

• Motivation for Automatic Performance Tuning

- Results for sparse matrix kernels
- OSKI = Optimized Sparse Kernel Interface – pOSKI for multicore

• Future Work, Class Projects

• BeBOP: Berkeley Benchmarking and Optimization Group – Many results shown from current and former members

- Meet weekly Th 12:30-2, in 380 Soda

Berkeley Benchmarking and OPti bebop.

Motivation for Automatic Performance Tuning

- Writing high performance software is hard
 Make programming easier while getting high speed
- Ideal: program in your favorite high level language (Matlab, Python, ...) and get a high fraction of peak performance
- Reality: Best algorithm (and its implementation) can depend strongly on the problem, computer architecture, compiler,...
 - Best choice can depend on knowing a lot of applied mathematics and computer science
- How much of this can we teach?
- How much of this can we automate?

ey Benchmarking and OPtimization O

Examples of Automatic Performance Tuning (1)

- Dense BLAS
 - Sequential
 - PHiPAC (UCB), then ATLAS (UTK) (used in Matlab)
 - math-atlas.sourceforge.net/
 - Internal vendor tools
- Fast Fourier Transform (FFT) & variations
 - Sequential and Parallel
 - FFTW (MIT)
 - www.fftw.org
- Digital Signal Processing
- SPIRAL: www.spiral.net (CMU)Communication Collectives (UCB, UTK)
- Rose (LLNL), Bernoulli (Cornell), Telescoping Languages (Rice), ...
- More projects, conferences, government reports, ...

Benchmarking and OPtimization Gr

Machine Learning in Automatic Performance Tuning

References

- Statistical Models for Empirical Search-Based Performance Tuning

(International Journal of High Performance Computing Applications, 18 (1), pp. 65-94, February 2004) Richard Vuduc, J. Demmel, and Jeff A. Bilmes.

 Predicting and Optimizing System Utilization and Performance via Statistical Machine Learning (Computer Science PhD Thesis, University of California, Berkeley. UCB//EECS-2009-181) Archana Ganapathi

Machine Learning in Automatic Performance Tuning

Berkeley Benchmarking and OPti

More references

- Machine Learning for Predictive Autotuning with Boosted Regression Trees,
- (Innovative Parallel Computing, 2012) J. Bergstra et al.
- Practical Bayesian Optimization of Machine Learning Algorithms,

(NIPS 2012) J. Snoek et al

- OpenTuner: An Extensible Framework for Program Autotuning,

(dspace.mit.edu/handle/1721.1/81958) S. Amarasinghe et al

Examples of Automatic Performance Tuning (3) What do dense BLAS, FFTs, signal processing, MPI reductions have in common? Can do the tuning off-line: once per architecture, algorithm Can do the tuning off-line: once per architecture, algorithm An take as much time as necessary (hours, a week...) A trun-time, algorithm choice may depend only on few parameters Matrix dimension, size of FFT, etc. Can't always do off-line tuning Algorithm and implementation may strongly depend on data only known at run-time. Ex: Sparse matrix nonzero pattern determines both best data structure and implementation of sparse.

 Part of search for best algorithm just be done (very quickly!) at run-time

	Berkeley Benchmarking and OPtimization Group bebop. os. berkeley. os
Prefetch for SpMV	
 SW prefetch injects more MLP into the memory subsystem. Supplement HW prefetchers Can try to prefetch the values indices source vector <i>or any combination thereof</i> In general, should only insert one prefetch per cache line (works best on unrolled code) 	<pre>for(all rows){ y0 = 0.0; y1 = 0.0; y2 = 0.0; y3 = 0.0; for(all tiles in this row){ PREFETCH(V+i+PFDistance); y0+=V[i]*x[c[i]] y1+=v[i+1]*x[c[i]] y2+=v[i+2]*x[c[i]] y3+=v[i+3]*x[c[i]] } y(r+0] = y0; y[r+1] = y1; y[r+2] = y2; y(r+3] = y3; }</pre>
Source: Sam Williams	74

Source: Sam Williams

Berkeley Benchmarking and OPtimization Group betop: on betrokley, on	Berkeley Benchmarking and OPImization Gr
How to Call pOSKI: Basic Usage	How to Call pOSKI: Basic Usage
 May gradually migrate existing apps Step 1: "Wrap" existing data structures Step 2: Make BLAS-like kernel calls 	 May gradually migrate existing apps Step 1: "Wrap" existing data structures Step 2: Make BLAS-like kernel calls
<pre>int* ptr =, *ind =; double* val =; /* Matrix, in CSR format */ double* x =, *y =; /* Let x and y be two dense vectors */ /* Step 1: Create a default pOSKI thread object */ poski_threadarg_t *poski_thread = poski_InitThread(); /* Step 2: Create pOSKI wrappers around this data */</pre>	<pre>int* ptr =, *ind =; double* val =; /* Matrix, in CSR format */ double* x =, *y =; /* Let x and y be two dense vectors */ /* Step 1: Create a default pOSKI thread object */ poski_threadarg_t *poski_thread = poski_InitThread(); /* Step 2: Create pOSKI wrappers around this data */</pre>
<pre>poski_mat_t A_tunable = poski_CreateMatCSR(ptr, ind, val, nrows, ncols, nnz, SHARE_INPUTMAT, poski_thread, NULL,); poski_vec_t x_view = poski_CreateVecView(x, ncols, UNIT_STRIDE, NULL); poski_vec_t y_view = poski_CreateVecView(y, nrows, UNIT_STRIDE, NULL);</pre>	<pre>poski_mat t A_tunable = poski_CreateMatCSR(ptr, ind, val, nrows, ncols nnz, SHARE_INPUTMAT, poski_thread, NULL,); poski_vec_t x_view = poski_CreateVecView(x, ncols, UNIT_STRIDE, NULL); poski_vec_t y_view = poski_CreateVecView(y, nrows, UNIT_STRIDE, NULL);</pre>
/* Compute $y = \beta \cdot y + \alpha \cdot A \cdot x$, 500 times */ for(i = 0; i < 500; i++) my_matmult(ptr, ind, val, α , x, β , y);	<pre>/* Step 3: Compute y = β·y + α'A·x, 500 times */ for(i = 0; i < 500; i++) poski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);</pre>

erkeley Benchmarking and OPtimization

Performance Results

- Measured Multicore (Clovertown) speedups up to 6.4x
- Measured/Modeled sequential OOC speedup up to 3x
- Modeled parallel Petascale speedup up to 6.9x
- Modeled parallel Grid speedup up to 22x
- Sequential speedup due to bandwidth, works for many problem sizes
- Parallel speedup due to latency, works for smaller problems on many processors
- Multicore results used both techniques

Berkeley Benchmarking and OP Avoiding Communication in Iterative Linear Algebra k-steps of typical iterative solver for sparse Ax=b or Ax= λ x - Does k SpMVs with starting vector - Finds "best" solution among all linear combinations of these k+1 vectors Many such "Krylov Subspace Methods" Conjugate Gradients, GMRES, Lanczos, Arnoldi, ... Goal: minimize communication in Krylov Subspace Methods - Assume matrix "well-partitioned," with modest surface-to-volume ratio Parallel implementation Conventional: O(k log p) messages, because k calls to SpMV New: O(log p) messages - optimal - Serial implementation • Conventional: O(k) moves of data from slow to fast memory New: O(1) moves of data – optimal Lots of speed up possible (modeled and measured) Price: some redundant computation Much prior work See theses of Mark Hoemmen, Erin Carson, other papers at bebop.cs.berkeley.edu

Sample Application Speedups President Obama cites Communication-Avoiding Algorithms in the FY 2012 Department of Energy Budget Request to Congress: Geometric Multigrid (GMG) w CA Bottom Solver • Compared **BICGSTAB** vs. **CA-BICGSTAB** with s = 4 "New Algorithm Improves Performance and Accuracy on Extreme-Scale • Hopper at NERSC (Cray XE6), weak scaling: Up to Computing Systems. On modern computer architectures, 4096 MPI processes (24,576 cores total) communication between processors takes longer than the performance bottom-solve of a floating point arithmetic operation by a given processor. ASCR Speedups for miniGMG benchmark (HPGMG benchmark predecessor) researchers have developed a new method, derived from commonly used –4.2x in bottom solve, 2.5x overall GMG solve linear algebra methods, to minimize communications between processors and the memory hierarchy, by reformulating the • Implemented as a solver option in BoxLib and CHOMBO AMR frameworks communication patterns specified within the algorithm. This method - 3D LMC (a low-mach number combustion code) has been implemented in the TRILINOS framework, a highly-regarded • 2.5x in bottom solve, 1.5x overall GMG solve suite of software, which provides functionality for researchers around the - 3D Nyx (an N-body and gas dynamics code) world to solve large scale, complex multi-physics problems." • 2x in bottom solve, 1.15x overall GMG solve FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific Computing Solve Horn-Schunck Optical Flow Equations Research (ASCR), pages 65-67. CA-GMRES (Hoemmen, Mohiyuddin, Yelick, JD) • Compared CG vs. CA-CG with s = 3, 43% faster on NVIDIA GT 640 GPU "Tall-Skinny" OR (Grigori, Hoemmen, Langou, JD)

