j) 
•  One n x n face represents C  

-  each 1 x 1 subsquare represents one C(i,j) 
•  Each 1 x 1 x 1 subcube represents one  C(i,j) += A(i,k) · B(k,j) 

-  May be added directly to C(i,j), or to temporary accumulator  
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Proof of Communication Lower Bound on C = A·B (4/5)  

x 

z 

z 

y 

x 
y 

k 

A shadow 

B shadow 

C shadow 

j 

i 

# cubes in black box with 
   side lengths x, y and z 
= Volume of black box 
= x·y·z 
= ( xz · zy · yx)1/2 
= (#A□s · #B□s · #C□s )1/2 

(i,k) is in  A shadow  if (i,j,k) in 3D set  
(j,k) is in  B shadow  if (i,j,k) in 3D set  
(i,j)  is in  C shadow  if (i,j,k) in 3D set 
 
Thm (Loomis & Whitney, 1949) 
     # cubes in 3D set = Volume of 3D set 
     ≤ (area(A shadow) · area(B shadow) · 
         area(C shadow)) 1/2 
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Proof of Communication Lower Bound on C = A·B (5/5)  

° Consider one “segment” of instructions with M loads,  stores 
° Can be at most 2M entries of A, B, C available in one segment 

° Volume of set of cubes representing possible multiply/adds in 
one segment is ≤ (2M · 2M · 2M)1/2 = (2M) 3/2 ≡ F 

° # Segments ≥  ⎣2n3 / F⎦  

° # Loads & Stores = M · #Segments ≥ M · ⎣2n3 / F⎦   

                               ≥ n3 / (2M)1/2 – M = Ω(n3 / M1/2 ) 

• Parallel Case: apply reasoning to one processor out of P 
•  # Adds and Muls ≥ 2n3 / P  (at least one proc does this ) 
• M= n2 / P (each processor gets equal fraction of matrix) 
•  # “Load & Stores” = # words moved from or to other procs  
≥ M · (2n3 /P) / F= M · (2n3 /P) / (2M)3/2  = n2 / (2P)1/2 
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Ongoing Work 

° Develop algorithm to compute lower bound in general 
° Automate generation of approximate LPs 
° Extend “perfect scaling” results for time and energy by 

using extra memory 
° Have yet to find a case where we cannot attain lower 

bound – can we prove this? 
° Handle dependencies 
°  Incorporate into compilers 

Future Lectures 

° April 26: Big Bang, Big Data, Big Iron: HPC and the 
Cosmic Microwave Background  

• Julian Borrill, LBNL 
° April 28: The Future of High Performance Computing 

• Kathy Yelick, UCB and LBNL 
• HKN Class Survey too! 
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