CS267, Yelick

CS 267: Applications of Parallel
Computers

Graph Partitioning

James Demmel
www.cs.berkeley.edu/~demmel/cs267_Spr16

03/03/2016 CS267 Lecture 14

Outline of Graph Partitioning Lecture

* Review definition of Graph Partitioning problem
+ Overview of heuristics
« Partitioning with Nodal Coordinates
+ Ex: In finite element models, node at point in (x,y) or (x,y,z) space

+ Partitioning without Nodal Coordinates
« Ex: In model of WWW, nodes are web pages

* Multilevel Acceleration
- BIG IDEA, appears often in scientific computing

« Comparison of Methods and Applications
» Beyond Graph Partitioning: Hypergraphs

03/03/2016 CS267 Lecture 14

Definition of Graph Partitioning

+ Given a graph G = (N, E, Wy, Wg)
* N = nodes (or vertices),

+ Wy = node weights 1(2)
- E =edges 2
* We = edge weights 5(1)

« Ex: N = {tasks}, Wy = {task costs}, edge (j,k) in E means task j
sends We(j,k) words to task k

+ Choose a partition N =N; U N, U ... U Np such that
+ The sum of the node weights in each N; is “about the same”

» The sum of all edge weights of edges connecting all different
pairs N; and Nk is minimized

+ Ex: balance the work load, while minimizing communication
+ Special case of N = N1 U N2: Graph Bisection

03/03/2016 CS267 Lecture 14

Definition of Graph Partitioning

+ Given a graph G = (N, E, Wy, Wg)
+ N = nodes (or vertices),

+ Wy = node weights t 4(3)
+ E=edges
+ We = edge weights 5

« Ex: N = {tasks}, Wy = {task costs}, edge (j,k) in E means task j
sends WEe(j,k) words to task k
« Choose a partition N=N; UN; U ... U Np such that
+ The sum of the node weights in each N; is “about the same”

+ The sum of all edge weights of edges connecting all different
pairs N; and Nk is minimized (shown in black)

+ Ex: balance the work load, while minimizing communication
+ Special case of N = N1 U N2: Graph Bisection

03/03/2016 CS267 Lecture 14 4

3/2/16

CS267, Yelick

Some Applications

*+ Telephone network design
« Original application, algorithm due to Kernighan
+ Load Balancing while Minimizing Communication
+ Sparse Matrix times Vector Multiplication (SpMV)
+ Solving PDEs
« N={1,...,n}, (j,k) in Eif A(j,k) nonzero,
+ Wy(j) = #nonzeros in row j, Wg(j,k) =1
+ VLSI Layout
* N = {units on chip}, E ={wires}, Wg(j,k) = wire length
+ Sparse Gaussian Elimination

+ Used to reorder rows and columns to increase parallelism, and to
decrease “fill-in”

+ Data mining and clustering
» Physical Mapping of DNA
- Image Segmentation

03/03/2016 CS267 Lecture 14 5

Sparse Matrix Vector Multiplication y =y +A*x
Partitioning a Sparse Symmetric Matrix

00 =1 O\ U Fa VDD

7

... declare A_local, A_remote(1:num_procs), x_local, x_remote, y_local
y_local =y_local + A_local * x_local
for all procs P that need part of x_local
send(needed part of x_local, P)
for all procs P owning needed part of x_remote
receive(x_remote, P)
y_local =y_local + A_remote(P)*x_remote
03/03/2016 CS267 Lecture 14 6

Cost of Graph Partitioning

* Many possible partitionings R
to search .

« Just to divide in 2 parts there are:
n choose n/2 = n!/((n/2))? ~
(2/(n))12 * 2" possibilities

+ Choosing optimal partitioning is NP-complete
» (NP-complete = we can prove it is a hard as other well-known
hard problems in a class Nondeterministic Polynomial time)

» Only known exact algorithms have cost = exponential(n)
» We need good heuristics

03/03/2016 CS267 Lecture 14 7

Outline of Graph Partitioning Lectures

« Overview of heuristics
+ Partitioning with Nodal Coordinates

« Partitioning without Nodal Coordinates

+ Multilevel Acceleration

+ Comparison of Methods and Applications
« Beyond Graph Partitioning: Hypergraphs

03/03/2016 CS267 Lecture 14

3/2/16

3/2/16

First Heuristic: Repeated Graph Bisection Edge Separators vs. Vertex Separators
+ Edge Separator: E; (subset of E) separates G if removing Es from E
leaves two ~equal-sized, disconnected components of N: Ny and N,
+ Vertex Separator: Ns (subset of N) separates G if removing Ns and
all incident edges leaves two ~equal-sized, disconnected
components of N: Ny and N2

* To partition N into 2% parts
« bisect graph recursively k times

+» Henceforth discuss mostly graph bisection
G = (N, E), Nodes N and Edges E
E = green edges or blue edges

Spectal Partiion

Ns = red vertices
« Making an Ns from an Eg: pick one endpoint of each edge in Es
* INgl = IEg|

+ Making an E; from an Ns: pick all edges incident on Ng
+ |[Esl =d * INgl where d is the maximum degree of the graph

+ We will find Edge or Vertex Separators, as convenient
CS267 Lecture 14

56 cut edges
03/03/2016 CS267 Lecture 14 9 03/03/2016

Overview of Bisection Heuristics Outline of Graph Partitioning Lectures
+ Partitioning with Nodal Coordinates .

« Each node has x,y,z coordinates - partition space .

+ Partitioning with Nodal Coordinates
+ Ex: In finite element models, node at point in (x,y) or (x,y,z) space
Partitioning without Nodal Coordinates

Multilevel Acceleration

+ Comparison of Methods and Applications
Beyond Graph Partitioning: Hypergraphs

X

R
OCK]

SRR
| vlv»cﬂx%:'%é;
PaVAVNEQViV

TATAN S
« Partitioning without Nodal Coordinates
« E.g., Sparse matrix of Web documents
« A(j,k) = # times keyword j appears in URL k

* Multilevel acceleration (BIG IDEA)
- Approximate problem by “coarse graph,” do so recursively
1 03/03/2016

CS267 Lecture 14

CS267 Lecture 14

03/03/2016

CS267, Yelick

Nodal Coordinates: How Well Can We Do?

+ A planar graph can be drawn in plane without edge
crossings
« Ex: m x m grid of m? nodes: 3 vertex separator Ng with
INg| = m = INI'2 (see earlier slide for m=5)
« Theorem (Tarjan, Lipton, 1979): If G is planar, 3 Ng such
that
* N =Nj U Ngs U Nz is a partition,
« IN4l <= 2/3 INI and INal <= 2/3 INI
« INgl <= (8 * INI)2
» Theorem motivates intuition of following algorithms

03/03/2016 CS267 Lecture 14 13

2. Project each point to the line

3. Compute the median (xbarybar)

4. Use median to partition the nodes \

Nodal Coordinates: Inertial Partitioning

« For a graph in 2D, choose line with half the nodes on

one side and half on the other

« In 3D, choose a plane, but consider 2D for simplicity

+ Choose a line L, and then choose a line L+ perpendicular

to it, with half the nodes on either side
1. Choose a line L through the points Lt

L given by a*(x-xbar)+b*(y-ybar)=0,
with a2+b2=1; (a,b) is unit vector L to L o

For each nj = (xj,yj), compute coordinate
Sj = -b*(xj-xbar) + a*(yj-ybar) along L

Let Sbar = median(S1,...,Sn) (a,

N

Let nodes with S;j < Sbar be in N4, rest in N2
03/03/2016 CS267 Lecture 14 14

CS267, Yelick

Inertial Partitioning: Choosing L

« Clearly prefer L, L+ on left below
s N,

* Mathematically, choose L to be a total least squares fit of
the nodes
+ Minimize sum of squares of distances to L (green lines on last
slide)
+ Equivalent to choosing L as axis of rotation that minimizes the
moment of inertia of nodes (unit weights) - source of name

03/03/2016 CS267 Lecture 14 15

Inertial Partitioning: choosing L (continued)

(a,b) is unit vector
perpendicular to L

\\\, .
(xbar,ybar) ’/ @ \ ® \.
3j (length of j-th green line)? \/

=3 [(xj - xbar)? + (yj - ybar)? - (-b*(x; - xbar) + a*(y; - ybar))?]
. Pythagorean Theorem
= a2 * 3j (xj - xbar)? + 2*a*b* Zj (xj - xbar)*(x; - ybar) + b23j (y; - ybar)?
=a2* X1 + 2*a*b* X2 + b2* X3
=[ab]*|X1 X2|* a
X2 X3] |b
Minimized by choosing
(xbar , ybar) = (Zj x; , Zj yj) / n = center of mass
(a,b) = eigenvector of smallest eigenvalue of (X1 X2
[xz X3}
03/03/2016 CS267 Lecture 14 16

3/2/16

Nodal Coordinates: Random Spheres

» Generalize nearest neighbor idea of a planar graph to
higher dimensions
+ Any graph can fit in 3D without edge crossings
+ Capture intuition of planar graphs of being connected to
“nearest neighbors” but in higher than 2 dimensions

+ For intuition, consider graph defined by a regular 3D mesh
+ An n by n by n mesh of INI = n® nodes
+ Edges to 6 nearest neighbors i
- Partition by taking plane parallel to 2 axes
- Cuts n2 =INIZ3 = O(IEI%3) edges

* For the general graphs
+ Need a notion of “well-shaped” like mesh

03/03/2016 CS267 Lecture 14

Random Spheres: Well Shaped Graphs

+ Approach due to Miller, Teng, Thurston, Vavasis

* Def: A k-ply neighborhood system in d dimensions is a
set {D4,...,Dn} of closed disks in R9 such that no point in
Rd is strictly interior to more than k disks

+ Def: An (a,k) overlap graph is a graph defined in terms
of a = 1 and a k-ply neighborhood system {D4,...,Dp}:
There is a node for each Dj, and an edge from j to i if
expanding the radius of the smaller of D; and D; by >a
causes the two disks to overlap

Ex: n-by-n mesh is a (1,1) overlap graph
Ex: Any planar graph is (a,k) overlap for
some a,k

2D Mesh i
<><> 1,1 gierII:p
XX graph

RS

03/03/2016 CS267 Lecture 14

CS267, Yelick

Generalizing Lipton/Tarjan to Higher Dimensions

« Theorem (Miller, Teng, Thurston, Vavasis, 1993):
Let G=(N,E) be an (a,k) overlap graph in d dimensions
with n=INI. Then there is a vertex separator Ng such that
* N=N; UNs UN,and
* N1 and N2 each has at most n*(d+1)/(d+2) nodes
* Ng has at most O(a * k1/d « p(d-1)/d) nodes
» When d=2, similar to Lipton/Tarjan
+ Algorithm:
+ Choose a sphere S in Rd
- Edges that S “cuts” form edge separator Eg
« Build Ng from Eg
+ Choose S “randomly”, so that it satisfies Theorem with high
probability

03/03/2016 CS267 Lecture 14

Stereographic Projection

« Stereographic projection from plane to sphere
+ In d=2, draw line from p to North Pole, projection p’ of p is
where the line and sphere intersect

p=(xy) P =(2x,2y,x2 +y2 1) [(x2 +y2 + 1)

+ Similar in higher dimensions

03/03/2016 CS267 Lecture 14 20

3/2/16

CS267, Yelick

Choosing a Random Sphere

Random Sphere Algorithm (Gilbert)

+ Do stereographic projection from Rd to sphere S in Rd+!
* Find centerpoint of projected points

« Any plane through centerpoint divides points ~evenly

* There is a linear programming algorithm, cheaper heuristics
+ Conformally map points on sphere

« Rotate points around origin so centerpoint at (0,...0,r) for some r

- Dilate points (unproject, multiply by ((1-r)/(1+r))"2, project)

« this maps centerpoint to origin (0,...,0), spreads points around S

* Pick a random plane through origin

- Intersection of plane and sphere S is “circle”
» Unproject circle

« yields desired circle C in Rd
+ Create Ng: j belongs to N if o*Dj intersects C

03/03/2016 CS267 Lecture 14 21

Finiz ElemeniMesh

Y4\
A

<V§ 22

Random Sphere Algorithm (Gilbert)

PO e
=zhFontsimtheFane

1
”[el L.

D4r

o2

Random Sphere Algorithm (Gilbert)

Ponts Projectad arto the Sphere

Figure 3 Projected mesh paints. The large dat is the centerpaint.

03/03/2016 24

3/2/16

CS267, Yelick

Random Sphere Algorithm (Gilbert)

Random Sphere Algorithm (Gilbert)

Mezh Pontsinthe Flane

oar

1 26

03/03/2016 CS267 Lecture 14 25
R Figure 5: The separating circle prajected back ta the plane.
Fartiticn of the Origrad Mesh
;
Dp
kY
E<
%
i
]
AN AN
03/03/2016 42cut edges 27

Nodal Coordinates: Summary

+ Other variations on these algorithms

+ Algorithms are efficient

+ Rely on graphs having nodes connected (mostly) to “nearest
neighbors” in space

+ algorithm does not depend on where actual edges are!

+ Common when graph arises from physical model

« Ignores edges, but can be used as good starting guess for
subsequent partitioners that do examine edges

+ Can do poorly if graph connectivity is not spatial:

2

+ Details at
+ www.cs.berkeley.edu/~demmel/cs267/lecture18/lecture18.html
* www.cs.ucsb.edu/~gilbert
* www-bcf.usc.edu/~shanghua/
03/03/2016 CS267 Lecture 14 28

3/2/16

CS267, Yelick

Outline of Graph Partitioning Lectures

« Partitioning with Nodal Coordinates
« Partitioning without Nodal Coordinates
» Ex: In model of WWW, nodes are web pages

+ Multilevel Acceleration

+ Comparison of Methods and Applications
« Beyond Graph Partitioning: Hypergraphs

03/03/2016 CS267 Lecture 14

Coordinate-Free: Breadth First Search (BFS)

+ Given G(N,E) and a root node r in N, BFS produces
» A subgraph T of G (same nodes, subset of edges)
+ Tis atree rooted at r
» Each node assigned a level = distance from r

root
Level 0

N1 Level 1

e B B Ty

Level 3

N2 Level 4
Tree edges —

Horizontal edges —
Inter-level edges ——

03/03/2016 CS267 Lecture 14 30

Breadth First Search (details)

* Queue (First In First Out, or FIFO) root
» Enqueue(x,Q) adds x to back of Q

« x = Dequeue(Q) removes x from front of Q ’\N/‘ ‘
» Compute Tree T(Nt,E7)

Nt = {(r,0)}, ET = empty set ... Initially T = root r, which is at level 0
Enqueue((r,0),Q) ... Put root on initially empty Queue Q
Mark r ... Mark root as having been processed
While Q not empty ... While nodes remain to be processed
(n,level) = Dequeue(Q) ... Get a node to process
For all unmarked children c of n

Nt = N7 U (c,level+1) ... Add child c to Nt
Er=EtU(n,c) ... Add edge (n,c) to Et
Enqueue((c,level+1),Q)) ... Add child c to Q for processing
Mark c ... Mark c as processed
Endfor
Endwhile
03/03/2016 CS267 Lecture 14 31

Partitioning via Breadth First Search

root

+ BFS identifies 3 kinds of edges
+ Tree Edges - part of T

+ Horizontal Edges - connect nodes at same level W ‘

+ Interlevel Edges - connect nodes at adjacent levels @

» No edges connect nodes in levels
differing by more than 1 (why?)

+ BFS partioning heuristic
* N =N U Ny, where
N1 ={nodes at level <= L},
Nz = {nodes at level > L}
+ Choose L so IN4l close to INal

BFS partition of a 2D Mesh
using center as root:

N1 =levels 0,1,2,3

N2 =levels 4, 5,6

03/03/2016 CS267 Lecture 14 32

3/2/16

CS267, Yelick

Coordinate-Free: Kernighan/Lin

+ Take a initial partition and iteratively improve it
« Kernighan/Lin (1970), cost = O(INI3) but easy to understand
+ Fiduccia/Mattheyses (1982), cost = O(IEI), much better, but
more complicated
* Given G = (N,E,Wg) and a partitioning N = A U B, where
|Al = IBI
* T = cost(A,B) = = {W(e) where e connects nodes in A and B}
« Find subsets X of A and Y of B with IXI = Y]
« Consider swapping X and Y if it decreases cost:
« newA=(A-X)UY and newB=(B-Y)UX
+ newT = cost(newA , newB) < T = cost(A,B)
* Need to compute newT efficiently for many possible X
and Y, choose smallest (best)

03/03/2016 CS267 Lecture 14 33

Kernighan/Lin: Preliminary Definitions

+ T =cost(A, B), newT = cost(newA, newB)
* Need an efficient formula for newT; will use
» E(a) = external cost of ain A == {W(a,b) for b in B}
+ I(a) =internal costofain A =3{W(a,a") for othera’ in A}
» D(a) =costofain A =E(a) - I(a)
» E(b), I(b) and D(b) defined analogously for b in B
+ Consider swapping X ={a} and Y ={b}
* newA = (A-{a}) U{b}, newB = (B -{b}) U{a}
*newT =T - (D(a) + D(b) - 2*w(a,b)) = T - gain(a,b)
+ gain(a,b) measures improvement gotten by swapping a and b
+ Update formulas
*newD(a’)=D(a’) + 2*w(a’ ,a) - 2*w(a’ ,b) fora’ inA,a’ #a
- newD(b’) =D(b’) + 2*w(b’ ,b) - 2*w(b’,a) forb’ inB,b’ b

03/03/2016 CS267 Lecture 14 34

Kernighan/Lin Algorithm

Compute T = cost(A,B) for initial A, B ... cost = O(INJ?)
Repeat
... One pass greedily computes |N|/2 possible X,Y to swap, picks best
Compute costs D(n) for allnin N ... cost = O(|N|2)
Unmark all nodes in N ... cost = O(|N[)
While there are unmarked nodes ... IN|/2 iterations
Find an unmarked pair (a,b) maximizing gain(a,b) ... cost = O(IN|?)
Mark a and b (but do not swap them) ... cost =0(1)
Update D(n) for all unmarked n,
as though a and b had been swapped ... cost = O(|N|)
Endwhile

... At this point we have computed a sequence of pairs
... (a1,b1), ..., (ak,bk) and gains gain(1),...., gain(k)
... where k = |N|/2, numbered in the order in which we marked them
Pick m maximizing Gain = Zk=1 to m gain(k) ... cost = O(IN])
... Gain is reduction in cost from swapping (a1,b1) through (am,bm)
If Gain > 0 then ... it is worth swapping

Update newA=A-{a1,...,am}U{b1,..bm} ... cost = O(IN[)
Update newB =B - { b1,...,bom} U { a1,....am } ... cost = O(|N|)
Update T =T - Gain ... cost =0(1)
endif
Until Gain <=0
03/03/2016 CS267 Lecture 14 35

Comments on Kernighan/Lin Algorithm

 Most expensive line shown in red, O(n3)
+ Some gain(k) may be negative, but if later gains are
large, then final Gain may be positive
- can escape “local minima” where switching no pair helps
* How many times do we Repeat?

+ K/L tested on very small graphs (INI<=360) and got
convergence after 2-4 sweeps

» For random graphs (of theoretical interest) the probability of
convergence in one step appears to drop like 27NI’30

03/03/2016 CS267 Lecture 14 36

3/2/16

CS267, Yelick

Coordinate-Free: Spectral Bisection

» Based on theory of Fiedler (1970s), popularized by
Pothen, Simon, Liou (1990)

* Motivation, by analogy to a vibrating string
* Basic definitions
+ Vibrating string, revisited

» Implementation via the Lanczos Algorithm
+ To optimize sparse-matrix-vector multiply, we graph partition

« To graph partition, we find an eigenvector of a matrix
associated with the graph

« To find an eigenvector, we do sparse-matrix vector multiply
* No free lunch ...

03/03/2016 CS267 Lecture 14 37

Motivation for Spectral Bisection

+ Vibrating string

+ Think of G = 1D mesh as masses (nodes) connected by springs
(edges), i.e. a string that can vibrate

+ Vibrating string has modes of vibration, or harmonics

+ Label nodes by whether mode - or + to partition into N- and N+

+ Same idea for other graphs (eg planar graph ~ trampoline)

Modes of a Vibrating String

Lowest Fi lambda(1)
R
Second lambda(2)
+ +
Third lambda(3)
03/03/2016 CS267 Lecture 14 38

Basic Definitions

« Definition: The incidence matrix In(G) of a graph G(N,E)
is an INI by |IEI matrix, with one row for each node and
one column for each edge. If edge e=(i,j) then column e
of In(G) is zero except for the i-th and j-th entries, which
are +1 and -1, respectively.

« Slightly ambiguous definition because multiplying column e of In(G)
by -1 still satisfies the definition, but this won’ t matter...

« Definition: The Laplacian matrix L(G) of a graph G(N,E)
is an INI by INI symmetric matrix, with one row and
column for each node. It is defined by

* L(G) (i,i) = degree of node i (number of incident edges)
* L(G) (i,j) = -1if i # j and there is an edge (i,j)
« L(G) (i,j) = 0 otherwise

03/03/2016 CS267 Lecture 14 39

Example of In(G) and L(G) for Simple Meshes

Incidence and Laplacian Matrices

Graph G Incidence Matrix In(G) Laplacian Matrix L(G)
12 034 123 4 s
1] 1| 1-1
1 2 3 4 s 211 2 (-1 2 1
T T34 N 11 3 1 21
a 1-1 4 12
s 5 101
123456789 0UD 1234567859
1|1 1 21 -1
;s o 2|11 1 2131 1
AR EIN 3 1 1 3 12 1
s s Ple s 1 11 4|1 31 1
3 %4 7 s 5 -1 1-1 1 5 1 -1 41 -1
s 6 11 1 6 1 13 1
T z 7 -1 -1 7 1 2-1
8 -1 1-1 8 A 1341
9 -1 1 9 1 12
Nodesnumbered fn black
‘Eages nmbered in bie
03/03/2016 CS267 Lecture 14 40

3/2/16

10

Properties of Laplacian Matrix

CS267, Yelick

» Theorem 1: Given G, L(G) has the following properties
(proof on 1996 CS267 web page)

+ L(G) is symmetric.
« This means the eigenvalues of L(G) are real and its eigenvectors
are real and orthogonal.

+ In(G) * (IN(G))" = L(G)
« The eigenvalues of L(G) are nonnegative:
c O0=M=sA2s=<..=MA
« The number of connected components of G is equal to the
number of Aj equal to 0.
« Definition: Mo(L(Q)) is the algebraic connectivity of G
« The magnitude of A2 measures connectivity
« In particular, A2 # 0 if and only if G is connected.

03/03/2016 CS267 Lecture 14 41

Spectral Bisection Algorithm

+ Spectral Bisection Algorithm:
+ Compute eigenvector vo corresponding to Ax(L(G))
« For each node n of G
if vo(n) < 0 put node n in partition N-
else put node n in partition N+
* Why does this make sense? First reasons...
« Theorem 2 (Fiedler, 1975): Let G be connected, and N- and N+
defined as above. Then N- is connected. If no va(n) = 0, then
N+ is also connected. (proof on 1996 €267 web page)
+ Recall Mo(L(G)) is the algebraic connectivity of G
» Theorem 3 (Fiedler): Let G1(N,E) be a subgraph of G(N,E), so
that Gy is “less connected” than G. Then ho(L(G1)) = ho(L(GQ)),
i.e. the algebraic connectivity of G is less than or equal to the
algebraic connectivity of G. (proof on 1996 C5267 web page)

03/03/2016 CS267 Lecture 14 42

Spectral Bisection Algorithm

« Spectral Bisection Algorithm:
« Compute eigenvector vs corresponding to Ao(L(G))
« For each node n of G
« if va(n) < 0 put node n in partition N-
« else put node n in partition N+
» Why does this make sense? More reasons...

« Theorem 4 (Fiedler, 1975): Let G be connected, and N1 and N2
be any partition into part of equal size INI/2. Then the number of
edges connecting N1 and N2 is at least .25 * INI * Ap(L(G)).

(proof on 1996 CS267 web page)

03/03/2016 CS267 Lecture 14 43

Motivation for Spectral Bisection (recap)

« Vibrating string has modes of vibration, or harmonics
+ Modes computable as follows
» Model string as masses connected by springs (a 1D mesh)
+ Write down F=ma for coupled system, get matrix A
+ Eigenvalues and eigenvectors of A are frequencies and shapes
of modes
« Label nodes by whether mode - or + to get N- and N+

+ Same idea for other graphs (eg planar graph ~ trampoline)
Modes of a Vibrating String

Lowest lambda(1)
A
Second lambda(2)
B B
Third lambda(3)
03/03/2016 . 44

3/2/16

11

CS267, Yelick

Details for Vibrating String Analogy

* Force on mass j = k*[x(j-1) - x()] + K*[x(j+1) - x(j)]

= -K*[-x(j-1) + 2"x(j) - x(j+1)]
« F=mayields m*x”(j) = -k*[-x(j-1) + 2*x(j) - x(j+1)] (*)
» Writing (*) for j=1,2,...,n yields

x(1) 2*x(1) - x(2) El x(1)
x(2) x(1) + 2*x(2) - x(3) 12 4 x(2)

m*d2 | ... [|=k* .. -k* =-k*L* | ...
dx2 | x(j) X(j-1) + 2*x(j) - x(j+1) 124 x(j)
;(.(.n) .2.’:x(n-1) -x(n) -1 2 x(n)

(-m/k) X7 = L*x

Vibrating Mass Spring System

) XO)
x> " x(5)
03/03/2016 \Iy 45

Details for Vibrating String (continued)

+ -(m/k) X'’ = L*x, where X = [X{,Xa,...,Xn |T
+ Seek solution of form x(t) = sin(a*t) * X,
* L*%o = (m/k)*a2 *Xo=A"Xo
+ For each integer i, get A =2*(1-cos(i*n/(n+1)), X, = (Sin(1*i*7/(n+1))
sin(2*i*/(n+1))
sin(n*i*/(n+1))
» Thus X, is a sine curve with frequency proportional to i
« Thus o2 = 2*k/m *(1-cos(i*m/(n+1)) or a ~ (k/m)¥2 * 7 * i/(n+1)

L =[2-1 not quite Laplacian of 1D mesh,
-1 2 1 but we can fix that ...
102
03/03/2016 CS267 Lecture 14 46

Details for Vibrating String (continued)

+ Write down F=ma for “vibrating string” below
« Get Graph Laplacian of 1D mesh

""Vibrating String' for Spectral Bisection

03/03/2016 CS267 Lecture 14 47

Eigenvectors of L(1D mesh)

Graph Partifoning a Chaln, n=50

Eigenvector 1

(all ones) or-
Ak
i i i i i i i i i
5 10 15 20 25 a0 35 40 45 8O
15t elgenvector
1 : .
Eigenvector 2 L] R i
) RS S ;
i i i i i i i
H 10 15 20 25 30 35 40 45 50

Eigenvector 3

3rd elgenvector

03/03/2016 CS267 Lecture 14 48

3/2/16

12

2nd eigenvector of L(planar mesh)

CS267, Yelick

Original FE mesh Plot of v2 from above

VA
7

-10 10
03/03/2016 CS267 Lecture 14 49

4th eigenvector of L(planar mesh)

Original FE mash PFlot of v4 from above

Computing v, and A, of L(G) using Lanczos

+ Given any n-by-n symmetric matrix A (such as L(G)) Lanczos
computes a k-by-k “approximation” T by doing k matrix-vector
products, k << n

Choose an arbitrary starting vector r

b(0) = Irl|
=0
repeat
=it
q(j) = rib(j-1) ... scale a vector (BLAS1)
r=A*q(j) ... matrix vector multiplication, the most expensive step
r=r-b(j-1)*v(j-1) ... “axpy”, or scalar*vector + vector (BLAS1)
a(j)=v()T*r ... dot product (BLAS1)
r=r-a(j)*v(j) ... “axpy” (BLAS1)
b(j) = Irll ... compute vector norm (BLAS1)
until convergence ... details omitted
T=[a(1) b(1)
b(1) a(2) b(2) O
b(2) a(3) b(3)
O b(k-2) a(k-1) b(k-1)
b(k-1) a(k)
+ Approximate A’ s eigenvalues/vectors using T’ s
03/03/2016 CS267 Lecture 14 51

Spectral Bisection: Summary

* Laplacian matrix represents graph connectivity
+ Second eigenvector gives a graph bisection
+ Roughly equal “weights” in two parts
» Weak connection in the graph will be separator
* Implementation via the Lanczos Algorithm
+ To optimize sparse-matrix-vector multiply, we graph partition

+ To graph partition, we find an eigenvector of a matrix
associated with the graph
+ To find an eigenvector, we do sparse-matrix vector multiply

» Have we made progress?

« The first matrix-vector multiplies are slow, but use them to learn
how to make the rest faster

03/03/2016 CS267 Lecture 14 52

3/2/16

13

CS267, Yelick

Outline of Graph Partitioning Lectures

Multilevel Acceleration
+ BIG IDEA, appears often in scientific computing

03/03/2016 CS267 Lecture 14

Introduction to Multilevel Partitioning

« If we want to partition G(N,E), but it is too big to do
efficiently, what can we do?

- 1) Replace G(N,E) by a coarse approximation Gg(Ng,Ec), and
partition Gg instead

+ 2) Use partition of G to get a rough partitioning of G, and then
iteratively improve it

+ What if G still too big?
» Apply same idea recursively

03/03/2016 CS267 Lecture 14 54

Multilevel Partitioning - High Level Algorithm

(N+,N-) = Multilevel_Partition(N, E)
... recursive partitioning routine returns N+ and N- where N = N+ U N-

if IN| is small
(1) Partition G = (N,E) directly to get N =N+ U N-
Return (N+, N-)
else
(2) Coarsen G to get an approximation G¢ = (N¢, E¢)
(3) (Nc+ , N¢-) = Multilevel_Partition(N¢, Ec)
(4) Expand (Nc+ , N¢-) to a partition (N+, N-) of N
(5) Improve the partition (N+, N-)
Return (N+, N-)
endif
How do we @9\ e
Coarsen? O @(5)
Expand? PN /s
Improve? @) Do
(2,3)\ (4)
03/03/2016 CD(U 55

Multilevel Kernighan-Lin

+ Coarsen graph and expand partition using
maximal matchings

* Improve partition using Kernighan-Lin

03/03/2016 CS267 Lecture 14 56

3/2/16

14

CS267, Yelick

Maximal Matching

« Definition: A matching of a graph G(N,E) is a subset Ep, of
E such that no two edges in E;, share an endpoint

« Definition: A maximal matching of a graph G(N,E) is a
matching Em to which no more edges can be added and
remain a matching

+ A simple greedy algorithm computes a maximal matching:
let Ei, be empty
mark all nodes in N as unmatched
fori=1to|N| ... visitthe nodes in any order
if i has not been matched
mark i as matched
if there is an edge e=(i,j) where j is also unmatched,

add e to E,
mark j as matched
endif
endif
endfor
03/03/2016 CS267 Lecture 14 57

Maximal Matching: Example

03/03/2016 CS267 Lecture 14 58

Example of Coarsening

How to coarsen a graph using a maximal matching

e
G=(N,E) Ge=(N:,E¢)
Episshown in red N isshown in red
Edge weights shown in blue Edge weights shown in blue
Node weights are all one Node weights shown in black
03/03/2016 CS267 Lecture 14 59

Coarsening using a maximal matching (details

1) Construct a maximal matching En, of G(N,E)

for all edges e=(j,k) in Em 2) collapse matched nodes into a single one
Put node n(e) in N¢
W(n(e)) = W(j) + W(k) ... gray statements update node/edge weights

for all nodes n in N not incident on an edge in Ep, 3) add unmatched nodes
PutninN¢ ... do not change W(n)
.. Now each node r in N is “inside” a unique node n(r) in N¢

.. 4) Connect two nodes in Nc if nodes inside them are connected in E
for all edges e=(j,k) in E,
for each other edge e’ =(j,r) or (k,r) in E
Put edge ee = (n(e),n(r)) in E¢
W(ee) =W(e’)

If there are multiple edges connecting two nodes in N¢, collapse them,
adding edge weights

03/03/2016 CS267 Lecture 14 60

3/2/16

15

CS267, Yelick

Expanding a partition of G, to a partition of G

Converting a coarse partition to a fine partition

Partition shown in green

03/03/2016 CS267 Lecture 14 61

Multilevel Spectral Bisection

+ Coarsen graph and expand partition using
maximal independent sets

+ Improve partition using Rayleigh Quotient lteration

03/03/2016 CS267 Lecture 14 62

Maximal Independent Sets

« Definition: An independent set of a graph G(N,E) is a subset N; of N
such that no two nodes in N; are connected by an edge

« Definition: A maximal independent set of a graph G(N,E) is an
independent set N; to which no more nodes can be added and
remain an independent set

+ A simple greedy algorithm computes a maximal independent set:
let Nj be empty

fork=1to|N|] ... visit the nodes in any order
if node k is not adjacent to any node already in N;
add k to N;
endif
endfor Maximal Independent Subset N; of N

40— oo

® and ® -nodesof N

- -nodes of N ;

03/03/2016 CS267 Lecture 14 63

Example of Coarsening

Computing G ¢from G

& and @ -pnodesofN

L -nodes of N ;
-edgesinE
—— -edgesinE
<Zi::3= - encloses domain D, = node of N,
03/03/2016 CS267 Lecture 14 64

3/2/16

16

CS267, Yelick

Coarsening using Maximal Independent Sets (details)

... Build “domains” D(k) around each node k in N; to get nodes in N¢
... Add an edge to E¢ whenever it would connect two such domains
Ec = empty set
for all nodes k in N;
D(k) = ({k}, empty set)
... first set contains nodes in D(k), second set contains edges in D(k)
unmark all edges in E
repeat
choose an unmarked edge e = (k,j) from E
if exactly one of k and j (say k) is in some D(m)
mark e
add j and e to D(m)
else if k and j are in two different D(m)’ s (say D(mk) and D(mj))
mark e
add edge (mk, mj) to E¢
else if both k and j are in the same D(m)
mark e
add e to D(m)
else
leave e unmarked
endif
until no unmarked edges

03/03/2016 CS267 Lecture 14 65

Expanding a partition of G. to a partition of G

* Need to convert an eigenvector v¢ of L(G¢) to an
approximate eigenvector v of L(G)
* Use interpolation:

For each node jin N
if j is also a node in N¢, then

v(j) = ve(j) ... use same eigenvector component
else
v(j) = average of v¢(k) for all neighbors k of j in N¢
end if
endif
03/03/2016 CS267 Lecture 14 66

Example: 1D mesh of 9 nodes

2nd Elgenvectors of G = chaln of nodes
T

1 T T T
- fvecbv of 9 node chalfn

ae
0eé
04
02
Q
-0.2
-04

08

-08

4 ; i
1 2 k) 4 5 & 7
03/03/2016 CS267 Lecture 14 67

Improve eigenvector: Rayleigh Quotient Iteration
=0
pick starting vector v(0) ... from expanding v¢
repeat
=i
r(i) = vT(i-1) * L(G) * v(-1)
. r(j) = Rayleigh Quotient of v(j-1)
= good approximate eigenvalue
v(i) = (L(G) - (i) 1)1 * v(i-1)
... expensive to do exactly, so solve approximately
... using an iteration called SYMMLQ,
... which uses matrix-vector multiply (no surprise)
v(@)=v(@ /1l v([l -.- normalize v(j)
until v(j) converges
... Convergence is very fast: cubic

03/03/2016 CS267 Lecture 14 68

3/2/16

17

CS267, Yelick

Example of cubic convergence for 1D mesh

> Convergence of Raylelgh Quotlent Iteration
i0 T T T T

10"
240°
I
10"
10"
1™ ‘
i Elgenvector etror : H
" i i ; i i
1 2 3 4
Iteration Number
03/03/2016 69

Outline of Graph Partitioning Lectures

Comparison of Methods and Applications

03/03/2016 CS267 Lecture 14

Available Implementations

+ Multilevel Kernighan/Lin
+ METIS and ParMETIS (glaros.dtc.umn.edu/gkhome/views/metis)
+ SCOTCH and PT-SCOTCH (www.labri.fr/perso/pelegrin/scotch/)
+ Multilevel Spectral Bisection

+ S. Barnard and H. Simon, “A fast multilevel implementation of

recursive spectral bisection ...”, Proc. 6th SIAM Conf. On Parallel
Processing, 1993

+ Chaco (www.cs.sandia.gov/~bahendr/chaco.html)
* Hybrids possible

» Ex: Using Kernighan/Lin to improve a partition from spectral
bisection

* Recent package, collection of techniques
+ Zoltan (www.cs.sandia.gov/Zoltan)

- See www.cs.sandia.gov/~bahendr/partitioning.html
03/03/2016 CS267 Lecture 14 71

Comparison of methods

« Compare only methods that use edges, not nodal coordinates

+ CS267 webpage and KK95a (see below) have other comparisons
* Metrics

+ Speed of partitioning

» Number of edge cuts

+ Other application dependent metrics
+ Summary

» No one method best

+ Multi-level Kernighan/Lin fastest by far, comparable to Spectral in the
number of edge cuts
www-users.cs.umn.edu/~karypis/metis/publications/main.html
+ Spectral give much better cuts for some applications
Ex: image segmentation
See “Normalized Cuts and Image Segmentation” by J. Malik, J. Shi

03/03/2016 CS267 Lecture 14 72

3/2/16

18

CS267, Yelick

Number of edges cut for a 64-way partition, by METIS

For Multilevel Kernighan/Lin, as implemented in METIS (see KK95a)

Speed of 256-way partitioning (from KK95a)

Partitioning time in seconds

of # of # Edges cut| Expected Expected|
Graph Nodes Edges for 64-way | # cuts for # cuts for Description
partition |2Dmesh|3Dmesh _______|
144 144649 | 1074393 88806 6427 31805 | 3D FE Mesh
4ELT 15606 45878 2965 2111 7208 | 2D FE Mesh
ADD32 4960 9462 675 1190 3357 | 32 bit adder
AUTO 448695 | 3314611 194436 11320 67647 | 3D FE Mesh
BBMAT 38744 993481 55753 3326 13215 | 2D Stiffness M.
FINAN512 74752 261120 11388 4620 20481 | Lin. Prog.
LHR10 10672 209093 58784 1746 5595 | Chem. Eng.
MAP1 267241 334931 1388 8736 47887 | Highway Net.
MEMPLUS 17758 54196 17894 2252 7856 | Memory circuit
SHYY161 76480 152002 4365 4674 20796 | Navier-Stokes
TORSO 201142 | 1479989 117997 7579 39623 | 3D FE Mesh

of # of Multilevel Multilevel

Graph Nodes Edges Spectral Kernighan/ Description
Bisection Lin

144 144649 | 1074393 607.3 48.1 3D FE Mesh
4ELT 15606 45878 25.0 31 2D FE Mesh
ADD32 4960 9462 18.7 1.6 32 bit adder
AUTO 448695 | 3314611 2214.2 179.2 3D FE Mesh
BBMAT 38744 | 993481 474.2 25.5 2D Sstiffness M.
FINAN512 74752 | 261120 311.0 18.0 Lin. Prog.
LHR10 10672 | 209093 142.6 8.1 Chem. Eng.
MAP1 267241 334931 850.2 44.8 Highway Net.
MEMPLUS 17758 54196 117.9 4.3 Memory circuit
SHYY161 76480 | 152002 130.0 10.1 Navier-Stokes
TORSO 201142 | 1479989 1053.4 63.9 3D FE Mesh

Expected # cuts for 64-way partition of 2D mesh of n nodes
n12 4 2%(n12)112 + 4*(nia) 12 + . + 32%(n132)1/2 ~ 17 * n1/2

Expected # cuts for 64-way partition of 3D mesh of n nodes =
n2/3 4+ 2x(nj2)213 + 4*(nj4)23 + ... + 32%(n/32)2/3 ~ 11.5 * 213

03/03/2016 73

Kernighan/Lin much faster than Spectral Bisection!

03/03/2016 CS267 Lecture 14 74

Outline of Graph Partitioning Lectures

* Beyond Graph Partitioning: Hypergraphs

03/03/2016 CS267 Lecture 14 75

Beyond simple graph partitioning:

Representing a sparse matrix as a hypergraph

o © O X
X X X ©
oS X X X
X © oo

S—

03/03/2016 CS267 Lecture 14 76

3/2/16

19

CS267, Yelick

Using a graph to partition, versus a hypergraph

P1

P2

03/03/2016

Source vector entries
corresponding to ¢2
and c3 are needed by
both partitions — so
total volume of
communication is 2

"XO ><0-|
0 x x 0
0 x x 0
0 x 0 x

= Cut size of graph partition
may not accurately count

communication volume 77

Two Different 2D Mesh Partitioning Strategies

Graph: Hypergraph:
Cartesian Partitioning

MeshPart Algorithm [Ucar, Catalyurek, 2010]
000000

*
#0000000
[]

(XXX X2 L XXX XXX N
(XXX XXX LI I XXX NN]
0000000KI0000OOS
(XXX XX XL 2 XXX LN Y]

(XX XXX I I XX XN XX J
(XX XX XXX XX XN XX J
(XXX XZ L XXX XX XXX Y]

Total SpMV communication volume = 64 Total SpMV communication volume = 58

03/03/2016 CS267 Lecture 14 78

Generalization of the MeshPart Algorithm

HAAAAAAA
AAAAAAAAL

AAAAAAALAS []
|] - AAAAAAAOGOS L X}
- BEERGAAAAAAAL o0 ® X X 15
EEEEGGOAAAAAN L X] ® X X X
EEEGOGIOOAAAL X X X X
[I EX XXX XXX 2N @ X X X X X 20 (<
000000000 X X X X X X N<
00000000 XX X X X XX [§44
20000000 XXX X xx XX | o PRRRp Nl
000000 XX XX X X X XX - XX X X4
XXX X XY XX XXX X X X XX MEsleledeiedodoln
(XXX X X4 XX X X X X X X XX 20| LXXXXXXXX
XXX
5 10 15 20 25 XXX X XXX X
vol = 102 boundary-1 = 86 boundary-2 = 8 0 5 10 15 20 25 30
(a) 2 x 3-way partitioning of the 16 x 24 mesh vol =354 boundary-1 =282 boundary-2 = 36
(c) 16-way partitioning of the 32 x 32 mesh
For NxN mesh on PxP processor grid:
Usual Cartesian partitioning costs ~4NP words moved
MeshPart costs ~3NP words moved, 25% savings
03/03/2016 CS267 Lecture 14 79

Source: Ucar and Catalyruk, 2010

Experimental Results: Hypergraph vs. Graph Partitioning

64x64 Mesh (5-pt stencil), 16 processors
0

—

10 20 30 4 0 0 10 20 30 40 50 60
Graph Partitioning (Metis) Hypergraph Partitioning (PaToH)
Total Comm. Vol =777 Total Comm. Vol =719
Max Vol per Proc = 69 Max Vol per Proc = 59

~8% reduction in total communication volume
using hypergraph partitioning (PaToH)

versus graph partitioning (METIS
03/03/2016 graph p 8 () 80

3/2/16

20

CS267, Yelick

Further Benefits of Hypergraph Model: Nonsymmetric Matrices

¢ Graph model of matrix has edge (i,j) if either A(i,j) or A(j,i) nonzero
e Same graph for A as IAl + IATI
* Ok for symmetric matrices, what about nonsymmetric?

¢ Try A upper triangular

Hypergraph Partitioning (PaToH)
Total Communication Volume= 181
Load imbalance ratio = 0.1%

Graph Partitioning (Metis)
Total Communication Volume= 254
Load imbalance ratio = 6%

03/03/2016 CS267 Lecture 14 81

Summary: Graphs versus Hypergraphs

e Pros and cons

* When matrix is non-symmetric, the graph partitioning model
(using A+AT) loses information, resulting in suboptimal
partitioning in terms of communication and load balance.

¢ Even when matrix is symmetric, graph cut size is not an
accurate measurement of communication volume

e Hypergraph partitioning model solves both these problems

¢ However, hypergraph partitioning (PaToH) can be much
more expensive than graph partitioning (METIS)

» Hypergraph partitioners: PaToH, HMETIS, ZOLTAN
+ For more see Bruce Hendrickson’ s web page
* www.cs.sandia.gov/~bahendr/partitioning.html
+ “Load Balancing Fictions, Falsehoods and Fallacies”

03/03/2016 CS267 Lecture 14 82

3/2/16

21

