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Quick review of earlier lecture

* What do you call

* A program written in PyGAS, a Global Address
Space language based on Python...

 That uses a Monte Carlo simulation algorithm to
approximate 1 ...

» That has a race condition, so that it gives you a
different funny answer every time you run it?

Monte - 1 - thon
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Outline

* History and motivation
» What is dense linear algebra?
* Why minimize communication?
* Lower bound on communication
+ Parallel Matrix-matrix multiplication
* Attaining the lower bound
* Other Parallel Algorithms (next lecture)
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Outline

« History and motivation
* What is dense linear algebra?
* Why minimize communication?
* Lower bound on communication
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Motifs

The Motifs (formerly “Dwarfs”) from
“The Berkeley View” (Asanovic et al.)
Motifs form key computational patterns

@-Hma

Health Imag h Music Browser

Finite State Mach.
Circuits
Graph Algorithms

Spectral (FFT)
Dynamic Prog
N-Body
Backtrack/ B&B
Graphical Models
Unstructured Grid

_What is dense linear algebra?

* Not just matmul!
* Linear Systems: Ax=b
* Least Squares: choose x to minimize ||Ax-b||,
« Overdetermined or underdetermined; Unconstrained, constrained, or weighted
« Eigenvalues and vectors of Symmetric Matrices
Standard (Ax = Ax), Generalized (Ax=ABx)
« Eigenvalues and vectors of Unsymmetric matrices
« Eigenvalues, Schur form, eigenvectors, invariant subspaces
Standard, Generalized
« Singular Values and vectors (SVD)
« Standard, Generalized
« Different matrix structures
« Real, complex; Symmetric, Hermitian, positive definite; dense, triangular, banded ...
« 27 types in LAPACK (and growing...)
« Level of detail
« Simple Driver (“x=A\b”)
« Expert Drivers with error bounds, extra-precision, other options

« Lower level routines (“apply certain kind of orthogonal transformation”, matmul...)
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Organizing Linear Algebra — in books

ScalAPACK Users' Gui

LAPACK
L-A P-A C-K e APF |
LAPA<CK <5
L-AP-A-CK < NUMERIVA
LA-P-ACK AR
L-A-P A C-K L1
Us | BRI

www.neflib.orgllapack

Template:
fir the Sm\m o vi Linear: Ml
Bulldmg Blocks foe erstive Meteds

gams.nist.gov

www.netlib.org/templates www.cs.utk.edu/~dongarra/etemplates
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A brief history of (Dense) Linear Algebra software (1/7)

* In the beginning was the do-loop...
« Libraries like EISPACK (for eigenvalue problems)
* Then the BLAS (1) were invented (1973-1977)
« Standard library of 15 operations (mostly) on vectors
. “AXPY” (y=a-x+y), dot product, scale (x = a-x ), etc
» Up to 4 versions of each (S/D/C/Z), 46 routines, 3300 LOC
* Goals
« Common “pattern” to ease programming, readability
* Robustness, via careful coding (avoiding over/underflow)
« Portability + Efficiency via machine specific implementations

* Why BLAS 1 ? They do O(n') ops on O(n') data
» Used in libraries like LINPACK (for linear systems)
+ Source of the name “LINPACK Benchmark” (not the code!)
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Current Records for Solving Dense Systems (11/2015)

 Linpack Benchmark
* Fastest machine overall (www.top500.0org)
* Tianhe-2 (Guangzhou, China)
* 33.9 Petaflops out of 54.9 Petaflops peak (n=10M)
* 3.1M cores, of which 2.7M are accelerator cores
* Intel Xeon E5-2692 (lvy Bridge) and
Xeon Phi 31S1P
* 1 Pbyte memory
» 17.8 MWatts of power, 1.9 Gflops/Watt

 Historical data (www.netlib.org/performance)
+ Palm Pilot lll
* 1.69 Kiloflops
* n=100
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A brief history of (Dense) Linear Algebra software (2/7)
- But the BLAS-1 weren’ t enough
» Consider AXPY (y = a-x +y ): 2n flops on 3n read/writes
» Computational intensity = (2n)/(3n) = 2/3
* Too low to run near peak speed (read/write dominates)
» Hard to vectorize (“SIMD’ ize”) on supercomputers of
the day (1980s)
» So the BLAS-2 were invented (1984-1986)
« Standard library of 25 operations (mostly) on matrix/
vector pairs
« “GEMV”:y=a-Ax+Bx “GER™ A=A+axyl, x=T"x
» Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC
* Why BLAS 2 ? They do O(n?) ops on O(n?) data
+ So computational intensity still just ~(2n2)/(n2) = 2

» OK for vector machines, but not for machine with caches
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A brief history of (Dense) Linear Algebra software (3/7)

* The next step: BLAS-3 (1987-1988)
« Standard library of 9 operations (mostly) on matrix/matrix pairs
« “GEMM”:C=a‘AB+BC,C=aAAT+BC, B=T'B
* Up to 4 versions of each (S/D/C/Z), 30 routines, 10K LOC
* Why BLAS 3 ? They do O(n®) ops on O(n?) data
+ So computational intensity (2n3)/(4n2) = n/2 — big at last!
* Good for machines with caches, other mem. hierarchy levels
* How much BLAS1/2/3 code so far (all at www.netlib.org/blas)
* Source: 142 routines, 31K LOC, Testing: 28K LOC
* Reference (unoptimized) implementation only
* Ex: 3 nested loops for GEMM
* Lots more optimized code (eg Homework 1)
» Motivates “automatic tuning” of the BLAS
* Part of standard math libraries (eg AMD ACML, Intel MKL)
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Level 1 BLAS
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BLAS Standards Committee to start meeting again May 2016:
Batched BLAS: many independent BLAS operations at once
Reproducible BLAS: getting bitwise identical answers from

g run-to-run, despite nonassociate floating point, and dynamic

s ¢ scheduling of resources (bebop.cs.berkeley.edu/reproblas)

:f.;g Low-Precision BLAS: 16 bit floating point

= (| See www.netlib.org/blas/blast-forum/ for previous extension attempt
New functions, Sparse BLAS, Extended Precision BLAS
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A brief history of (Dense) Linear Algebra software (4/7)

» LAPACK - “Linear Algebra PACKage” - uses BLAS-3 (1989 — now)
» Ex: Obvious way to express Gaussian Elimination (GE) is adding
multiples of one row to other rows — BLAS-1
* How do we reorganize GE to use BLAS-3 ? (details later)
» Contents of LAPACK (summary)
« Algorithms that are (nearly) 100% BLAS 3
— Linear Systems: solve Ax=b for x

— Least Squares: choose x to minimize ||Ax-b||,
« Algorithms that are only =50% BLAS 3
— Eigenproblems: Find A and x where Ax = A x
— Singular Value Decomposition (SVD)
* Generalized problems (eg Ax = A Bx)
« Error bounds for everything
« Lots of variants depending on A’ s structure (banded, A=AT, etc)
* How much code? (Release 3.6.0, Nov 2015) (www.netlib.org/lapack)
« Source: 1750 routines, 721K LOC, Testing: 1094 routines, 472K LOC
» Ongoing development (at UCB and elsewhere) (class projects!)
* Next planned release June 2016 13

A brief history of (Dense) Linear Algebra software (5/7)

* Is LAPACK parallel?

* Only if the BLAS are parallel (possible in shared memory)
 ScaLAPACK — “Scalable LAPACK” (1995 — now)

* For distributed memory — uses MPI

» More complex data structures, algorithms than LAPACK
» Only subset of LAPACK’ s functionality available
» Details later (class projects!)

* All at www.netlib.org/scalapack
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Success Storijes for Sca/LAPACK (6/7)

* Widely used
» Adopted by Mathworks, Cray,
Fujitsu, HP, IBM, IMSL, Intel,
NAG, NEC, S@Gl, ...
» 7.5M webhits/year @ Netlib
(incl. CLAPACK, LAPACK95)
» New Science discovered through the
solution of dense matrix systems
* Nature article on the flat
universe used ScaLAPACK
+ Other articles in Physics Cosmic Microwave Background
Review B that also Use it collaboration; MADGAP code (Apr.
- 1998 Gordon Bell Prize 41, 2000).

* www.nersc.gov/assets/NewsImages/2003/
newNERSCresults050703.pdf
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A brief future look at (Dense) Linear Algebra software (7/7)
* PLASMA, DPLASMA and MAGMA (now)
» Ongoing extensions to Multicore/GPU/Heterogeneous
» Can one software infrastructure accommodate all algorithms
and platforms of current (future) interest?
* How much code generation and tuning can we automate?
* Details later (Class projects!) (icl.cs.utk.edu/{d}plasma,magma})
* Other related projects
+ Elemental (libelemental.org)
« Distributed memory dense linear algebra
« “Balance ease of use and high performance”
* FLAME (z.cs.utexas.edu/wiki/flame.wiki/FrontPage)
* Formal Linear Algebra Method Environment
« Attempt to automate code generation across multiple platforms
» So far, none of these libraries minimize communication in all
cases (not even matmul!)




Back to basics:
Why avoiding communication is important (1/3)

Algorithms have two costs:
1.Arithmetic (FLOPS)
2.Communication: moving data between

* levels of a memory hierarchy (sequential case)
* processors over a network (parallel case).

i1
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Why avoiding communication is important (2/3)

* Running time of an algorithm is sum of 3 terms:
+ #flops * time_per_flop
+ # words moved / bandwidth } communication

* # messages * latency
» Time_per_flop << 1/bandwidth << latency

* Gaps growing exponentially with time
Annual improvements

Time_per_flop Bandwidth Latency
59% DRAM 26% 15%
Network 23% 5%

¢ Minimize communication to save time
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Why Minimize Communication? (3/3)

Picojoules

= now (45nm)

m 2018 (11nm in this case)

Source: John Shalf, LBL

Why Minimize Communication? (3/3)

Minimize communication to save energy

10000

Off-chip

Picojoules
=
8

m now (45nm)

10 W 2018 (11nm in this case)

& & Source: John Shalf, LBL
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Goal:
Organize Linear Algebra to Avoid Communication

» Between all memory hierarchy levels
e L1<—> L2 «-> DRAM < network, etc
Not just hiding communication (overlap with arithmetic)
+ Speedup = 2x
* Arbitrary speedups/energy savings possible
» Later: Same goal for other computational patterns
* Lots of open problems
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Review: Blocked Matrix Multiply

* Blocked Matmul C = A-B breaks A, B and C into blocks
with dimensions that depend on cache size

... Break A™n, B Cmxn into bxb blocks labeled A(i,j), etc
... b chosen so 3 bxb blocks fit in cache
fori=1ton/b, forj=1ton/b, fork=1ton/b
C(i,j) = C(i,)) + A(i,k)'B(k,j) ... b x b matmul, 4b2 reads/writes

* When b=1, get “naive” algorithm, want b larger ...
* (n/b)® - 4b? = 4n3/b reads/writes altogether
« Minimized when 3b2 = cache size = M, yielding O(n3/M?"2) reads/writes

» What if we had more levels of memory? (L1, L2, cache etc)?
* Would need 3 more nested loops per level
» Recursive (cache-oblivious algorithm) also possible
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Communication Lower Bounds: Prior Work on Matmul

» Assume n?2 algorithm (i.e. not Strassen-like)
» Sequential case, with fast memory of size M
» Lower bound on #words moved to/from slow memory =
Q (n3/M"2) [Hong, Kung, 81]
« Attained using blocked or cache-oblivious algorithms

« Parallel case on P processors:
* Let M be memory per processor; assume load balanced
* Lower bound on #words moved
=Q ((n3/p)/ MV2)) [Irony, Tiskin, Toledo, 04]
« If M = 3n?/p (one copy of each matrix), then
lower bound = Q (n? /p1/2)
+ Attained by SUMMA, Cannon’ s algorithm
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New lower bound for all “direct” linear algebra

Let M = “fast” memory size per processor
= cache size (sequential case) or O(n?/p) (parallel case)
#flops = number of flops done per processor

#words_moved per processor = Q(#flops / M12)

#messages_sent per processor = Q (#flops / M32)

* Holds for
* Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...
« Some whole programs (sequences of these operations,
no matter how they are interleaved, eg computing Ak)
« Dense and sparse matrices (where #flops << n3)
« Sequential and parallel algorithms
» Some graph-theoretic algorithms (eg Floyd-Warshall)

» Generalizations later (Strassen-like algorithms, loops accessing arrays)
02/25/2016 CS267 Lecture 12 24
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New lower bound for all “direct” linear algebra

Let M = “fast” memory size per processor
= cache size (sequential case) or O(n?/p) (parallel case)
#flops = number of flops done per processor

#words_moved per processor = Q(#flops / M12)

#messages_sent per processor = Q (#flops / M3/2)

» Sequential case, dense n x n matrices, so O(n?) flops
* #words_moved = Q(n3/ M12)
* #messages_sent = Q(n3/ M32)
« Parallel case, dense n x n matrices
« Load balanced, so O(n%/p) flops processor
* One copy of data, load balanced, so M = O(n2/p) per processor
* #words_moved = Q(n%/ p2) g AM Linear Algebra Prize, 2012

 #messages_sent = Q( p'2)
02/25/2016 CS267 Lecture 12 25

Can we attain these lower bounds?
Do conventional dense algorithms as implemented in LAPACK and
ScaLAPACK attain these bounds?
* Mostly not yet, work in progress
If not, are there other algorithms that do?
* Yes
Goals for algorithms:
* Minimize #words_moved
* Minimize #messages_sent
* Need new data structures
* Minimize for multiple memory hierarchy levels
+ Cache-oblivious algorithms would be simplest
* Fewest flops when matrix fits in fastest memory
» Cache-oblivious algorithms don’t always attain this
Attainable for nearly all dense linear algebra
« Just a few prototype implementations so far (class projects!)
» Only a few sparse algorithms so far (eg Cholesky)
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Outline

+ Parallel Matrix-matrix multiplication
* Attaining the lower bound
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Different Parallel Data Layouts for Matrices (not all!)

2) 1D Column Cyclic Layout

4) Row versions of the previous layouts

b
3) 1D Column Block Cyclic Layout

0 1

Generalizes others

ECECECE

2 3
6) 2D Row and Column
5) 2D Row and Column Blocked Layout Block Cyclic Layout
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Parallel Matrix-Vector Product

Matrix-Vector Product y =y + A*x

* Compute y =y + A*x, where A is a dense matrix

* Layout:
* 1D row blocked
* A(i) refers to the n by n/p block row

* A column layout of the matrix eliminates the broadcast of x
» But adds a reduction to update the destination y
* A 2D blocked layout uses a broadcast and reduction, both
on a subset of processors
* sqrt(p) for square processor grid

| PO, P1i P2 iP5 |

PO{ P1| P2 |P3

P4t P5! P6 |P7

P8i{ P9 | P10| P11

P12} P13} P14} P15
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Matrix Multiply with 1D Column Layout

that processor i owns, PO P1 P2 P3
+ (i) and y(i) similarly refer to s ———
segments of x,y owned by i A(0) PO
« Algorithm: y A1) P1
» Foreach processor i A(2) P2
Broadcast x(i)
Compute y(i) = A(i)*x i A8) P3
* Algorithm uses the formula
y(i) = y(i) + Adi)"x = y(i) + Z; A(i.j)*x()
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Parallel Matrix Multiply
» Computing C=C+A*B
« Using basic algorithm: 2*n3 Flops
* Variables are:
* Data layout: 1D? 2D? Other?
* Topology of machine: Ring? Torus?
» Scheduling communication
+ Use of performance models for algorithm design
* Message Time = “latency” + #words * time-per-word
=a+n*p
« Efficiency (in any model):
« serial time / (p * parallel time)
« perfect (linear) speedup < efficiency = 1
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* Assume matrices are n x n and n is divisible by p

May be a reasonable
100 [p1 [p2 [p3 [p4 [p5 [p6 [p7 assumption for analysis,
not for code

« A(i) refers to the n by n/p block column that processor i
owns (similiarly for B(i) and C(i))
« B(i,j) is the n/p by n/p sublock of B(i)
* in rows j*n/p through (j+1)*n/p - 1
« Algorithm uses the formula
C(i) = C(i) + A*B(i) = C(i) + Z; A()*B(,i)
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Matrix Multiply: 1D Layout on Bus or Ring

* Algorithm uses the formula
C(i) = C(i) + A*B(i) = C(i) + % AG)"B(ji)

* First consider a bus-connected machine without
broadcast: only one pair of processors can
communicate at a time (ethernet)

+ Second consider a machine with processors on a ring:
all processors may communicate with nearest neighbors
simultaneously
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MatMul: 1D layout on Bus without Broadcast

Naive algorithm:
C(myproc) = C(myproc) + A(myproc)*B(myproc,myproc)
fori=0to p-1
for j =0 to p-1 except i
if (myproc == i) send A(i) to processor j
if (myproc ==j)
receive A(i) from processor i
C(myproc) = C(myproc) + A(i)*B(i,myproc)
barrier

Cost of inner loop:
computation: 2*n*(n/p)? = 2*n%/p?
communication: o + f*n? /p
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Naive MatMul (continued)

Cost of inner loop:
computation: 2*n*(n/p)? = 2*n3/p?
communication: o + B*n?/p ... approximately

Only 1 pair of processors (i and j) are active on any iteration,
and of those, only i is doing computation
=> the algorithm is almost entirely serial
Running time:
= (p*(p-1) + 1)*computation + p*(p-1)*communication

~ 2*n + pZ*a + p*nZ*p

This is worse than the serial time and grows with p.
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Matmul for 1D layout on a Processor Ring

« Pairs of adjacent processors can communicate simultaneously

Copy A(myproc) into Tmp
C(myproc) = C(myproc) + Tmp*B(myproc , myproc)
forj=1to p-1
Send Tmp to processor myproc+1 mod p
Receive Tmp from processor myproc-1 mod p
C(myproc) = C(myproc) + Tmp*B( myproc-j mod p , myproc)

- Same idea as for gravity in simple sharks and fish algorithm
+ May want double buffering in practice for overlap

- Ignoring deadlock details in code
» Time of inner loop = 2*(a + B*nzlp) + 2*n*(n/p)2
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Matmul for 1D layout on a Processor Ring

» Time of inner loop = 2*(a + B*n2/p) + 2*n*(n/p)?
» Total Time =2*n* (n/p)2 + (p-1) * Time of inner loop
. ~2*n3/p + 2*p*a + 2*B*n2

* (Nearly) Optimal for 1D layout on Ring or Bus, even with Broadcast:

» Perfect speedup for arithmetic
+ A(myproc) must move to each other processor, costs at least
(p-1)*cost of sending n*(n/p) words

« Parallel Efficiency = 2*n3 / (p * Total Time)
=1/(1+ a* p2/(2*n3) + g * p/(2*n) )
=1/ (1 + O(p/n))

* Grows to 1 as n/p increases (or o and g shrink)

« But far from communication lower bound
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Need to try 2D Matrix layout

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

4) Row versions of the previous layouts

b
3) 1D Column Block Cyclic Layout

Summary of Parallel Matrix Multiply

+ SUMMA
* Scalable Universal Matrix Multiply Algorithm
+ Attains communication lower bounds (within log p)
« Cannon
* Historically first, attains lower bounds
* More assumptions
* Aand B square
* P a perfect square
« 2.5D SUMMA
» Uses more memory to communicate even less
* Parallel Strassen
« Attains different, even lower bounds
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TTOTTOTTTOTT
0 1
UM Generalizes others
2|3 LI
6) 2D Row and Column
5) 2D Row and Column Blocked Layout Block Cyclic Layout
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SUMMA Algorithm

* SUMMA = Scalable Universal Matrix Multiply
* Presentation from van de Geijn and Watts

» www.netlib.org/lapack/lawns/lawn96.ps

« Similar ideas appeared many times
» Used in practice in PBLAS = Parallel BLAS

» www.netlib.org/lapack/lawns/lawn100.ps
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SUMMA uses Outer Product form of MatMul
+ C=A*B means C(i,j) = =k A(i,k)*B(k,))

» Column-wise outer product:
C=AB
=3k A(5,k)*B(k,:)
= 3 (k-th col of A)*(k-th row of B)

* Block column-wise outer product
(block size = 4 for illustration)
C=AB
=A(:,1:4)'B(1:4,:) + A(:,5:8)*B(5:8,)) + ...
= 3k (k-th block of 4 cols of A)*
(k-th block of 4 rows of B)
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41

SUMMA- n x n matmul on P"2x P2 grid

k j /Blkiil
H k
- \ * l\ - <— Brow
i Y /j )
Alik] P

Acol

For k=0 to n/b-1
foralli=1to P2

owner of A[i,k] broadcasts it to whole processor row (using binary tree)
forallj=1to P12

owner of B[k,j] broadcasts it to whole processor column (using bin. tree)
Receive A[i,k] into Acol
Receive B[k,j] into Brow

C_myproc = C_myproc + Acol * Brow
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SUMMA — n x n matmul on P"2x P2 grid

k j /Blkiil
k
s ~ | * \ =
i Y /j Cli
/]
Ali,k] /]

Cli, jlis n/P2 x n/P12 submatrix of C on processor Pij
« Ali,klis n/P'2 x b submatrix of A
« Blk,jlis b x n/P"2 submatrix of B
Cli,jl = C[i,jl + Zx Ali,k]"Bk,]]
» summation over submatrices
Need not be square processor grid

42
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SUMMA Costs

For k=0 to n/b-1
foralli=1 to P2
owner of A[i,k] broadcasts it to whole processor row (using binary tree)
... #words =log P'"2*b*n/P12 ,

#messages = log P12
forallj=1to P2

owner of B[k,j] broadcasts it to whole processor column (using bin. tree)
.. same #words and #messages
Receive A[i,k] into Acol
Receive B[k,j] into Brow

C_myproc = C_myproc + Acol * Brow ... #flops = 2nZ*b/P

° Total #words  =log P * n2 /P12
° Within factor of log P of lower bound

° (more complicated implementation removes log P factor)
° Total #messages =log P * n/b

° Choose b close to maximum, n/P'2, to approach lower bound P12
° Total #flops = 2n%/P w4

CS267 Lecture 2
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Performance of PBLAS
Speed in MHops of PDGEMM
SEair | Trocn | Bk 5 Can we do better?
Size | 2000 | 4000 [ 10000 |
P ormatmanpn ST || | a6 00| em « Lower bound assumed 1 copy of data: M = O(n?/P) per proc.
N S = 1 N B  What if matrix small enough to fit c>1 copies, so M = ¢cn?/P ?
t i 16 2514 | 2850 [
F Wflons INcrensse, ot & 6205 | 8709 | 10774 « #words_moved = Q( #flops / M'2) = Q( n?/(c'2P"2))
% effici Tutel X/ M 4| | :| o o
e ot arcersd [ INEE R -#messages = Q(#flops / M32) = Q( P2 /c¥2)
Wilops (efficiency) fises I piNow| 4] ®| &3] @] o « Can we attain new lower bound?
32=4x8 2490 | 2822 | 3450 . « » 13
64 4130 | 5457 | 6647 * Special case: “3D Matmul”: ¢ =P
_ Efficiency = MEFlops{CDGEMM)/(Procs ™ MElops{ DGEMM)) « Bernsten 89, Agarwal, Chandra, Snir 90, Aggarwal 95
DGEMM = BLAS routine Machiue Teak/ [ DGEMM | Pracs N i 13 13 13 gri
for matrix multiply proc | Mflops 2000 | 4000 | 10000 « Processors arranged in P13 x P13 x P13 grid
Cray T3E 600 360 4 73| 74 . ii i) = ii i k)* i
Maximum speed for PDGEMM ¥ il I B Processor (I,J,!() 'performs C(i,j) = C(i,j) + A(i,k)*B(k,j), where
= # Procs * speed of DGEMM 64| 58| 62| 7 each submatrix is n/P"3x n/P1/3
IBM Sr2 266 200 4 94 .
Observations (same as above): 6| 79| 89 * Not alWayS that much memory available...
Efficiency always at least 48% 64| 48| 68 84
For fixed N, as P increases, Tutel XP/SMP | 100 €0 4] 92
efficiency drops Paragon 16| .86| .89
For fixed P, as N increases, 64) 78] 84| 91
efficiency increases Berkeley NOW | 334 129 3; 28 2; o
02/25/2016 6| 50| 66| 81| 45 02/25/2016 5267 Lecture 12 46
2.5D Matrix Multiplication 2.5D Matrix Multiplication
» Assume can fit cn?/P data per processor, ¢ > 1  Assume can fit cn?/P data per processor, ¢ > 1
* Processors form (P/c)'2 x (P/c)'2 x ¢ grid * Processors form (P/c)"2 x (P/c)'2 x ¢ grid
(Pic)12 j

\id

?\o\ \
\ Example: P= 32, c=2 Initially P(i,j,0) owns A(i,j) and B(i,j)

each of size n(c/P)"2 x n(c/P)"2

(1) P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)

(2) Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of X A(i,m)*B(m,j)
(3) Sum-reduce partial sums ., A(i,m)*B(m,j) along k-axis so P(i,j,0) owns C(i,j)
02/25/2016 CS267 Lecture 12
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2.5D Matmul on IBM BG/P, n=64K

« As P increases, available memory grows =» ¢ increases proportionally to P
« #flops, #words_moved, #messages per proc all decrease proportionally to P
» #words_moved = Q( #flops / M'2) = Q( n2/(c'2P12))
» #messages = Q(#flops / M32) = Q( P2 /c32)
« Perfect strong scaling! But only up to ¢c = P13
Matrix multiplication on BG/P (n=65,536)
100 T

" 25D MM ——
2D MM §

Percentage of machine peak

0
256 512 1024 2048
#nodes

2.5D Matmul on IBM BG/P, 16K nodes / 64K cores

Matrix multiplication on 16,384 nodes of BG/P
100

25D MM | !
2D MM

80 2.7X faster ]

60 |- Using c=16-matrix copies

Percentage of machine peak

40 B
12X faster
20 B
0
8192 131072
n
02/25/2016 CS267 Lecture 12

2.5D Matmul on IBM BG/P, 16K nodes / 64K cores

c =16 copies
Matrix multiplication on 16,384 nodes of BG/P
1.4 T T

T T
communication s
1.2 idle 3

95% reduction in comm computation m—

1 -
0.8 - E

Execution time normalized by 2D

N N N Ny
‘9/99 879 ’0,0) ’0,0)
o 79y, < <
2} 7o) 330

Distinguished Paper Award, EuroPar’11
02/25/2016 SC’11 paper by Solomonik, Bhatele, D.
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Perfect Strong Scaling — in Time and Energy

Every time you add a processor, you should use its memory M too
Start with minimal number of procs: PM = 3n?2
Increase P by a factor of ¢ = total memory increases by a factor of ¢
Notation for timing model:
* yr, By, o = secs per flop, per word_moved, per message of size m
T(cP) = n3(cP) [ yr+ Br/M'2 + a/(mM'2) |
=T(P)lc
Notation for energy model:
* Ve, Be , g = joules for same operations
« &g = joules per word of memory used per sec
* g = joules per sec for leakage, etc.
E(cP) = cP { n%(cP) [ yg+ Be/M"2 + ag/(mM™2) ] + ScMT(cP) + e T(cP) }
=E(P)

¢ cannot increase forever: ¢ <= P13 (3D algorithm)
» Corresponds to lower bound on #messages hitting 1
Perfect scaling extends to Strassen’s matmul, direct N-body, ...
* “Perfect Strong Scaling Using No Additional Energy”
« “Strong Scaling of Matmul and Memory-Indep. Comm. Lower Bounds”
+ Both at bebop.cs.berkeley.edu

13



Classical Matmul

» Complexity of classical Matmul

* Flops: O(n%/p)

« Communication lower bound on #words:
Q((n3/p)M12) = Q(M(n/M12)3/p)

« Communication lower bound on #messages:
Q((n¥/p)M372) = Q((n/M12)3/p)

« All attainable as M increases past O(n?/p), up to a limit:

can increase M by factor up to p'/3

#words as low as Q(n/p??)

02/27/2014 CS267 Lecture 12
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Strong scaling of Matmul on Hopper (n=94080)

G. Ballard, D., O. Holtz, B. Lipshitz, O. Schwartz

CAPS —+—
2.5D-Strassen —*—
2D-Strassen ---e---

Strassen-2D -4
2.5D Classical
ScalAPACK ---©

40

Effective GFLOPS per node

ol L
P=49 P=343 P=2401

“Communication-Avoiding Parallel Strassen”
bebop.cs.berkeley.edu, Supercomputing’12

02/25/2016 54

ScalL APACK Parallel Library

ScaLAPACK SOFTWARE HIERARCHY

Sca

Message Passing Primitives
(MPL, PVM, etc.)

02/25/2016 CS267 Lecture 12
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Extensions of Lower Bound and
Optimal Algorithms
* For each processor that does G flops with fast memory of size M
#words_moved = Q(G/M'?)
« Extension: for any program that “smells like”
* Nested loops ...
» That access arrays ...
» Where array subscripts are linear functions of loop indices
« Ex: A(ij), B(3*i-4*k+5%, i, 2%k, ...), ...
* There is a constant s such that
#words_moved = Q(G/Ms")
+ s comes from recent generalization of Loomis-Whitney (s=3/2
* Ex: linear algebra, n-body, database join, ...
* Lots of open questions: deriving s, optimal algorithms ...

02/25/2016 CS267 Lecture 12 56

CS267 Lecture 2

14



Proof of Communication Lower Bound on C = A-B (1/4)

« Proof from Irony/Toledo/Tiskin (2004)
« Think of instruction stream being executed
« Looks like “ ... add, load, multiply, store, load, add, ...”
« Each load/store moves a word between fast and slow memory

* We want to count the number of loads and stores, given that we are
multiplying n-by-n matrices C = A-B using the usual 2n? flops, possibly
reordered assuming addition is commutative/associative

» Assuming that at most M words can be stored in fast memory

« Outline:

« Break instruction stream into segments, each with M loads and stores

* Somehow bound the maximum number of flops that can be done in
each segment, call it F

*« So F -#segments=T =total flops =2:n®, so #segments=T/F

* So #loads & stores =M - #segments =M - T/F

02/25/2016 CS267 Lecture 12 57

lllustrating Segments, for M=3

Segment 1

Segment 2

Time

Segment 3

02/25/2016 58

Proof of Communication Lower Bound on C = A-B (2/4)

“C face”
Cube representing
C(1,1) += A(1,3)-B(3,1)
c(2,3)
1
c(1,1) 1
“[=
()
A(1,3) o
A(1,2) é: =l j
o 7
< N
A(2,1) A(1,1) @ @
. @
I < 54
“A face”
« If we have at most 2M “A squares”, 2M “B squares”, and
2M “C squares” on faces, how many cubes can we have? 59
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Proof of Communication Lower Bound on C = A-B (3/5)

* Given segment of instruction stream with M loads & stores, how
many adds & multiplies (F) can we do?
+ At most 2M entries of C, 2M entries of A and/or 2M entries
of B can be accessed
* Use geometry:
* Represent n multiplications by n x n x n cube
* One n x n face represents A
* each 1 x 1 subsquare represents one A(i,k)
* One n x n face represents B
« each 1 x 1 subsquare represents one B(k,j)
* One n x n face represents C
« each 1 x 1 subsquare represents one C(i,j)
* Each 1 x 1 x 1 subcube represents one C(i,j) += A(i,k) - B(k,j)

* May be added directly to C(i,j), or to temporary accumulator
60
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Proof of Communication Lower Bound on C = A-B (3/4)

.y

itz

# cubes in black box with
side lengths x, y and z

= Volume of black box

=xyz

=(xz - zy - yx)2

= (#Acs - #Bos - #Cos )12

4k

C shadow

SF

A shadow

o A

@
¥
2

i «—

(i,k) is in A shadow if (i,j,k) in 3D set
(j;k) is in B shadow if (i,j,k) in 3D set
(i,j) is in C shadow if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
# cubes in 3D set = Volume of 3D set
< (area(A shadow) - area(B shadow) -

area(C shadow)) 12

61
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Proof of Communication Lower Bound on C = A-B (4/4)

- Consider one “segment” of instructions with M loads, stores
» Can be at most 2M entries of A, B, C available in one segment
» Volume of set of cubes representing possible multiply/adds in
one segmentis < (2M - 2M - 2M)V2 = (2M) 32 = F
« # Segments = |2n3/F|
+ # Loads & Stores = M - #Segments = M - [2n3 / F|
=n3/ (2M)V2_M = Q(n3/ M'12)

« Parallel Case: apply reasoning to one processor out of P
« # Adds and Muls = 2n3/ P (at least one proc does this )
« M= n2/ P (each processor gets equal fraction of matrix)
 # “Load & Stores” = # words moved from or to other procs
=M - (2n3 /P)/ F=M - (2n3 /P) / (2M)32 = n2 / (2P)"/2
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