
1 

CS267 – Lecture 15 
 

Automatic Performance Tuning 
and 

Sparse-Matrix-Vector-Multiplication (SpMV) 

James Demmel 
 

www.cs.berkeley.edu/~demmel/cs267_Spr16 

Outline 

•  Motivation for Automatic Performance Tuning 
•  Results for sparse matrix kernels 
•  OSKI = Optimized Sparse Kernel Interface 

–  pOSKI for multicore 

•  Tuning Higher Level Algorithms 
•  Future Work, Class Projects 

•  BeBOP:  Berkeley Benchmarking and Optimization Group 
–  Many results shown from current and former members 
–  Meet weekly Th 12:30-2, in 380 Soda 

Motivation for Automatic Performance Tuning 
•  Writing high performance software is hard 

–  Make programming easier while getting high speed 

•  Ideal: program in your favorite high level language 
(Matlab, Python, …) and get a high fraction of peak 
performance 

•  Reality: Best algorithm (and its implementation) can 
depend strongly on the problem, computer 
architecture, compiler,… 
–  Best choice can depend on knowing a lot of applied 

mathematics and computer science 

•  How much of this can we teach? 
•  How much of this can we automate? 

Examples of Automatic Performance Tuning (1) 

•  Dense BLAS 
–  Sequential 
–  PHiPAC (UCB), then ATLAS (UTK) (used in Matlab) 
–  math-atlas.sourceforge.net/ 
–  Internal vendor tools 

•  Fast Fourier Transform (FFT) & variations 
–  Sequential and Parallel 
–  FFTW (MIT) 
–  www.fftw.org 

•  Digital Signal Processing 
–  SPIRAL: www.spiral.net  (CMU) 

•  Communication Collectives (UCB, UTK) 
•  Rose (LLNL), Bernoulli (Cornell), Telescoping Languages (Rice), … 
•  More projects, conferences, government reports, … 



2 

Examples of Automatic Performance Tuning (2) 

•  What do dense BLAS, FFTs, signal processing, MPI reductions 
have in common? 
–  Can do the tuning off-line: once per architecture, algorithm 
–  Can take as much time as necessary (hours, a week…) 
–  At run-time, algorithm choice may depend only on few parameters 

•  Matrix dimension, size of FFT, etc. 

Tuning Register Tile Sizes (Dense Matrix Multiply) 

333 MHz Sun Ultra 2i 
 
2-D slice of 3-D space; 
implementations color-
coded by performance in 
Mflop/s 
 
16 registers, but 2-by-3 tile 
size fastest 

Needle in a haystack 

Example: Select a Matmul Implementation Example: Support Vector Classification 



3 

Machine Learning in Automatic Performance Tuning 

•  References 
–  Statistical Models for Empirical Search-Based 

Performance Tuning 
(International Journal of High Performance Computing 
Applications, 18 (1), pp. 65-94, February 2004) 
Richard Vuduc, J. Demmel, and Jeff A. Bilmes. 

–  Predicting and Optimizing System Utilization and 
Performance via Statistical Machine Learning 
(Computer Science PhD Thesis, University of California, 
Berkeley. UCB//EECS-2009-181 ) Archana Ganapathi  

 
 

Machine Learning in Automatic Performance Tuning 

•  More references 
–  Machine Learning for Predictive Autotuning with 

Boosted Regression Trees,  
(Innovative Parallel Computing, 2012) J. Bergstra et al. 

–  Practical Bayesian Optimization of Machine Learning 
Algorithms, 

   (NIPS 2012) J. Snoek et al 
–  OpenTuner: An Extensible Framework for Program 

Autotuning,  
   (dspace.mit.edu/handle/1721.1/81958) S. Amarasinghe et al 

Examples of Automatic Performance Tuning (3) 

•  What do dense BLAS, FFTs, signal processing, MPI reductions 
have in common? 
–  Can do the tuning off-line: once per architecture, algorithm 
–  Can take as much time as necessary (hours, a week…) 
–  At run-time, algorithm choice may depend only on few parameters 

•  Matrix dimension, size of FFT, etc. 

•  Can’t always do off-line tuning 
–  Algorithm and implementation may strongly depend on data 

only known at run-time 
–  Ex: Sparse matrix nonzero pattern determines both best 

data structure and implementation of                            
Sparse-matrix-vector-multiplication (SpMV)  

–  Part of search for best algorithm just be done (very quickly!) 
at run-time 

Source: Accelerator Cavity Design Problem (Ko via Husbands) 



4 

Linear Programming Matrix 

… 

A Sparse Matrix You Encounter Every Day 

Matrix-vector multiply kernel: y(i) ß y(i) + A(i,j)*x(j) 

 

for each row i 
 for k=ptr[i] to ptr[i+1]-1 do 
  y[i] = y[i] + val[k]*x[ind[k]] 

SpMV with Compressed Sparse Row (CSR) Storage 

Matrix-vector multiply kernel: y(i) ß y(i) + A(i,j)*x(j) 

 

for each row i 
 for k=ptr[i] to ptr[i+1]-1 do 
  y[i] = y[i] + val[k]*x[ind[k]] 

Example: The Difficulty of Tuning 

•  n = 21200 
•  nnz = 1.5 M 
•  kernel: SpMV 

•  Source: NASA 
structural analysis 
problem 



5 

Example: The Difficulty of Tuning 

•  n = 21200 
•  nnz = 1.5 M 
•  kernel: SpMV 

•  Source: NASA 
structural analysis 
problem 

•  8x8 dense 
substructure 

Taking advantage of block structure in SpMV 

•  Bottleneck is time to get matrix from memory 
–  Only 2 flops for each nonzero in matrix 

•  Don’t store each nonzero with index, instead store 
each nonzero r-by-c block with index 
–  Storage drops by up to 2x, if rc >> 1, all 32-bit quantities 
–  Time to fetch matrix from memory decreases 

•  Change both data structure and algorithm 
–  Need to pick r and c 
–  Need to change algorithm accordingly 

•  In example, is r=c=8 best choice? 
–  Minimizes storage, so looks like a good idea… 

Speedups on Itanium 2: The Need for Search 

Reference 

Best: 4x2 

Mflop/s 

Mflop/s 

Register Profile: Itanium 2 

190 Mflop/s 

1190 Mflop/s 



6 

SpMV Performance (Matrix #2): Generation 1 

Power3 - 13% Power4 - 14% 

Itanium 2 - 31% Itanium 1 - 7% 

195 Mflop/s 

100 Mflop/s 

703 Mflop/s 

469 Mflop/s 

225 Mflop/s 

103 Mflop/s 

1.1 Gflop/s 

276 Mflop/s 

Register Profiles: IBM and Intel IA-64 

Power3 - 17% Power4 - 16% 

Itanium 2 - 33% Itanium 1 - 8% 

252 Mflop/s 

122 Mflop/s 

820 Mflop/s 

459 Mflop/s 

247 Mflop/s 

107 Mflop/s 

1.2 Gflop/s 

190 Mflop/s 

SpMV Performance (Matrix #2): Generation 2 

Ultra 2i - 9% Ultra 3 - 5% 

Pentium III-M - 15% Pentium III - 19% 

63 Mflop/s 

35 Mflop/s 

109 Mflop/s 

53 Mflop/s 

96 Mflop/s 

42 Mflop/s 

120 Mflop/s 

58 Mflop/s 

Register Profiles: Sun and Intel x86 

Ultra 2i - 11% Ultra 3 - 5% 

Pentium III-M - 15% Pentium III - 21% 

72 Mflop/s 

35 Mflop/s 

90 Mflop/s 

50 Mflop/s 

108 Mflop/s 

42 Mflop/s 

122 Mflop/s 

58 Mflop/s 



7 

Another example of tuning challenges 

•  More complicated 
non-zero structure 
in general 

•  N = 16614 
•  NNZ = 1.1M 

Zoom in to top corner 

•  More complicated 
non-zero structure 
in general 

•  N = 16614 
•  NNZ = 1.1M 

3x3 blocks look natural, but… 

•  More complicated non-zero 
structure in general 

•  Example: 3x3 blocking 
–  Logical grid of 3x3 cells 

•  But would lead to lots of “fill-in” 

Extra Work Can Improve Efficiency! 

•  More complicated non-zero 
structure in general 

•  Example: 3x3 blocking 
–  Logical grid of 3x3 cells 
–  Fill-in explicit zeros 
–  Unroll 3x3 block multiplies 
–  “Fill ratio” = 1.5 

•  On Pentium III: 1.5x speedup! 
–  Actual mflop rate 1.52 = 2.25 

higher 



8 

Automatic Register Block Size Selection 

•  Selecting the r x c block size 
–  Off-line benchmark 

• Precompute Mflops(r,c) using dense A for each r x c 
• Once per machine/architecture 

–  Run-time “search” 
•   Sample A to estimate Fill(r,c) for each r x c 

–  Run-time heuristic model 
• Choose r, c to minimize time ~  Fill(r,c) / Mflops(r,c) 

Accurate and Efficient Adaptive Fill Estimation 

•  Idea: Sample matrix 
–  Fraction of matrix to sample: s ∈ [0,1] 
–  Cost ~ O(s * nnz) 
–  Control cost by controlling s 

• Search at run-time: the constant matters! 
•  Control s  automatically by computing statistical confidence 

intervals 
–  Idea: Monitor variance 

•  Cost of tuning 
–  Lower bound: convert matrix in 5 to 40 unblocked SpMVs 
–  Heuristic: 1 to 11 SpMVs 

Accuracy of the Tuning Heuristics (1/4) 

NOTE: “Fair” flops used (ops on explicit zeros not counted as “work”) 
See p. 375 of Vuduc’s thesis for matrices 

Accuracy of the Tuning Heuristics (2/4) 



9 

Accuracy of the Tuning Heuristics (2/4) 
DGEMV 

Upper Bounds on Performance for blocked SpMV 

•  P = (flops) / (time) 
–  Flops = 2 * nnz(A) 

•  Lower bound on time: Two main assumptions 
–  1. Count memory ops only (streaming) 
–  2. Count only compulsory, capacity misses: ignore conflicts 

•  Account for line sizes 
•  Account for matrix size and nnz 

•  Charge minimum access “latency” αi at Li cache & αmem 

–  e.g., Saavedra-Barrera and PMaC MAPS benchmarks 

∑

∑

=
+

=

⋅−+⋅−+⋅=

⋅+⋅≥

κ

κκ

κ

ααααα

αα

1
mem11

1
memmem

Misses)(Misses)(Loads

HitsHitsTime

i
iii

i
ii

Example: L2 Misses on Itanium 2 

Misses measured using PAPI [Browne ’00] 

Example: Bounds on Itanium 2 



10 

Example: Bounds on Itanium 2 Example: Bounds on Itanium 2 

Summary of Other Sequential Performance Optimizations 

•  Optimizations for SpMV 
–  Register blocking (RB): up to 4x over CSR 
–  Variable block splitting: 2.1x over CSR, 1.8x over RB 
–  Diagonals: 2x over CSR 
–  Reordering to create dense structure + splitting: 2x over CSR 
–  Symmetry: 2.8x over CSR, 2.6x over RB 
–  Cache blocking: 2.8x over CSR 
–  Multiple vectors (SpMM): 7x over CSR 
–  And combinations… 

•  Sparse triangular solve 
–  Hybrid sparse/dense data structure: 1.8x over CSR 

•  Higher-level kernels 
–  A·AT·x, AT·A·x: 4x over CSR, 1.8x over RB 
–  A2·x: 2x over CSR, 1.5x over RB 
–  [A·x, A2·x, A3·x, .. , Ak·x]  

Example: Sparse Triangular Factor 

•  Raefsky4 (structural 
problem) + SuperLU + 
colmmd 

•  N=19779, nnz=12.6 M 

Dense trailing triangle: 
dim=2268, 20% of total 
nz 
 
Can be as high as 90+%! 
1.8x over CSR 



11 

Cache Optimizations for AAT*x 

•  Cache-level: Interleave multiplication by A, AT 

–  Only fetch A from memory once 

•  Register-level: ai
T to be r×c block row, or diag row 

( ) ∑
=

=⋅
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=⋅
n

i

T
ii

T
n

T

n
T xaax

a

a
aaxAA

1

1

1 )(!"

dot product “axpy” 

… 

…
 

Example: Combining Optimizations (1/2) 

•  Register blocking, symmetry, multiple (k) vectors 
–  Three low-level tuning parameters: r, c, v 

v 

k 
X

Y A 

c 
r 

+= 

* 

Example: Combining Optimizations (2/2) 

•  Register blocking, symmetry, and multiple vectors 
[Ben Lee @ UCB] 
–  Symmetric, blocked, 1 vector 

•  Up to 2.6x over nonsymmetric, blocked, 1 vector 

–  Symmetric, blocked, k vectors 
•  Up to 2.1x over nonsymmetric, blocked, k vectors 
•  Up to 7.3x over nonsymmetric, nonblocked, 1 vector 

–  Symmetric Storage: up to 64.7% savings 

Why so much about SpMV? 
Contents of the “Sparse Motif” 

•  What is “sparse linear algebra”? 
•  Direct solvers for Ax=b, least squares 

–  Sparse Gaussian elimination, QR for least squares 
–  How to choose: crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf 

•  Iterative solvers for Ax=b, least squares, Ax=λx, SVD 
–  Used when SpMV only affordable operation on A –  

•  Krylov Subspace Methods 

–  How to choose  
•  For Ax=b: www.netlib.org/linalg/html_templates/Templates.html 
•  For Ax=λx: www.cs.ucdavis.edu/~bai/ET/contents.html 

•  What about Multigrid? 
–  In overlap of sparse and (un)structured grid motifs – details later 



12 

How to choose an iterative solver - example 

Is  storage
expensive?

A   available?T A   definite?

Largest and smallest
eigenvalues known?

Is  A  well-
conditioned?

A  symmetric?

Try  CG  with
Chebyshev Accel.

Try  CG

Is  A  well-
conditioned?

Try  CG  on
normal equations

No Yes

NoNo Yes No YesYes Yes No

No Yes No Yes

Try  CGS  or
Bi-CGStab or
GMRES(k)

Try  MINRES

nonsymmetric A
or a method for

Try  GMRES Try  QMR

All methods (GMRES, CGS,CG…) depend on SpMV (or variations…) 
See   www.netlib.org/templates/Templates.html   for details 

Motif/Dwarf: Common Computational Methods   
(Red Hot → Blue Cool) 

Em
be

d

SP
EC

D
B

G
am

es

M
L

H
PC Health Image Speech Music Browser

1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

03/08/2012 CS267 Lecture 15 

Potential Impact on Applications: Omega3P 
•  Application: accelerator cavity design [Ko] 
•  Relevant optimization techniques 

–  Symmetric storage 
–  Register blocking 
–  Reordering, to create more dense blocks 

•  Reverse Cuthill-McKee ordering to reduce bandwidth 
–  Do Breadth-First-Search, number nodes in reverse order visited 

•  Traveling Salesman Problem-based ordering to create blocks 
–  Nodes = columns of A 
–  Weights(u, v) = no. of nonzeros u, v have in common 
–  Tour = ordering of columns 
–  Choose maximum weight tour 
–  See [Pinar & Heath ’97] 

•  2.1x speedup on Power 4 

Source: Accelerator Cavity Design Problem (Ko via Husbands) 



13 

Post-RCM Reordering 100x100 Submatrix Along Diagonal 

Before: Green + Red 
After: Green + Blue 

“Microscopic” Effect of RCM Reordering “Microscopic” Effect of Combined RCM+TSP Reordering 

Before: Green + Red 
After: Green + Blue 



14 

(Omega3P) 

How do permutations affect algorithms? 

•  A = original matrix, AP = A with permuted rows, columns 
•  Naïve approach: permute x, multiply y=APx, permute y 
•  Faster way to solve Ax=b 

–  Write AP = PTAP where P is a permutation matrix 
–  Solve APxP = PTb for xP, using SpMV with AP, then let x = PxP 

–  Only need to permute vectors twice, not twice per iteration 

•  Faster way to solve Ax=λx 
–  A and AP have same eigenvalues, no vectors to permute! 
–  APxP =λxP   implies  Ax = λx  where  x = PxP 

•  Where else do optimizations change higher level algorithms? 
More later…   

55 

Tuning SpMV on Multicore 

56 

Multicore SMPs Used 
AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

Source: Sam Williams 



15 

57 

Multicore SMPs Used 
(Conventional cache-based memory hierarchy) 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

Sun T2+ T5140 (Victoria Falls) IBM QS20 Cell Blade 

Source: Sam Williams 58 

Multicore SMPs Used 
(Local store-based memory hierarchy) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

Source: Sam Williams 

59 

Multicore SMPs Used 
(CMT = Chip-MultiThreading) 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

Source: Sam Williams 60 

Multicore SMPs Used 
(threads) 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

8 threads 8 threads 

16* threads 128 threads 

*SPEs only Source: Sam Williams 



16 

61 

Multicore SMPs Used 
(Non-Uniform Memory Access - NUMA) 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

*SPEs only Source: Sam Williams 62 

Multicore SMPs Used 
(peak double precision flops) 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

75 GFlop/s 74 Gflop/s 

29* GFlop/s 19 GFlop/s 

*SPEs only Source: Sam Williams 

63 

Multicore SMPs Used 
(Total DRAM bandwidth) 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

21 GB/s (read) 
10 GB/s (write) 21 GB/s 

51 GB/s 42 GB/s (read) 
21 GB/s (write) 

*SPEs only Source: Sam Williams 64 

Results from 
“Auto-tuning Sparse Matrix-Vector 
Multiplication (SpMV)” 

Samuel Williams, Leonid Oliker, Richard Vuduc, 
John Shalf, Katherine Yelick, James Demmel, 
"Optimization of Sparse Matrix-Vector 
Multiplication on Emerging Multicore Platforms", 
Supercomputing (SC), 2007.  



17 

65 

Test matrices 

•  Suite of 14 matrices 
•  All bigger than the caches of our SMPs 
•  We’ll also include a median performance number 

Dense 

Protein FEM / 
Spheres 

FEM / 
Cantilever 

Wind 
Tunnel 

FEM / 
Harbor QCD FEM / 

Ship Economics Epidemiology 

FEM / 
Accelerator Circuit webbase 

LP 

2K x 2K Dense matrix 
stored in sparse format 

Well Structured 
(sorted by nonzeros/row) 

Poorly Structured 
hodgepodge 

Extreme Aspect Ratio 
(linear programming) 

Source: Sam Williams 

SpMV Parallelization 

•  How do we parallelize a matrix-vector multiplication ? 

66 Source: Sam Williams 

SpMV Parallelization 

•  How do we parallelize a matrix-vector multiplication ? 
•  We could parallelize by columns (sparse matrix time dense sub vector) 

and in the worst case simplify the random access challenge but:  
–  each thread would need to store a temporary partial sum 
–  and we would need to perform a reduction (inter-thread data dependency)  

67 

thread 0 thread 1 thread 2 thread 3 

Source: Sam Williams 

SpMV Parallelization 

•  How do we parallelize a matrix-vector multiplication ? 
•  We could parallelize by columns (sparse matrix time dense sub vector) 

and in the worst case simplify the random access challenge but:  
–  each thread would need to store a temporary partial sum 
–  and we would need to perform a reduction (inter-thread data dependency)  

68 

thread 0 thread 1 thread 2 thread 3 

Source: Sam Williams 



18 

SpMV Parallelization 

•  How do we parallelize a matrix-vector multiplication ? 
•  By rows blocks 
•  No inter-thread data dependencies, but random access to x 

69 

th
re

ad
 0

 
th

re
ad

 1
 

th
re

ad
 2

 
th

re
ad

 3
 

Source: Sam Williams 70 

SpMV Performance 
(simple parallelization) 

•  Out-of-the box SpMV 
performance on a suite of 
14 matrices 

•  Simplest solution = 
parallelization by rows 

•  Scalability isn’t great 
•  Can we do better? 

Naïve Pthreads 

Naïve 

Source: Sam Williams 

Summary of Multicore Optimizations 

•  NUMA - Non-Uniform Memory Access  
–  pin submatrices to memories close to cores assigned to them 

•  Prefetch –  values, indices, and/or vectors 
–  use exhaustive search on prefetch distance  

•  Matrix Compression – not just register blocking (BCSR) 
–  32 or 16-bit indices, Block Coordinate format for submatrices 

•  Cache-blocking 
–  2D partition of matrix, so needed parts of x,y fit in cache 
 

71 

NUMA 
(Data Locality for Matrices) 

•  On NUMA architectures, all large arrays should be partitioned either 
–  explicitly (multiple malloc()’s + affinity)  
–  implicitly (parallelize initialization and rely on first touch) 

•  You cannot partition on granularities less than the page size 
–  512 elements on x86 
–  2M elements on Niagara 

•  For SpMV, partition the matrix and 
 perform multiple malloc()’s 

•  Pin submatrices so they are 
 co-located with the cores tasked 
 to process them 

72 Source: Sam Williams 



19 

NUMA 
(Data Locality for Matrices) 

73 Source: Sam Williams 

Prefetch for SpMV 
•  SW prefetch injects more MLP into the 

memory subsystem. 
•  Supplement HW prefetchers 
•  Can try to prefetch the 

–  values 
–  indices 
–  source vector 
–  or any combination thereof 

•  In general, should only insert one 
prefetch per cache line (works best on 
unrolled code)  

74 

for(all rows){ 

  y0 = 0.0; 

  y1 = 0.0; 

  y2 = 0.0; 

  y3 = 0.0; 

  for(all tiles in this row){ 

    PREFETCH(V+i+PFDistance); 

    y0+=V[i  ]*X[C[i]] 

    y1+=V[i+1]*X[C[i]] 

    y2+=V[i+2]*X[C[i]] 

    y3+=V[i+3]*X[C[i]] 

  } 

  y[r+0] = y0; 

  y[r+1] = y1; 

  y[r+2] = y2; 

  y[r+3] = y3; 

} 

 Source: Sam Williams 

SpMV Performance 
(NUMA and Software Prefetching) 

75 

v  NUMA-aware allocation is 
essential on memory-
bound NUMA SMPs. 

v  Explicit software 
prefetching can boost 
bandwidth and change 
cache replacement 
policies 

v  Cell PPEs are likely 
latency-limited. 

v  used exhaustive search 
for best prefetch distance 

Source: Sam Williams 

Matrix Compression  

•  Goal: minimize memory traffic 
•  Register blocking 

–  Choose block size to minimize memory traffic 
–  Only power-of-2 block sizes 
–  Simplifies search, achieves most of the possible speedup 

•  Shorter indices  
–  32-bit, or 16-bit if possible 

•  Different sparse matrix formats 
–  BCSR – Block compressed sparse row 

•  Like CSR but with register blocks 

–  BCOO – Block coordinate 
•  Stores row and column index of each register block 
•  Better on very sparse  sub-blocks (see cache blocking later) 



20 

ILP/DLP vs Bandwidth 

•  In the multicore era, which is the bigger issue? 
–  a lack of ILP/DLP (a major advantage of BCSR) 
–  insufficient memory bandwidth per core 

•  There are many architectures that when running low arithmetic 
intensity kernels, there is so little available memory bandwidth per core 
that you won’t notice a complete lack of ILP 

•  Perhaps we should concentrate on minimizing memory traffic 
rather than maximizing ILP/DLP 

•  Rather than benchmarking every combination, just  
 Select the register blocking that minimizes the matrix foot 
print. 

 
77 Source: Sam Williams 

Matrix Compression Strategies 
•  Register blocking creates small dense tiles 

–  better ILP/DLP 
–  reduced overhead per nonzero 

•  Let each thread select a unique register blocking 
•  In this work,  

–  we only considered power-of-two register blocks 
–  select the register blocking that minimizes memory traffic 

78 Source: Sam Williams 

Matrix Compression Strategies 

•  Where possible we may encode indices with less than 32 bits 
•  We may also select different matrix formats 

•  In this work,  
–  we considered 16-bit and 32-bit indices (relative to thread’s start) 
–  we explored BCSR/BCOO (GCSR in book chapter) 

79 Source: Sam Williams 

SpMV Performance 
(Matrix Compression) 

80 

v  After maximizing memory 
bandwidth, the only hope is 
to minimize memory traffic. 

v  Compression: exploit 
§  register blocking 
§  other formats 
§  smaller indices 

v  Use a traffic minimization 
heuristic rather than search 

v  Benefit is clearly 
 matrix-dependent. 

v  Register blocking enables 
efficient software prefetching 
(one per cache line) 

Source: Sam Williams 



21 

Cache blocking for SpMV 
(Data Locality for Vectors) 

•  Store entire submatrices contiguously 
   
•  The columns spanned by each cache 

 block are selected to use same space 
     in cache, i.e. access same number of x(i) 

  
  

•  TLB blocking is a similar concept but 
 instead of on 8 byte granularities,  
 it uses 4KB granularities 

 

81 

th
re

ad
 0

 
th

re
ad

 1
 

th
re

ad
 2

 
th

re
ad

 3
 

Source: Sam Williams 

Cache blocking for SpMV 
(Data Locality for Vectors) 

•  Cache-blocking sparse matrices is very different than cache-blocking 
dense matrices. 

•  Rather than changing loop bounds, store entire submatrices 
contiguously.   

•  The columns spanned by each cache 
 block are selected so that all submatrices 
 place the same pressure on the cache 
  
 i.e. touch the same number of unique 
 source vector cache lines 

 
•  TLB blocking is a similar concept but 

 instead of on 64 byte granularities,  
 it uses 4KB granularities 

 82 

th
re

ad
 0

 
th

re
ad

 1
 

th
re

ad
 2

 
th

re
ad

 3
 

Source: Sam Williams 

•  Store entire submatrices contiguously 
   
•  The columns spanned by each cache 

 block are selected to use same space 
     in cache, i.e. access same number of x(i) 

  
  

•  TLB blocking is a similar concept but 
 instead of on 8 byte granularities,  
 it uses 4KB granularities 

 

83 

Auto-tuned SpMV Performance 
(cache and TLB blocking) 

•  Fully auto-tuned SpMV 
performance across the suite 
of matrices 

•  Why do some optimizations 
work better on some 
architectures? 

•  matrices with naturally 
small working sets 

•  architectures with giant 
caches 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 

Source: Sam Williams 84 

Auto-tuned SpMV Performance 
(architecture specific optimizations) 

•  Fully auto-tuned SpMV 
performance across the suite 
of matrices 

•  Included SPE/local store 
optimized version 

•  Why do some optimizations 
work better on some 
architectures? 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 

Source: Sam Williams 



22 

85 

Auto-tuned SpMV Performance 
(max speedup) 

•  Fully auto-tuned SpMV 
performance across the suite 
of matrices 

•  Included SPE/local store 
optimized version 

•  Why do some optimizations 
work better on some 
architectures? 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 

2.7x 4.0x 

2.9x 35x 

Source: Sam Williams 

Optimized Sparse Kernel Interface  -  pOSKI 
      bebop.cs.berkeley.edu/poski 
•  Provides sparse kernels automatically tuned for      

user’s matrix & machine 
–  BLAS-style functionality: SpMV, Ax & ATy 
–  Hides complexity of run-time tuning 
 

•  Based on OSKI – bebop.cs.berkeley.edu/oski 
–  Autotuner for sequential sparse matrix operations: 

•  SpMV (Ax and ATx),  ATAx, solve sparse triangular systems, … 

–  So far pOSKI only does multicore optimizations of SpMV 
–  Up to 4.5x faster SpMV (Ax)  on Intel Sandy Bridge E 

•  Work by the Berkeley Benchmarking and Optimization 
(BeBop) group 

Optimizations in pOSKI, so far 

•  Fully automatic heuristics for 
–  Sparse matrix-vector multiply (Ax, ATx) 

•  Register-level blocking, Thread-level blocking 
•  SIMD, software prefetching, software pipelining, loop unrolling 
•  NUMA-aware allocations 

 
•  “Plug-in” extensibility 

–  Very advanced users may write their own heuristics, create new data 
structures/code variants and dynamically add them to the system,    
using embedded scripting language Lua 

 
•  Other optimizations that could be added 

–  Cache-level blocking, Reordering (RCM, TSP), variable block structure, index 
compressing, Symmetric storage, etc. 

How the pOSKI Tunes (Overview) 

1. Build for 
Target Arch. 2. Benchmark 

Generated 
Code 

Variants 

Library Install-Time (offline) Application Run-Time 
Sample Dense Matrix 

(r,c) 
(r,c) = Register Block size 
(d) =  prefetching distance 
(imp) =  SIMD implementation 

(r,c,d,imp,…) 

Benchmark 
Data 

& 
Selected  

Code Variants 

….. 

….. 2. Evaluate 
Models 

3. Select 
Data Struct. 

& Code 

2. Evaluate 
Models 

3. Select 
Data Struct. 

& Code 

User’s Matrix 

1. Partition Workload 
from program 

monitoring 

Empirical &  
Heuristic  
Search 

History 

User’s hints 

Submatrix 
thread Submatrix …. 

To user: Matrix handle for kernel calls 



23 

How the pOSKI Tunes (Overview) 
•  At library build/install-time 

–  Generate code variants 
•  Code generator (Python) generates code variants for various implementations  

–  Collect benchmark data 
•  Measures and records speed of possible sparse data structure and code variants on 

target architecture 
–  Select best code variants & benchmark data 

•  prefetching distance, SIMD implementation 
–  Installation process uses standard, portable GNU AutoTools 

•  At run-time 
–  Library “tunes” using heuristic models 

•  Models analyze user’s matrix & benchmark data to choose optimized data 
structure and code 

•  User may re-collect benchmark data with user’s sparse matrix (under development)  
–  Non-trivial tuning cost: up to ~40 mat-vecs 

•  Library limits the time it spends tuning based on estimated workload 
–  provided by user or inferred by library 

•  User may reduce cost by saving tuning results for application on future runs with 
same or similar matrix (under development) 

How to Call pOSKI: Basic Usage 
•  May gradually migrate existing apps 

–  Step 1: “Wrap” existing data structures 
–  Step 2: Make BLAS-like kernel calls 

int* ptr = …, *ind = …;  double* val = …; /* Matrix, in CSR format */ 
double* x = …, *y = …; /* Let x and y be two dense vectors */ 
 
 
 

 
 
 
 
 

/* Compute y = β·y + α·A·x, 500 times */ 
for( i = 0; i < 500; i++ ) 
 my_matmult( ptr, ind, val, α, x, β, y ); 

How to Call pOSKI: Basic Usage 
•  May gradually migrate existing apps 

–  Step 1: “Wrap” existing data structures 
–  Step 2: Make BLAS-like kernel calls 

int* ptr = …, *ind = …;  double* val = …; /* Matrix, in CSR format */ 
double* x = …, *y = …; /* Let x and y be two dense vectors */ 
/* Step 1: Create a default pOSKI thread object */ 
poski_threadarg_t *poski_thread = poski_InitThread(); 
/* Step 2: Create pOSKI wrappers around this data */ 
poski_mat_t A_tunable = poski_CreateMatCSR(ptr, ind, val, nrows, ncols, 

nnz, SHARE_INPUTMAT, poski_thread, NULL, …); 
poski_vec_t x_view = poski_CreateVecView(x, ncols, UNIT_STRIDE, NULL); 
poski_vec_t y_view = poski_CreateVecView(y, nrows, UNIT_STRIDE, NULL); 
 

/* Compute y = β·y + α·A·x, 500 times */ 
for( i = 0; i < 500; i++ ) 
 my_matmult( ptr, ind, val, α, x, β, y ); 

How to Call pOSKI: Basic Usage 
•  May gradually migrate existing apps 

–  Step 1: “Wrap” existing data structures 
–  Step 2: Make BLAS-like kernel calls 

int* ptr = …, *ind = …;  double* val = …; /* Matrix, in CSR format */ 
double* x = …, *y = …; /* Let x and y be two dense vectors */ 
/* Step 1: Create a default pOSKI thread object */ 
poski_threadarg_t *poski_thread = poski_InitThread(); 
/* Step 2: Create pOSKI wrappers around this data */ 
poski_mat_t A_tunable = poski_CreateMatCSR(ptr, ind, val, nrows, ncols, 

nnz, SHARE_INPUTMAT, poski_thread, NULL, …); 
poski_vec_t x_view = poski_CreateVecView(x, ncols, UNIT_STRIDE, NULL); 
poski_vec_t y_view = poski_CreateVecView(y, nrows, UNIT_STRIDE, NULL); 
 

/* Step 3: Compute y = β·y + α·A·x, 500 times */ 
for( i = 0; i < 500; i++ ) 
 poski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view); 



24 

How to Call pOSKI: Tune with Explicit Hints 
•  User calls “tune” routine (optional) 

–  May provide explicit tuning hints 

poski_mat_t A_tunable = poski_CreateMatCSR( … ); 
 /* … */ 

/* Tell pOSKI we will call SpMV 500 times (workload hint) */ 
poski_TuneHint_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view,500); 
/* Tell pOSKI we think the matrix has 8x8 blocks (structural hint) */ 
poski_TuneHint_Structure(A_tunable, HINT_SINGLE_BLOCKSIZE, 8, 8); 
 
/* Ask pOSKI to tune */ 
poski_TuneMat(A_tunable);  
 

for( i = 0; i < 500; i++ ) 
 poski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view); 

How to Call pOSKI: Implicit Tuning 
•  Ask library to infer workload (optional) 

–  Library profiles all kernel calls 
–  May periodically re-tune 

 poski_mat_t A_tunable = poski_CreateMatCSR( … ); 
 /* … */ 

 
 for( i = 0; i < 500; i++ ) { 
  poski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view); 

  poski_TuneMat(A_tunable); /* Ask pOSKI to tune */ 
 } 

How to Call pOSKI: Modify a thread object 
•  Ask library to infer thread hints (optional) 

–  Number of threads 
–  Threading model (PthreadPool, Pthread, OpenMP) 

•  Default: PthreadPool, #threads=#available cores on system 

 poski_threadarg_t *poski_thread = poski_InitThread(); 
    
 /* Ask pOSKI to use 8 threads with OpenMP */ 

   poski_ThreadHints(poski_thread, NULL, OPENMP, 8); 
    

 poski_mat_t A_tunable = poski_CreateMatCSR( …, poski_thread, … ); 
  
 poski_MatMult( … ); 

How to Call pOSKI: Modify a partition object 
•  Ask library to infer partition hints (optional) 

–  Number of partitions 
•  #partition = k×#threads 

–  Partitioning model (OneD, SemiOneD, TwoD) 
•  Default: OneD, #partitions = #threads 

Matrix:   
 /* Ask pOSKI to partition 16 sub-matrices using SemiOneD */ 

   poski_partitionarg_t *pmat poski_PartitionMatHints(SemiOneD, 16); 
   poski_mat_t A_tunable = poski_CreateMatCSR( …, pmat, … ); 

Vector: 
 /* Ask pOSKI to partition a vector for SpMV input vector based on A_tunable */    
 poski_partitionVec_t *pvec = poski_PartitionVecHints(A_tunable, 

        KERNEL_MatMult, OP_NORMAL, INPUTVEC); 
   poski_vec_t x_view = poski_CreateVec( …, pvec); 



25 

Performance on Intel Sandy Bridge E 

0"
1"
2"
3"
4"
5"
6"
7"
8"
9"

10"
11"

dense" kkt_power" bone" largebasis" tsopf" ldoor" wiki"

Pe
rfo

rm
an

ce
*in
*G
Fl
op

s*

OSKI" MKL" pOSKI"
4.8x"

3.2x"

4.5x"

2.9x"

4.1x" 4.5x"

4.7x"

•  Jaketown: i7-3960X @ 3.3 GHz 
•  #Cores: 6 (2 threads per core), L3:15MB 
•  pOSKI SpMV (Ax) with double precision floating point 
•  MKL Sparse BLAS Level 2: mkl_dcsrmv() 

Is tuning SpMV all we can do? 

•  Iterative methods all depend on it 
•  But speedups are limited 

–  Just 2 flops per nonzero 
–  Communication costs dominate 

•  Can we beat this bottleneck? 
•  Need to look at next level in stack: 

–  What do algorithms that use SpMV do? 
–  Can we reorganize them to avoid communication? 

•  Only way significant speedups will be possible 

Tuning Higher Level Algorithms than SpMV 
•  We almost always do many SpMVs, not just one 

–  “Krylov Subspace Methods” (KSMs) for Ax=b,  Ax = λx 
•  Conjugate Gradients, GMRES, Lanczos, … 

–  Do a sequence of k SpMVs to get vectors [x1 , … , xk] 
–  Find best solution x as linear combination  of [x1 , … , xk] 

•  Main cost is k SpMVs 
•  Since communication usually dominates, can we do better? 
•  Goal: make communication cost independent of k 

–  Parallel case: O(log P) messages, not O(k log P)  - optimal 
•  same bandwidth as before 

–  Sequential case: O(1) messages and bandwidth, not O(k) - optimal 

•  Achievable when matrix partitionable with  
    low surface-to-volume ratio 

1   2   3   4  …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]  

•  Example: A tridiagonal, n=32, k=3 
•  Works for any “well-partitioned” A 



26 

1   2   3   4  …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]  

•  Example: A tridiagonal, n=32, k=3 

1   2   3   4  …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]  

•  Example: A tridiagonal, n=32, k=3 

1   2   3   4  …  … 32 
x 

A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]  

•  Example: A tridiagonal, n=32, k=3 

1   2   3   4  …  … 32 
x 

A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]  

 
•  Example: A tridiagonal, n=32, k=3 



27 

1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]  

 
•  Example: A tridiagonal, n=32, k=3 

1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Sequential Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 

Step 1 

1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 

•  Sequential Algorithm  
  

 
•  Example: A tridiagonal, n=32, k=3 

 

Step 1 Step  2 

1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Sequential Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 

Step 1 Step  2 Step  3 



28 

1   2   3   4 …  … 32 
x 

A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]  
•  Sequential Algorithm 

•  Example: A tridiagonal, n=32, k=3 

Step 1 Step  2 Step  3 Step  4 

1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 

Proc 1 Proc  2 Proc  3 Proc  4 

1   2   3   4 …  … 32 

x 
A·x 
A2·x 

A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 

•  Example: A tridiagonal, n=32, k=3 
•  Each processor communicates once with neighbors  

Proc 1 Proc  2 Proc  3 Proc  4 

1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 

Proc 1 



29 

1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 

Proc  2 

1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 

Proc  3 

1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 

Proc  4 

1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 

•  Example: A tridiagonal, n=32, k=3 
•  Each processor works on (overlapping) trapezoid 

Proc 1 Proc  2 Proc  3 Proc  4 



30 

Same	idea	works	for	general	sparse	matrices	

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

Simple block-row partitioning è  
    (hyper)graph partitioning 
 
Top-to-bottom processing è 
 Traveling Salesman Problem 

1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 
•  Entries in overlapping regions (triangles) computed 

redundantly 

Proc 1 Proc  2 Proc  3 Proc  4 

x 

Ax 

A2x 

A3x 

A4x 

A5x 

A6x 

A7x 

A8x 

Locally Dependent Entries for [x,Ax,…,A8x], A tridiagonal 
2 processors 

Can be computed without communication	
k=8 fold reuse of A	

Proc 1                                           Proc 2	

x 

Ax 

A2x 

A3x 

A4x 

A5x 

A6x 

A7x 

A8x 

One message to get data needed to compute remotely dependent entries, not k=8	
	
	
	

Minimizes number of messages = latency cost	
Price: redundant work ∝ “surface/volume ratio”	

Proc 1                                           Proc 2	
Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal 

2 processors 



31 

Fewer Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal 
2 processors 

x 

Ax 

A2x 

A3x 

A4x 

A5x 

A6x 

A7x 

A8x 

Reduce redundant work by half 

Proc 1                                           Proc 2	 Remotely Dependent Entries for [x,Ax, A2x,A3x], 2D Laplacian 

Remotely Dependent Entries for [x,Ax,A2x,A3x],  
A irregular, multiple processors 

Speedups on Intel Clovertown (8 core) 



32 

Performance Results 
•  Measured Multicore (Clovertown) speedups up to 6.4x 
•  Measured/Modeled sequential OOC speedup up to 3x 

•  Modeled parallel Petascale speedup up to 6.9x 

•  Modeled parallel Grid speedup up to 22x 

•  Sequential speedup due to bandwidth, works for many 
problem sizes 

•  Parallel speedup due to latency, works for smaller problems 
on many processors 

•  Multicore results used both techniques 
 

Avoiding Communication in Iterative Linear Algebra 

•  k-steps of typical iterative solver for sparse Ax=b or Ax=λx 
–  Does k SpMVs with starting vector 
–  Finds “best” solution among all linear combinations of these k+1 vectors 
–  Many such “Krylov Subspace Methods” 

•  Conjugate Gradients, GMRES, Lanczos, Arnoldi, …  
•  Goal: minimize communication in Krylov Subspace Methods 

–  Assume matrix “well-partitioned,” with modest surface-to-volume ratio 
–  Parallel implementation 

•  Conventional: O(k log p) messages, because k calls to SpMV 
•  New: O(log p) messages - optimal 

–  Serial implementation 
•  Conventional: O(k) moves of data from slow to fast memory 
•  New: O(1) moves of data – optimal 

•  Lots of speed up possible (modeled and measured) 
–  Price: some redundant computation 

•  Much prior work 
–  See theses of Mark Hoemmen, Erin Carson, other papers at bebop.cs.berkeley.edu 

Minimizing Communication of GMRES to solve Ax=b 
•  GMRES: find x in span{b,Ab,…,Akb} minimizing || Ax-b ||2 

•  Cost of k steps of standard GMRES vs new GMRES 
Standard	GMRES	
		for	i=1	to	k	
					w	=	A	·	v(i-1)	
					MGS(w,	v(0),…,v(i-1))	
					update	v(i),	H	
		endfor	
		solve	LSQ	problem	with	H	
	
SequenJal:	#words_moved	=	
											O(k·nnz)	from	SpMV	
								+	O(k2·n)	from	MGS	
Parallel:		#messages	=		
											O(k)	from	SpMV	
								+	O(k2	·	log	p)	from	MGS	

CommunicaJon-avoiding	GMRES	
			W	=	[	v,	Av,	A2v,	…	,	Akv	]	
			[Q,R]	=	TSQR(W)		…		“Tall	Skinny	QR”	
			Build	H	from	R,	solve	LSQ	problem	
	
	
	
	
SequenJal:	#words_moved	=	
									O(nnz)	from	SpMV	
						+	O(k·n)		from	TSQR	
Parallel:	#messages	=		
									O(1)	from	compuJng	W	
						+	O(log	p)	from	TSQR	

• Oops	–	W	from	power	method,	precision	lost!	

“Monomial”	basis	[Ax,…,Akx]			
fails	to	converge	

	A	different	polynomial	basis	does	converge:	
        [p1(A)x,…,pk(A)x] 



33 

Speed ups of GMRES on 8-core Intel Clovertown 
Requires co-tuning kernels  [MHDY09] 

 

130 

CA-BiCGStab 

Sample Application Speedups  

131	

• Geometric	MulJgrid	(GMG)	w	CA	Boaom	Solver	
•  Compared	BICGSTAB	vs.	CA-BICGSTAB	with		s	=	4	
•  Hopper	at	NERSC	(Cray	XE6),	weak	scaling:	Up	to	
4096	MPI	processes	(24,576	cores	total)	

•  Speedups	for	miniGMG	benchmark	(HPGMG	benchmark	predecessor)		
– 4.2x	in	boaom	solve,	2.5x	overall	GMG	solve	
	

•  Implemented	as	a	solver	opJon	in	BoxLib	and	CHOMBO	AMR	frameworks	
	

– 3D	LMC	(a	low-mach	number	combusJon	code)	
•  2.5x	in	boaom	solve,	1.5x	overall	GMG	solve	

– 3D	Nyx	(an	N-body	and	gas	dynamics	code)	
•  2x	in	boaom	solve,	1.15x	overall	GMG	solve	

•  Solve	Horn-Schunck	OpJcal	Flow	EquaJons		
•  Compared	CG	vs.	CA-CG	with		s	=	3,	43%	faster	on	NVIDIA	GT	640	GPU	

“New Algorithm Improves Performance and Accuracy on Extreme-Scale 
Computing Systems. On modern computer architectures, 
communication between processors takes longer than the performance 
of a floating point arithmetic operation by a given processor. ASCR 
researchers have developed a new method, derived from commonly used 
linear algebra methods, to minimize communications between 
processors and the memory hierarchy, by reformulating the 
communication patterns specified within the algorithm. This method 
has been implemented in the TRILINOS framework, a highly-regarded 
suite of software, which provides functionality for researchers around the 
world to solve large scale, complex multi-physics problems.” 
 
FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific Computing 

Research (ASCR), pages 65-67. 

President Obama cites Communication-Avoiding Algorithms in 
the FY 2012 Department of Energy Budget Request to Congress: 

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, JD) 
“Tall-Skinny” QR (Grigori, Hoemmen, Langou,  JD) 



34 

Tuning space for Krylov Methods 

Explicit   (O(nnz)) Implicit    (o(nnz)) 

Explicit (O(nnz)) CSR and variations Vision, climate, AMR,… 

Implicit (o(nnz)) Graph Laplacian Stencils 
Nonzero  
entries 

Indices 

• Many different algorithms (GMRES, BiCGStab, CG, Lanczos,…), polynomials, preconditioning   
• ClassificaJons	of	sparse	operators	for	avoiding	communicaJon	

• 		Explicit	indices	or	nonzero	entries		cause		most	communicaJon,		along	with	vectors	
• 		Ex:	With	stencils	(all	implicit)	all	communicaJon	for	vectors	

•   OperaJons	
• 		[x,	Ax,	A2x,…,	Akx	]			or		[x,	p1(A)x,	p2(A)x,	…,	pk(A)x	]	
• 		Number	of	columns	in		x	
• 		[x,	Ax,	A2x,…,	Akx	]		and	[y,	ATy,	(AT)2y,…,	(AT)ky	],	or	[y,	ATAy,	(ATA)2y,…,	(ATA)ky	],		
• 		return	all	vectors	or	just	last	one	

• 		Cotuning	and/or	interleaving	
• 		W	=	[x,	Ax,	A2x,…,	Akx	]		and		{TSQR(W)	or	WTW	or	…	}	
• 		Diao,	but	throw	away	W	

Possible Class Projects 
•  Come to BEBOP meetings (Th 12:30 – 2, 380 Soda) 
•  Experiment with SpMV on different architectures 

–  Which optimizations are most effective? 

•  Try to speed up particular matrices of interest 
–  Data mining, “bottom solver” from AMR 

•  Explore tuning space of [x,Ax,…,Akx] kernel 
–  Different matrix representations (last slide) 
–  New Krylov subspace methods, preconditioning 

•  Experiment with new frameworks (SPF, Halide)  
•  More details available 

Extra Slides 


