
1

04/19/2016 CS267 Lecture 25

CS 267 Applications of Parallel Computers

Hierarchical Methods for the N-Body problem

James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spr16

1 04/19/2016 CS267 Lecture 25

Big Idea
° Suppose the answer at each point depends on data at all

the other points
•  Electrostatic, gravitational force
•  Solution of elliptic PDEs
•  Graph partitioning

° Seems to require at least O(n2) work, communication
°  If the dependence on “distant” data can be compressed

•  Because it gets smaller, smoother, simpler…

° Then by compressing data of groups of nearby points, can
cut cost (work, communication) at distant points

•  Apply idea recursively: cost drops to O(n log n) or even O(n)

° Examples:
•  Barnes-Hut or Fast Multipole Method (FMM) for electrostatics/gravity/…
•  Multigrid for elliptic PDE
•  Multilevel graph partitioning (METIS, Chaco,…)

2

04/19/2016 CS267 Lecture 25

Outline
°  Motivation

•  Obvious algorithm for computing gravitational or electrostatic force on N bodies
takes O(N2) work

°  How to reduce the number of particles in the force sum
•  We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 …)

°  Basic Data Structures: Quad Trees and Oct Trees
°  The Barnes-Hut Algorithm (BH)

•  An O(N log N) approximate algorithm for the N-Body problem

°  The Fast Multipole Method (FMM)
•  An O(N) approximate algorithm for the N-Body problem

°  Parallelizing BH, FMM and related algorithms

3 03/014/2013 CS267 Lecture 25

Particle Simulation

°  f(i) = external_force + nearest_neighbor_force + N-Body_force
•  External_force is usually embarrassingly parallel and costs O(N) for all particles

-  external current in Sharks and Fish
•  Nearest_neighbor_force requires interacting with a few neighbors, so still O(N)

-  van der Waals, bouncing balls
•  N-Body_force (gravity or electrostatics) requires all-to-all interactions

-  f(i) = Σ f(i,k) … f(i,k) = force on i from k

-  f(i,k) = c*v/||v||3 in 3 dimensions or f(i,k) = c*v/||v||2 in 2 dimensions

–  v = vector from particle i to particle k , c = product of masses or charges
–  ||v|| = length of v

-  Obvious algorithm costs O(n2), but we can do better...

t = 0
while t < t_final
 for i = 1 to n … n = number of particles
 compute f(i) = force on particle i
 for i = 1 to n
 move particle i under force f(i) for time dt … using F=ma
 compute interesting properties of particles (energy, etc.)
 t = t + dt
end while

k ≠ i

4

2

Motif/Dwarf: Common Computational Methods
(Red Hot → Blue Cool)

Em
be

d

SP
EC

D
B

G
am

es

M
L

H
PC Health Image Speech Music Browser

1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

What do commercial and CSE applications have in common?

04/19/2016 CS267 Lecture 25 5 04/19/2016 CS267 Lecture 25

Applications (1/2)

° Astrophysics and Celestial Mechanics - 1992
•  Intel Delta = 1992 supercomputer, 512 Intel i860s
•  17 million particles, 600 time steps, 24 hours elapsed time

–  M. Warren and J. Salmon
–  Gordon Bell Prize at Supercomputing 1992

•  Sustained 5.2 Gigaflops = 44K Flops/particle/time step
•  1% accuracy
•  Direct method (17 Flops/particle/time step) at 5.2 Gflops would have

taken 18 years, 6570 times longer

° Vortex particle simulation of turbulence – 2009
•  Cluster of 256 NVIDIA GeForce 8800 GPUs
•  16.8 million particles

-  T. Hamada, R. Yokota, K. Nitadori. T. Narumi, K. Yasoki et al
-  Gordon Bell Prize for Price/Performance at Supercomputing 2009

•  Sustained 20 Teraflops, or $8/Gigaflop

6

04/19/2016 CS267 Lecture 25

Applications (2/2)

° Molecular Dynamics
° Plasma Simulation
° Electron-Beam Lithography Device Simulation
° Hair ...

•  www.fxguide.com/featured/brave-new-hair/
•  graphics.pixar.com/library/CurlyHairA/paper.pdf

7 04/19/2016 CS267 Lecture 25

Reducing the number of particles in the force sum

°  All later divide and conquer algorithms use same intuition
°  Consider computing force on earth due to all celestial bodies

•  Look at night sky, # terms in force sum ≥ number of visible stars
•  Oops! One “star” is really the Andromeda galaxy, which contains

billions of real stars
-  Seems like a lot more work than we thought …

°  Don’t worry, ok to approximate all stars in Andromeda by a
single point at its center of mass (CM) with same total mass (TM)

•  D = size of box containing Andromeda , r = distance of CM to Earth
•  Require that D/r be “small enough”

•  Idea not new: Newton approximated earth and falling apple by CMs
8

3

04/19/2016 CS267 Lecture 25

What is new: Using points at CM recursively

°  From Andromeda’s point of view, Milky Way is also a point mass
°  Within Andromeda, picture repeats itself

•  As long as D1/r1 is small enough, stars inside smaller box can be
replaced by their CM to compute the force on Vulcan

•  Boxes nest in boxes recursively

9 04/19/2016 CS267 Lecture 25

Outline
°  Motivation

•  Obvious algorithm for computing gravitational or electrostatic force on N bodies
takes O(N2) work

°  How to reduce the number of particles in the force sum
•  We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 …)

°  Basic Data Structures: Quad Trees and Oct Trees
°  The Barnes-Hut Algorithm (BH)

•  An O(N log N) approximate algorithm for the N-Body problem

°  The Fast Multipole Method (FMM)
•  An O(N) approximate algorithm for the N-Body problem

°  Parallelizing BH, FMM and related algorithms

10

04/19/2016 CS267 Lecture 25

Quad Trees

° Data structure to subdivide the plane
•  Nodes can contain coordinates of center of box, side length
•  Eventually also coordinates of CM, total mass, etc.

°  In a complete quad tree, each nonleaf node has 4
children

11 04/19/2016 CS267 Lecture 25

Oct Trees

° Similar Data Structure to subdivide space

12

4

04/19/2016 CS267 Lecture 25

Using Quad Trees and Oct Trees

° All our algorithms begin by constructing a tree to
hold all the particles

°  Interesting cases have nonuniformly distributed
particles

•  In a complete tree most nodes would be empty, a waste of space
and time

° Adaptive Quad (Oct) Tree only subdivides space
where particles are located

13 03/014/2013 CS267 Lecture 25

Example of an Adaptive Quad Tree

Child nodes enumerated counterclockwise
from SW corner, empty ones excluded

In practice, have q>1 particles/square; tuning parameter

14

04/19/2016 CS267 Lecture 25

Adaptive Quad Tree Algorithm (Oct Tree analogous)
Procedure Quad_Tree_Build
 Quad_Tree = {emtpy}
 for j = 1 to N … loop over all N particles
 Quad_Tree_Insert(j, root) … insert particle j in QuadTree
 endfor
 … At this point, each leaf of Quad_Tree will have 0 or 1 particles
 … There will be 0 particles when some sibling has 1
 Traverse the Quad_Tree eliminating empty leaves … via, say Breadth First Search

Procedure Quad_Tree_Insert(j, n) … Try to insert particle j at node n in Quad_Tree
 if n an internal node … n has 4 children
 determine which child c of node n contains particle j
 Quad_Tree_Insert(j, c)
 else if n contains 1 particle … n is a leaf
 add n’s 4 children to the Quad_Tree
 move the particle already in n into the child containing it
 let c be the child of n containing j
 Quad_Tree_Insert(j, c)
 else … n empty
 store particle j in node n
 end

Easy change for q > 1 particles/leaf

15 04/19/2016 CS267 Lecture 25

Cost of Adaptive Quad Tree Constrution

° Cost ≤ N * maximum cost of Quad_Tree_Insert
 = O(N * maximum depth of Quad_Tree)

° Uniform Distribution of particles
•  Depth of Quad_Tree = O(log N)
•  Cost ≤ O(N * log N)

° Arbitrary distribution of particles
•  Depth of Quad_Tree = O(# bits in particle coords) = O(b)
•  Cost ≤ O(b N)

16

5

04/19/2016 CS267 Lecture 25

Outline
°  Motivation

•  Obvious algorithm for computing gravitational or electrostatic force on N bodies
takes O(N2) work

°  How to reduce the number of particles in the force sum
•  We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 …)

°  Basic Data Structures: Quad Trees and Oct Trees
°  The Barnes-Hut Algorithm (BH)

•  An O(N log N) approximate algorithm for the N-Body problem

°  The Fast Multipole Method (FMM)
•  An O(N) approximate algorithm for the N-Body problem

°  Parallelizing BH, FMM and related algorithms

17 04/19/2016 CS267 Lecture 25

Barnes-Hut Algorithm

°  “A Hierarchical O(n log n) force calculation algorithm”,
J. Barnes and P. Hut, Nature, v. 324 (1986), many later papers

°  Good for low accuracy calculations:
 RMS error = (Σk || approx f(k) - true f(k) ||2 / || true f(k) ||2 /N)1/2
 ~ 1%
 (other measures better if some true f(k) ~ 0)
°  High Level Algorithm (in 2D, for simplicity)

1) Build the QuadTree using QuadTreeBuild
 … already described, cost = O(N log N) or O(b N)
2) For each node = subsquare in the QuadTree, compute the
 CM and total mass (TM) of all the particles it contains
 … “post order traversal” of QuadTree, cost = O(N log N) or O(b N)
3) For each particle, traverse the QuadTree to compute the force on it,
 using the CM and TM of “distant” subsquares
 … core of algorithm
 … cost depends on accuracy desired but still O(N log N) or O(bN)

18

04/19/2016 CS267 Lecture 25

Step 2 of BH: compute CM and total mass of each node

Cost = O(# nodes in QuadTree) = O(N log N) or O(b N)

… Compute the CM = Center of Mass and TM = Total Mass of all the particles
… in each node of the QuadTree
(TM, CM) = Compute_Mass(root)

function (TM, CM) = Compute_Mass(n) … compute the CM and TM of node n
 if n contains 1 particle
 … the TM and CM are identical to the particle’s mass and location
 store (TM, CM) at n
 return (TM, CM)
 else … “post order traversal”: process parent after all children
 for all children c(j) of n … j = 1,2,3,4
 (TM(j), CM(j)) = Compute_Mass(c(j))
 endfor
 TM = TM(1) + TM(2) + TM(3) + TM(4)
 … the total mass is the sum of the children’s masses
 CM = (TM(1)*CM(1) + TM(2)*CM(2) + TM(3)*CM(3) + TM(4)*CM(4)) / TM
 … the CM is the mass-weighted sum of the children’s centers of mass
 store (TM, CM) at n
 return (TM, CM)
 end if

19 04/19/2016 CS267 Lecture 25

Step 3 of BH: compute force on each particle

°  For each node = square, can approximate force on particles
outside the node due to particles inside node by using the
node’s CM and TM

°  This will be accurate enough if the node if “far away enough”
from the particle

°  For each particle, use as few nodes as possible to compute
force, subject to accuracy constraint

°  Need criterion to decide if a node is far enough from a particle
•  D = side length of node
•  r = distance from particle to CM of node
•  θ = user supplied error tolerance < 1
•  Use CM and TM to approximate force of node on box if D/r < θ

20

6

04/19/2016 CS267 Lecture 25

Computing force on a particle due to a node

° Suppose node n, with CM and TM, and particle k,
satisfy D/r < θ

° Let (xk, yk, zk) be coordinates of k, m its mass
° Let (xCM, yCM, zCM) be coordinates of CM
°  r = ((xk - xCM)2 + (yk - yCM)2 + (zk - zCM)2)1/2
° G = gravitational constant
° Force on k ≈

 G * m * TM * (xCM - xk , yCM - yk , zCM – zk) / r^3

21 04/19/2016 CS267 Lecture 25

Details of Step 3 of BH

… for each particle, traverse the QuadTree to compute the force on it
for k = 1 to N
 f(k) = TreeForce(k, root)
 … compute force on particle k due to all particles inside root (except k)
endfor

function f = TreeForce(k, n)
 … compute force on particle k due to all particles inside node n (except k)
 f = 0
 if n contains one particle (not k) … evaluate directly
 f = force computed using formula on last slide
 else
 r = distance from particle k to CM of particles in n
 D = size of n
 if D/r < θ … ok to approximate by CM and TM
 compute f using formula from last slide
 else … need to look inside node
 for all children c of n
 f = f + TreeForce (k, c)
 end for
 end if
 end if

22

04/19/2016 CS267 Lecture 25

Analysis of Step 3 of BH

° Correctness follows from recursive accumulation of
force from each subtree

•  Each particle is accounted for exactly once, whether it is in a leaf
or other node

° Complexity analysis
•  Cost of TreeForce(k, root) = O(depth in QuadTree of leaf

containing k)
•  Proof by Example (for θ>1):

–  For each undivided node = square,
 (except one containing k), D/r < 1 < θ	
–  There are 3 nodes at each level of
 the QuadTree
–  There is O(1) work per node
–  Cost = O(level of k)

•  Total cost = O(Σk level of k) = O(N log N)
-  Strongly depends on θ

k
23 04/19/2016 CS267 Lecture 25

Outline
°  Motivation

•  Obvious algorithm for computing gravitational or electrostatic force on N bodies
takes O(N2) work

°  How to reduce the number of particles in the force sum
•  We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 …)

°  Basic Data Structures: Quad Trees and Oct Trees
°  The Barnes-Hut Algorithm (BH)

•  An O(N log N) approximate algorithm for the N-Body problem

°  The Fast Multipole Method (FMM)
•  An O(N) approximate algorithm for the N-Body problem

°  Parallelizing BH, FMM and related algorithms

24

7

04/19/2016 CS267 Lecture 25

Fast Multiple Method (FMM)

°  “A fast algorithm for particle simulation”, L. Greengard and V.
Rokhlin, J. Comp. Phys. V. 73, 1987, many later papers

•  Many awards

°  Differences from Barnes-Hut
•  FMM computes the potential at every point, not just the force
•  FMM uses more information in each box than the CM and TM, so it is both

more accurate and more expensive
•  In compensation, FMM accesses a fixed set of boxes at every level,

independent of D/r
•  BH uses fixed information (CM and TM) in every box, but # boxes increases

with accuracy. FMM uses a fixed # boxes, but the amount of information per
box increase with accuracy.

°  FMM uses two kinds of expansions
•  Outer expansions represent potential outside node due to particles inside,

analogous to (CM,TM)
•  Inner expansions represent potential inside node due to particles outside;

Computing this for every leaf node is the computational goal of FMM

°  First review potential, then return to FMM

25 04/19/2016 CS267 Lecture 25

Gravitational/Electrostatic Potential

°  FMM will compute a compact expression for potential φ(x,y,z)
which can be evaluated and/or differentiated at any point

°  In 3D with x,y,z coordinates
• Potential = φ(x,y,z) = -1/r = -1/(x2 + y2 + z2)1/2

•  Force = -grad φ(x,y,z) = - (dφ/dx , dφ/dy , dφ/dz) = -(x,y,z)/r3

°  In 2D with x,y coordinates
• Potential = φ(x,y) = log r = log (x2 + y2)1/2

•  Force = -grad φ(x,y) = - (dφ/dx , dφ/dy) = -(x,y)/r2

°  In 2D with z = x+iy coordinates, i = sqrt(-1)
• Potential = φ(z) = log |z| = Real(log z)
 … because log z = log |z|eiθ = log |z| + iθ	
• Drop Real() from calculations, for simplicity

•  Force = -(x,y)/r2 = -z / |z|2
°  Later: Kernel Independent FMM

26

04/19/2016 CS267 Lecture 25

2D Multipole Expansion (Taylor expansion in 1/z) (1/2)
φ(z) = potential due to zk, k=1,…,n
 = Σk mk * log |z - zk|
 = Real(Σk mk * log (z - zk))
 … since log z = log |z|eiθ = log |z| + iθ	
 … drop Real() from now on
 = Σk mk * [log(z) + log (1 - zk/z)]
 … how logarithms work
 = M * log(z) + Σk mk * log (1 - zk/z)
 … where M = Σk mk
 = M * log(z) - Σk mk * Σ e≥1 (zk/z)e/e
 … Taylor expansion converges if |zk/z| < 1
 = M * log(z) - Σ e≥1 z-e Σk mk zke/e
 … swap order of summation
 = M * log(z) - Σ e≥1 z-e αe
 … where αe = Σk mk zke/e … called Multipole Expansion

27 04/19/2016 CS267 Lecture 25

2D Multipole Expansion (Taylor expansion in 1/z) (2/2)
φ(z) = potential due to zk, k=1,…,n
 = Σk mk * log |z - zk|
 = Real(Σk mk * log (z - zk))
 … drop Real() from now on
 = M * log(z) - Σ e≥1 z-e αe … Taylor Expansion in 1/z
 … where M = Σk mk = Total Mass and
 … αe = Σk mk zke /e
 … This is called a Multipole Expansion in z
 = M * log(z) - Σ r≥e≥1 z-e αe + error(r)
 … r = number of terms in Truncated Multipole Expansion
 … and error(r) = -Σ r<ez-e αe

§  Note that α1 = Σk mk zk = CM*M
 so that M and α1 terms have same info as Barnes-Hut

§  error(r) = O({maxk |zk| /|z|}r+1) … bounded by geometric sum

28

8

04/19/2016 CS267 Lecture 25

Error in Truncated 2D Multipole Expansion

°  error(r) = O({maxk |zk| /|z|}r+1)
°  Suppose maxk |zk|/ |z| ≤ c < 1, so

 error(r) = O(cr+1)
°  Suppose all particles zk lie inside a D-by-D

 square centered at origin
°  Suppose z is outside a 3D-by-3D

 square centered at the origin
°  c = (D/sqrt(2)) / (1.5*D) ~ .47 < .5

°  each term in expansion adds
 1 bit of accuracy

°  24 terms enough for single precision,
 53 terms for double precision

°  In 3D, can use spherical harmonics
 or other expansions

Error outside larger box is
O(c^(-r))

29 04/19/2016 CS267 Lecture 25

Outer(n) and Outer Expansion

 φ(z) ~ M * log(z - zn) - Σ r≥e≥1 (z-zn)-e αe

°  Outer(n) = (M, α1 , α2 , … , αr , zn)

•  Stores data for evaluating potential φ(z) outside
 node n due to particles inside n
•  zn = center of node n
•  Error small for z outside dotted line in previous plot
•  Cost of evaluating φ(z) is O(r), independent of

 the number of particles inside n
•  Cost grows linearly with desired number of bits of
 precision ~r

°  Will be computed for each node in QuadTree
°  Analogous to (TM,CM) in Barnes-Hut

°  M and α1 same information as Barnes-Hut

30

04/19/2016 CS267 Lecture 15

Inner(n) and Inner Expansion

° Outer(n) used to evaluate potential outside node n
due to particles inside n

°  Inner(n) will be used to evaluate potential inside
node n due to particles outside n

° Σ 0≤e≤r βe * (z-zn)e

°  zn = center of node n, a D-by-D box
°  Inner(n) = (β0 , β1 , … , βr , zn)
°  Particles outside n must lie outside 3D-by-3D box centered

at zn

31 04/19/2016 CS267 Lecture 25

Top Level Description of FMM

(1) Build the QuadTree
(2) Call Build_Outer(root), to compute outer expansions
 of each node n in the QuadTree
 … Traverse QuadTree from bottom to top,
 … combining outer expansions of children
 … to get out outer expansion of parent
(3) Call Build_ Inner(root), to compute inner expansions
 of each node n in the QuadTree

 … Traverse QuadTree from top to bottom,
 … converting outer to inner expansions
 … and combining them
(4) For each leaf node n, add contributions of nearest particles
 directly into Inner(n)
 … final Inner(n) is desired output: expansion for potential at
 each point due to all particles

32

9

04/19/2016 CS267 Lecture 25

Step 2 of FMM: Outer_shift: converting Outer(n1) to Outer(n2) (1/3)

°  For step 2 of FMM (as in step 2 of BH) we want to compute
Outer(n) cheaply from Outer(c) for all children c of n

°  How to combine outer expansions around different points?
•  φk(z) ~ Mk * log(z-zk) - Σ r≥e≥1 (z-zk)-e αek expands around zk , k=1,2
•  First step: make them expansions around same point

°  n1 is a child (subsquare) of n2
°  zk = center(nk) for k=1,2
°  Outer(n1) expansion accurate outside
 blue dashed square, so also accurate
 outside black dashed square
°  So there is an Outer(n2) expansion
 with different αk and center z2 which
 represents the same potential as
 Outer(n1) outside the black dashed box

33 04/19/2016 CS267 Lecture 25

Outer_shift: Details (2/3)

°  Given expansion centered at z1 (= child)

°  Solve for M2 and αe2 in expansion centered at z2 (= parent)

°  Get M2 = M1 and each αe2 is a linear combination of the αe1
•  multiply r-vector of αe1 values by a fixed r-by-r matrix to get αe2

°  (M2 , α12 , … , αr2 , z2) = Outer_shift(Outer(n1) , z2)

 = desired Outer(n2)

φ1(z) = M1 * log(z-z1) + Σ r≥e≥1 (z-z1)-e αe1

φ1(z) ~ φ2(z) = M2 * log(z-z2) + Σ r≥e≥1 (z-z2)-e αe2

34

04/19/2016 CS267 Lecture 25

Step 2 of FMM: compute Outer(n) for each node n in QuadTree (3/3)
… Compute Outer(n) for each node of the QuadTree
outer = Build_Outer(root)

function (M, α1,…,αr , zn) = Build_Outer(n) … compute outer expansion of node n
 if n if a leaf … it contains 1 (or a few) particles
 compute and return Outer(n) = (M, α1,…,αr , zn) directly from
 its definition as a sum
 else … “post order traversal”: process parent after all children
 Outer(n) = 0
 for all children c(k) of n … k = 1,2,3,4
 Outer(c(k)) = Build_Outer(c(k))
 Outer(n) = Outer(n) +
 Outer_shift(Outer(c(k)) , center(n))
 … just add component by component
 endfor
 return Outer(n)
end if

Cost = O(# nodes in QuadTree) = O(N)
 same as for Barnes-Hut

35 04/19/2016 CS267 Lecture 25

Top Level Description of FMM

(1) Build the QuadTree
(2) Call Build_Outer(root), to compute outer expansions
 of each node n in the QuadTree
 … Traverse QuadTree from bottom to top,
 … combining outer expansions of children
 … to get out outer expansion of parent
(3) Call Build_ Inner(root), to compute inner expansions
 of each node n in the QuadTree

 … Traverse QuadTree from top to bottom,
 … converting outer to inner expansions
 … and combining them
(4) For each leaf node n, add contributions of nearest particles
 directly into Inner(n)
 … final Inner(n) is desired output: expansion for potential at
 each point due to all particles

36

10

Step 3 of FMM: Computing Inner(n) from other expansions

° Which other expansions?
•  As few as necessary to compute the potential accurately
•  Inner expansion of p = parent(n) will account for potential from

particles far enough away from parent (red nodes below)
•  Outer expansions will account for potential from particles in boxes

at same level in Interaction Set (nodes labeled i below)

04/19/2016 CS267 Lecture 25
37 04/19/2016 CS267 Lecture 25

Step 3 of FMM: Compute Inner(n) for each n in QuadTree

°  Need Inner(n1) =
Inner_shift(Inner(n2), n1)

°  Need Inner(n4) =
Convert(Outer(n3), n4)

Converting Inner(n2) to Inner(n1)

38

n2 = parent(n1)
n3 in Interaction_set(n4)

04/19/2016 CS267 Lecture 25

Step 3 of FMM: Inner(n1) = Inner_shift(Inner(n2), n1)

° Inner(nk) =
 (β0k , β1k , … , βrk , zk)

° Inner expansion = Σ 0≤e≤r βek * (z-zk)e

°  Solve Σ 0≤e≤r βe1 * (z-z1)e = Σ 0≤e≤r βe2 * (z-z2)e

 for βe1 given z1, βe2 , and z2
° (r+1) x (r+1) matrix-vector multiply

Converting Inner(n2) to Inner(n1)

39 04/19/2016 CS267 Lecture 25

Step 3 of FMM: Inner(n4) = Convert(Outer(n3), n4)

° Inner(n4) =
 (β0 , β1 , … , βr , z4)
° Outer(n3) =
 (M, α1 , α2 , … , αr , z3)

°  Solve Σ 0≤e≤r βe * (z-z4)e = M*log (z-z3) + Σ 0≤e≤r αe * (z-z3)-e

 for βe given z4 , αe , and z3
° (r+1) x (r+1) matrix-vector multiply

40

11

04/19/2016 CS267 Lecture 25

Step 3 of FMM: Computing Inner(n) from other expansions

° We will use Inner_shift and Convert to build each
Inner(n) by combining expansions from other nodes

° Which other nodes?
•  As few as necessary to compute the potential accurately
•  Inner_shift(Inner(parent(n)), center(n)) will account for potential

from particles far enough away from parent (red nodes below)
•  Convert(Outer(i), center(n)) will account for potential from particles

in boxes at same level in Interaction Set (nodes labeled i below)

41 04/19/2016

CS267 Lecture 15

Step 3 of FMM: Interaction Set

•  Interaction Set = { nodes i that are children of a neighbor of
parent(n), such that i is not itself a neighbor of n}

•  For each i in Interaction Set , Outer(i) is available, so that
Convert(Outer(i),center(n)) gives contribution to Inner(n) due to
particles in i

•  Number of i in Interaction Set is at most 62 - 32 = 27 in 2D
•  Number of i in Interaction Set is at most 63 - 33 = 189 in 3D

42

04/19/2016 CS267 Lecture 25

Step 3 of FMM: Compute Inner(n) for each n in QuadTree

… Compute Inner(n) for each node of the QuadTree
outer = Build_ Inner(root)

function (β1,…,βr , zn) = Build_ Inner(n) … compute inner expansion of node n
 p = parent(n) … p=nil if n = root
 Inner(n) = Inner_shift(Inner(p), center(n)) … Inner(n) = 0 if n = root
 for all i in Interaction_Set(n) … Interaction_Set(root) is empty
 Inner(n) = Inner(n) + Convert(Outer(i), center(n))
 … add component by component
 end for
 for all children c of n … complete preorder traversal of QuadTree
 Build_Inner(c)
 end for

Cost = O(# nodes in QuadTree)
 = O(N)

43 04/19/2016 CS267 Lecture 25

Top Level Description of FMM

(1) Build the QuadTree
(2) Call Build_Outer(root), to compute outer expansions
 of each node n in the QuadTree
 … Traverse QuadTree from bottom to top,
 … combining outer expansions of children
 … to get out outer expansion of parent
(3) Call Build_ Inner(root), to compute inner expansions
 of each node n in the QuadTree

 … Traverse QuadTree from top to bottom,
 … converting outer to inner expansions
 … and combining them
(4) For each leaf node n, add contributions of
 nearest particles directly into Inner(n)
 … if 1 node/leaf, then each particles accessed once,
 … so cost = O(N)
 … final Inner(n) is desired output: expansion for potential at
 each point due to all particles

44

12

04/19/2016 CS267 Lecture 25

Outline
°  Motivation

•  Obvious algorithm for computing gravitational or electrostatic force on N bodies
takes O(N2) work

°  How to reduce the number of particles in the force sum
•  We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 …)

°  Basic Data Structures: Quad Trees and Oct Trees
°  The Barnes-Hut Algorithm (BH)

•  An O(N log N) approximate algorithm for the N-Body problem

°  The Fast Multipole Method (FMM)
•  An O(N) approximate algorithm for the N-Body problem

°  Parallelizing BH, FMM and related algorithms

45 04/19/2016 CS267 Lecture 25

Parallelizing Hierachical N-Body codes
°  Barnes-Hut, FMM and related algorithm have similar computational

structure:
1) Build the QuadTree
2) Traverse QuadTree from leaves to root and build outer expansions

 (just (TM,CM) for Barnes-Hut)
3) Traverse QuadTree from root to leaves and build any inner expansions
4) Traverse QuadTree to accumulate forces for each particle

°  One parallelization scheme will work for them all
•  Based on D. Blackston and T. Suel, Supercomputing 97

-  UCB PhD Thesis, David Blackston, “Pbody”
-  Autotuner for N-body codes

•  Assign regions of space to each processor
•  Regions may have different shapes, to get load balance

-  Each region will have about N/p particles
•  Each processor will store part of Quadtree containing all particles (=leaves) in its

region, and their ancestors in Quadtree
-  Top of tree stored by all processors, lower nodes may also be shared

•  Each processor will also store adjoining parts of Quadtree needed to compute forces
for particles it owns

-  Subset of Quadtree needed by a processor called the Locally Essential Tree (LET)
•  Given the LET, all force accumulations (step 4)) are done in parallel, without

communication
46

04/19/2016 CS267 Lecture 25

Programming Model - BSP

° BSP Model = Bulk Synchronous Programming Model
•  All processors compute; barrier; all processors communicate;

barrier; repeat

° Advantages
•  easy to program (parallel code looks like serial code)
•  easy to port (MPI, shared memory, TCP network)

° Possible disadvantage
•  Rigidly synchronous style might mean inefficiency?

° OK with few processors; communication costs low
•  FMM 80% efficient on 32 processor Cray T3E
•  FMM 90% efficient on 4 PCs on slow network
•  FMM 85% efficient on 16 processor SGI SMP (Power Challenge)
•  Better efficiencies for Barnes-Hut, other algorithms

47 04/19/2016 CS267 Lecture 25

Load Balancing Scheme 1: Orthogonal Recursive Bisection (ORB)

° Warren and Salmon, Supercomputing 92
° Recursively split region along axes into regions

containing equal numbers of particles
° Works well for 2D, not 3D (available in Pbody)

Partitioning
for 16 procs:

48

13

04/19/2016
CS267 Lecture 25

Load Balancing Scheme 2: Costzones

°  Called Costzones for Shared Memory
•  PhD thesis, J.P. Singh, Stanford, 1993

°  Called “Hashed Oct Tree” for Distributed Memory
•  Warren and Salmon, Supercomputing 93

°  We will use the name Costzones for both; also in Pbody
°  Idea: partition QuadTree instead of space

•  Estimate work for each node, call total work W
•  Arrange nodes of QuadTree in some linear order (lots of choices)
•  Assign contiguous blocks of nodes with work W/p to processors: locality
•  Works well in 3D

49 04/19/2016 CS267 Lecture 25

Linearly Ordering Quadtree nodes for Costzones (1/2)
°  Hashed QuadTrees (Warren and Salmon)
°  Assign unique key to each node in QuadTree, then compute hash(key) to

get integers that can be linearly ordered
°  If (x,y) are coordinates of center of node, interleave bits to get key

•  Put 1 at left as “sentinel”
•  Nodes near root of tree have shorter keys

50

04/19/2016
CS267 Lecture 25

Linearly Ordering Quadtree nodes for Costzones (2/2)
°  Assign unique key to each node in QuadTree, then compute hash(key) to get a linear

order
°  key = interleaved bits of x,y coordinates of node, prefixed by 1

°  Hash(key) = bottom h bits of key (eg h=4)
°  Assign contiguous blocks of hash(key) to same processors

51 04/19/2016 CS267 Lecture 25

Determining Costzones in Parallel

° Not practical to compute QuadTree, in order to
compute Costzones, to then determine how to best
build QuadTree

° Random Sampling:
•  All processors send small random sample of their particles to

Proc 1
•  Proc 1 builds small Quadtree serially, determines its Costzones,

and broadcasts them to all processors
•  Other processors build part of Quadtree they are assigned by

these Costzones

° All processors know all Costzones; we need this
later to compute LETs

° As particles move, may need to occasionally repeat
construction, so should not be too slow

52

14

04/19/2016 CS267 Lecture 25

Computing Locally Essential Trees (LETs)

° Warren and Salmon, 1992; Liu and Bhatt, 1994
° Every processor needs a subset of the whole

QuadTree, called the LET, to compute the force on
all particles it owns

° Shared Memory
•  Receiver driven protocol
•  Each processor reads part of QuadTree it needs from shared

memory on demand, keeps it in cache
•  Drawback: cache memory appears to need to grow proportionally

to P to remain scalable

° Distributed Memory
•  Sender driven protocol
•  Each processor decides which other processors need parts of its

local subset of the Quadtree, and sends these subsets

53 04/19/2016 CS267 Lecture 25

Locally Essential Trees in Distributed Memory
° How does each processor decide which other

processors need parts of its local subset of the
Quadtree?

° Barnes-Hut:
•  Let j and k be processors, n a node on processor j; Does k need n?
•  Let D(n) be the side length of n
•  Let r(n) be the shortest distance from n to any point owned by k
•  If either

(1) D(n)/r(n) < θ and D(parent(n))/r(parent(n)) ≥ θ, or
(2) D(n)/r(n) ≥ θ
then node n is part of k’s LET, and so proc j should send n to k

•  Condition (1) means (TM,CM) of n can be used on proc k, but this is
not true of any ancestor

•  Condition (2) means that we need the ancestors of type (1) nodes too

° FMM
•  Simpler rules based just on relative positions in QuadTree

54

04/19/2016 CS267 Lecture 25

Recall Step 3 of FMM

° We will use Inner_shift and Convert to build each
Inner(n) by combining expansions from other nodes

° Which other nodes?
•  As few as necessary to compute the potential accurately
•  Inner_shift(Inner(parent(n)), center(n)) will account for potential

from particles far enough away from parent (red nodes below)
•  Convert(Outer(i), center(n)) will account for potential from particles

in boxes at same level in Interaction Set (nodes labeled i below)

55 04/19/2016 CS267 Lecture 25

Performance Results - 1

° 512 Proc Intel Delta
•  Warren and Salmon, Supercomputing 92, Gordon Bell Prize
•  8.8 M particles, uniformly distributed
•  .1% to 1% RMS error, Barnes-Hut
•  114 seconds = 5.8 Gflops

-  Decomposing domain 7 secs
-  Building the OctTree 7 secs
-  Tree Traversal 33 secs
-  Communication during traversal 6 secs
-  Force evaluation 54 secs
-  Load imbalance 7 secs

•  Rises to 160 secs as distribution becomes nonuniform

56

15

04/19/2016 CS267 Lecture 25

Performance Results - 2

° Cray T3E, running FMM
•  Blackston, 1999
•  10-4 RMS error
•  Generally 80% efficient on up to 32 processors
•  Example: 50K particles, both uniform and nonuniform

-  preliminary results; lots of tuning parameters to set

°  Ultimate goal - portable, tunable code including all useful variants

 Uniform Nonuniform
 1 proc 4 procs 1 proc 4 procs

Tree size 2745 2745 5729 5729
MaxDepth 4 4 10 10
Time(secs) 172.4 38.9 14.7 2.4
Speedup 4.4 6.1
Speedup >50 >500
 vs O(n2)

57

Optimizing and Tuning the
Fast Multipole Method for Multicore
and Accelerator Systems
Georgia Tech �
– Aparna Chandramowlishwaran, Aashay Shringarpure, Ilya Lashuk;�
 George Biros, Richard Vuduc �
�
Lawrence Berkeley National Laboratory�
– Sam Williams, Lenny Oliker�
	

° Presented at IPDPS 2010
° Source: Richard Vuduc

Performance Results - 3

04/19/2016 CS267 Lecture 25 58

Summary

04/19/2016 CS267 Lecture 25

"  First cross-platform single-node multicore study of
tuning the fast multipole method (FMM)

"  Explores data structures, SIMD, mixed-precision, multithreading, and
tuning

"  Show
"  25x speedups on Intel Nehalem –

"  2-sockets x 4-cores/socket x 2-thr/core = 16 threads
"  9.4x on AMD Barcelona

"  2-sockets x 4-cores/socket x 1-thr/core = 8 threads
"  37.6x on Sun Victoria Falls

"  2-sockets x 8-cores/socket x 8-thr/core = 128 threads

"  Surprise? Multicore ~ GPU in performance & energy
efficiency for the FMM

Source: Richard Vuduc 59

Optimizations tried (manual and autotuning)

04/19/2016 CS267 Lecture 25

•  Uses KIFMM = Kernel Independent FMM
•  Applies to “any” kernel, not just gravity/electrostatics
•  Requires subroutine to evaluate kernel, builds own expansions

•  Ex: (modified) Laplace, Stokes
•  Approximate particles inside square/box by evenly spaced

particles on circle/sphere
•  FFT used to build expansions; tunable

"  Single-core, manually coded & tuned
"  Low-level: SIMD vectorization (x86)

"  Numerical: rsqrtps + Newton-Raphson (x86)
"  Data: Structure reorg. (transpose or “SOA”)
"  Traffic: Matrix-free via interprocedural loop fusion
"  FFTW plan optimization

" OpenMP parallelization
"  Algorithmic tuning of max particles per box, q

Source: Richard Vuduc 60

16

Reference: kifmm3d [Ying, Langston, Zorin, Biros]

Single-core Optimizations
Double-Precision, Non-uniform (ellipsoidal)

Source: Richard Vuduc 03/08/2012 CS267 Lecture 15

61

Algorithmic Tuning of q = Max pts / box - Nehalem

Shape of curve changes as we introduce optimizations.

Source: Richard Vuduc 04/19/2016 CS267 Lecture 25 62

Cross-Platform Performance Comparison (Summary)

Nehalem outperforms 1-GPU case, a little slower than 2-GPU case.

GPU:
 NCSA Lincoln Cluster
 NVIDIA T10P +
 dual socket Xeon

Source: Richard Vuduc
03/08/2012 CS267 Lecture 15

63

0.1

Minimizing Communication in N-Body Problem

° Hierarchical Methods
•  Reducing arithmetic good for reducing communication too!
•  Deriving communication lower bounds is an open problem

-  Answer is approximate, so lower bound may depend on desired
accuracy

-  Lower bound may also depend on particle distribution
-  Open problem (probably hard)

° Direct methods
•  Thm: Suppose p processors compute interactions among n particles,

using local memories of size M. If each processor does an equal
amount of work (n2/p interactions) then the number of words that a
processor must communicate is Ω((n2/p)/M), and the number of
messages is Ω((n2/p)/M2)

•  If not computing all n2 interactions (eg cutoff distance),
replace n2 by #interactions in Thm

•  For which values of M is this attainable?

04/19/2016 CS267 Lecture 25 64

17

Traditional (Naïve n2) Nbody Algorithm
(using a 1D decomposition)

° Given n particles, p processors, M=O(n/p) memory
° Each processor has n/p particles

° Algorithm: shift copy of particles to the left p times,
calculating all pairwise forces

° Computation cost: n2/p
° Communication bandwidth: O(n) words

•  Lower bound = Ω((n2/p)/M) = Ω(n) , attained

° Communication latency: O(p) messages
•  Lower bound = Ω((n2/p)/M2) = Ω(p) , attained

65

............
p

Can we do bette
r?

Communication Avoiding Version
(using a “1.5D” decomposition: assume memory for c copies)
Driscoll, Georganas, Koanantakool, Solomonik, Yelick

°  Divide p into c groups. Start with all n particles on p/c processors
°  Make a copy of each group of n*c/p particles
°  Pass copy to the 0th…c-1st neighbor depending on row
°  Main Algorithm: for p/c2 steps

•  Compute pairwise interactions for owned vs. shifted particles
•  Shift copy of n*c/p particles to cth neighbor

°  Reduce across c to produce final value for each particle

............

c

p/c

............

............

............

Replicate particles within group.

Same as “parallelizing in the force direction” in NAMD [Plimpton95]

Communication Avoiding Version
(using a “1.5D” decomposition: assume memory for c copies)
Driscoll, Georganas, Koanantakool, Solomonik, Yelick

°  Divide p into c groups. Replicate particles in each group.
•  Memory: M = O(n*c/p) particles per processor

°  Make, pass copies: Latency: O(log c) Bandwidth: O(n*c/p)
°  Main Algorithm: for p/c2 steps

•  Per step, Latency: O(1) Bandwidth: O(n*c/p)
•  Overall, Latency: O(p/c2) = O((n2/p)/M2)
 Bandwidth: O(n/c) = O((n2/p)/M)

°  Attains Bandwidth, latency lower bound for 1 ≤ c ≤ p1/2

............

c

p/c

............

............

............

Communication Avoiding Version
(2D decomposition is Limit)
Driscoll, Georganas, Koanantakool, Solomonik, Yelick

° Limit is when c= p1/2

• Memory: M = O(n/p1/2)
• Startup/Finish: Latency: O(log c) = O(log p);
 Bandwidth O(n/p1/2)

° Main part of Algorithm has 1 step
• Latency: O(1) Bandwidth: O(n/p1/2)

............
p1/2

............

............

p1/2

Same as “parallelizing in the force direction” in NAMD [Hendrickson, Plimpton95]

18

N-Body Speedups on IBM-BG/P (Intrepid)
8K cores, 32K particles

11.8x speedup

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

How general are these
communication lower bounds

and optimal algorithms?

04/19/2016 CS267 Lecture 25 70

Recall optimal sequential Matmul
° Naïve code
 for i=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,j)

° “Blocked” code
 for i1 = 1:b:n, for j1 = 1:b:n, for k1 = 1:b:n
 for i2 = 0:b-1, for j2 = 0:b-1, for k2 = 0:b-1
 i=i1+i2, j = j1+j2, k = k1+k2
 C(i,j)+=A(i,k)*B(k,j)

° Thm: Picking b = M1/2 attains lower bound:
 #words_moved = Ω(n3/M1/2)
° Where does 1/2 come from?

b x b matmul

New Thm applied to Matmul

°  for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j)
° Record array indices in matrix Δ

° Solve LP for x = [xi,xj,xk]T: max 1Tx s.t. Δ x ≤ 1

•  Result: x = [1/2, 1/2, 1/2]T, 1Tx = 3/2 = S

° Thm: #words_moved = Ω(n3/MS-1)= Ω(n3/M1/2)
 Attained by block sizes Mxi,Mxj,Mxk = M1/2,M1/2,M1/2

i j k
1 0 1 A

Δ = 0 1 1 B
1 1 0 C

19

New Thm applied to Direct N-Body

°  for i=1:n, for j=1:n, F(i) += force(P(i) , P(j))
° Record array indices in matrix Δ

° Solve LP for x = [xi,xj]T: max 1Tx s.t. Δ x ≤ 1

•  Result: x = [1,1], 1Tx = 2 = S

° Thm: #words_moved = Ω(n2/MS-1)= Ω(n2/M1)
 Attained by block sizes Mxi,Mxj = M1,M1

i j
1 0 F

Δ = 1 0 P(i)
0 1 P(j)

N-Body Speedups on IBM-BG/P (Intrepid)
8K cores, 32K particles

11.8x speedup

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

New Thm applied to Random Code

°  for i1=1:n, for i2=1:n, … , for i6=1:n
 A1(i1,i3,i6) += func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6))
 A5(i2,i6) += func2(A6(i1,i4,i5),A3(i3,i4,i6))
° Record array indices
 in matrix Δ

° Solve LP for x = [x1,…,x6]T: max 1Tx s.t. Δ x ≤ 1

•  Result: x = [2/7,3/7,1/7,2/7,3/7,4/7], 1Tx = 15/7 = s

° Thm: #words_moved = Ω(n6/MS-1)= Ω(n6/M8/7)
 Attained by block sizes M2/7,M3/7,M1/7,M2/7,M3/7,M4/7

i1 i2 i3 i4 i5 i6

1 0 1 0 0 1 A1

1 1 0 1 0 0 A2

Δ = 0 1 1 0 1 0 A3

0 0 1 1 0 1 A3,A4

0 0 1 1 0 1 A5

1 0 0 1 1 0 A6

Approach to generalizing lower bounds

°  Matmul
 for i=1:n, for j=1:n, for k=1:n,
 C(i,j)+=A(i,k)*B(k,j)
 => for (i,j,k) in S = subset of Z3

 Access locations indexed by (i,j), (i,k), (k,j)
°  General case
 for i1=1:n, for i2 = i1:m, … for ik = i3:i4
 C(i1+2*i3-i7) = func(A(i2+3*i4,i1,i2,i1+i2,…),B(pnt(3*i4)),…)
 D(something else) = func(something else), …
 => for (i1,i2,…,ik) in S = subset of Zk
 Access locations indexed by “projections”, eg
 φC (i1,i2,…,ik) = (i1+2*i3-i7)
 φA (i1,i2,…,ik) = (i2+3*i4,i1,i2,i1+i2,…), …

°  Can we bound #loop_iterations / points in S
 given bounds on #points in its images φC (S), φA (S), … ?

20

General Communication Bound

° Def: Hölder-Brascamp-Lieb Linear Program (HBL-LP)
 for s1,…,sm:
 for all subgroups H < Zk, rank(H) ≤ Σj sj*rank(φj(H))
° Thm: Given a program with array refs given by φj, choose sj to minimize sHBL = Σj sj subject to HBL-LP.

Then
 #words_moved = Ω (#iterations/MsHBL-1)

• Proof depends on recent result in pure mathematics by
Christ/Tao/Carbery/Bennett

° Given S subset of Zk, group homomorphisms φ1, φ2, …, bound |S| in terms of |φ1(S)|, |
φ2(S)|, … , |φm(S)|

° Thm (Christ/Tao/Carbery/Bennett): Given s1,…,sm
 |S| ≤ Πj |φj(S)|sj

Is this bound attainable? (1/2)

° But first: Can we write it down?
• One inequality per subgroup H < Zk, but still finitely many!
• Thm: (bad news) Writing down all inequalities equivalent

to Hilbert’s 10th problem over Q
-  conjectured to be undecidable

• Thm: (good news) Can decidably write down a subset of
the constraints with the same solution sHBL

• Thm: (better news) Can write it down “explicitly” in many
cases of interest

-  Ex: when all φj = {subset of indices}
-  Ex: when at most 3 arrays
-  Ex: when at most 4 indices

•  Thm: (good news) Easy to approximate
-  If you miss a constraint, the lower bound may be too large (i.e.

sHBL too small) but still worth trying to attain, because your
algorithm will still communicate less

-  Tarski-decidable to get superset of constraints (may get . sHBL too
large)

Is this bound attainable? (2/2)

° Depends on loop dependencies
° Best case: none, or reductions (matmul)
° Thm: When all φj = {subset of indices}, dual of HBL-LP

gives optimal tile sizes:
 HBL-LP: minimize 1T*s s.t. sT*Δ ≥ 1T

 Dual-HBL-LP: maximize 1T*x s.t. Δ*x ≤ 1
 Then for sequential algorithm, tile ij by Mxj
° Ex: Matmul: s = [1/2 , 1/2 , 1/2]T = x
° Extends to unimodular transforms of indices

Intuition behind LP for matmul
°  for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j)
°  for i1= 1:Mxi:n, for j1=1:Mxj:n, for k1=1:Mxk:n
 for i2 = 0: Mxi -1, for j2 = 0: Mxj -1, for k2=0: Mxk -1
 C(i1+i2, j1+j2) += A(i1+i2,k1+k2)*B(k1+k2,j1+j2)
°  How do we choose x = [xi,xj,xk]?

•  C(i,j) has blocks of size Mxi by Mxj, or Mxi+xj words, so xi + xj ≤ 1
to fit in fast memory of size M

•  Similarly A(i,k) requires xi + xk ≤ 1 , B(k,j) requires xk + xj ≤ 1
•  Same as Δ x ≤ 1
•  Number of inner 3 loop iterations = Mxi x Mxj x Mxk = Mxi + xj + xk

•  Goal: maximize number of inner 3 loop iterations given blocks of
A,B,C in fast memory

•  Same as maximizing s = xi + xj + xk = 1Tx s.t. Δ x ≤ 1
•  Solution: x = [½, ½, ½], s = 3/2
•  Overall communication cost
 = number of times inner 3 loops executed * M = n3/Ms * M = n3/M1/2

i j k
1 0 1 A

Δ = 0 1 1 B
1 1 0 C

21

Proof of Communication Lower Bound on C = A·B (1/5)

°  Proof from Irony/Toledo/Tiskin (2004)
°  Think of instruction stream being executed

•  Looks like “ … add, load, multiply, store, load, add, …”
-  Each load/store moves a word between fast and slow memory

•  We want to count the number of loads and stores, given that we
are multiplying n-by-n matrices C = A·B using the usual 2n3 flops,
possibly reordered assuming addition is commutative/associative

•  Assuming that at most M words can be stored in fast memory
°  Outline:

•  Break instruction stream into segments, each with M loads and
stores

•  Somehow bound the maximum number of flops that can be done
in each segment, call it F

•  So F · # segments ≥ T = total flops = 2·n3 , so # segments ≥ T / F
•  So # loads & stores = M · #segments ≥ M · T / F

CS267 Lecture 25"04/19/2016 81"

Proof of Communication Lower Bound on C = A·B (2/5)
k

“A face”
“B

 fa
ce
”

“C face”
Cube representing

C(1,1) += A(1,3)·B(3,1)

•  If we have at most 2M “A squares”, “B squares”, and
“C squares” on faces, how many cubes can we have?

i

j

A(2,1)

A(1,3)

B
(1

,3
)

B
(3

,1
)

C(1,1)

C(2,3)

A(1,1) B
(1

,1
)

A(1,2)

B
(2

,1
)

82"

Proof of Communication Lower Bound on C = A·B (3/5)

° Given segment of instruction stream with M loads & stores,
how many adds & multiplies (F) can we do?

•  At most 2M entries of C, 2M entries of A and/or 2M entries of B can be
accessed

° Use geometry:
•  Represent n3 multiplications by n x n x n cube
•  One n x n face represents A

-  each 1 x 1 subsquare represents one A(i,k)
•  One n x n face represents B

-  each 1 x 1 subsquare represents one B(k,j)
•  One n x n face represents C

-  each 1 x 1 subsquare represents one C(i,j)
•  Each 1 x 1 x 1 subcube represents one C(i,j) += A(i,k) · B(k,j)

-  May be added directly to C(i,j), or to temporary accumulator

83"

Proof of Communication Lower Bound on C = A·B (4/5)

x

z

z

y

x
y

k

A shadow

B shadow

C shadow

j

i

cubes in black box with
 side lengths x, y and z
= Volume of black box
= x·y·z
= (xz · zy · yx)1/2
= (#A□s · #B□s · #C□s)1/2

(i,k) is in A shadow if (i,j,k) in 3D set
(j,k) is in B shadow if (i,j,k) in 3D set
(i,j) is in C shadow if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
 # cubes in 3D set = Volume of 3D set
 ≤ (area(A shadow) · area(B shadow) ·
 area(C shadow)) 1/2

84"

22

Proof of Communication Lower Bound on C = A·B (5/5)

° Consider one “segment” of instructions with M loads, stores
° Can be at most 2M entries of A, B, C available in one segment

° Volume of set of cubes representing possible multiply/adds in
one segment is ≤ (2M · 2M · 2M)1/2 = (2M) 3/2 ≡ F

° # Segments ≥ ⎣2n3 / F⎦

° # Loads & Stores = M · #Segments ≥ M · ⎣2n3 / F⎦

 ≥ n3 / (2M)1/2 – M = Ω(n3 / M1/2)

• Parallel Case: apply reasoning to one processor out of P
•  # Adds and Muls ≥ 2n3 / P (at least one proc does this)
• M= n2 / P (each processor gets equal fraction of matrix)
•  # “Load & Stores” = # words moved from or to other procs
≥ M · (2n3 /P) / F= M · (2n3 /P) / (2M)3/2 = n2 / (2P)1/2

85"

Ongoing Work

° Develop algorithm to compute lower bound in general
° Automate generation of approximate LPs
° Extend “perfect scaling” results for time and energy by

using extra memory
° Have yet to find a case where we cannot attain lower

bound – can we prove this?
° Handle dependencies
°  Incorporate into compilers

Future Lectures

° April 26: Big Bang, Big Data, Big Iron: HPC and the
Cosmic Microwave Background

• Julian Borrill, LBNL
° April 28: The Future of High Performance Computing

• Kathy Yelick, UCB and LBNL
• HKN Class Survey too!

04/19/2016 CS267 Lecture 25 87

