CS 267 Dense Linear Algebra: History and Structure, Parallel Matrix Multiplication

James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spr16

02/25/2016

CS267 Lecture 12

1

3

Quick review of earlier lecture

- · What do you call
 - A program written in PyGAS, a Global Address Space language based on Python...
 - \bullet That uses a Monte Carlo simulation algorithm to approximate $\boldsymbol{\pi} \dots$
 - That has a race condition, so that it gives you a different funny answer every time you run it?

Monte - π - thon

2

02/25/2016 CS267 Lecture 12

Outline

- · History and motivation
 - What is dense linear algebra?
 - · Why minimize communication?
 - Lower bound on communication
- Parallel Matrix-matrix multiplication
 - Attaining the lower bound
- Other Parallel Algorithms (next lecture)

02/25/2016

CS267 Lecture 12

Outline

- History and motivation
 - What is dense linear algebra?
 - Why minimize communication?
 - · Lower bound on communication
- Parallel Matrix-matrix multiplication
 - · Attaining the lower bound
- · Other Parallel Algorithms (next lecture)

02/25/2016

CS267 Lecture 12

What is dense linear algebra?

- · Not just matmul!
- · Linear Systems: Ax=b
- Least Squares: choose x to minimize ||Ax-b||₂
- · Overdetermined or underdetermined; Unconstrained, constrained, or weighted
- Eigenvalues and vectors of Symmetric Matrices
 - Standard (Ax = λx), Generalized (Ax=λBx)
- Eigenvalues and vectors of Unsymmetric matrices
 - Eigenvalues, Schur form, eigenvectors, invariant subspaces
 - Standard, Generalized
- · Singular Values and vectors (SVD)
 - · Standard, Generalized
- · Different matrix structures
 - Real, complex; Symmetric, Hermitian, positive definite; dense, triangular, banded ...
 - 27 types in LAPACK (and growing...)
- · Level of detail
 - Simple Driver ("x=A\b")
 - · Expert Drivers with error bounds, extra-precision, other options
- Lower level routines ("apply certain kind of orthogonal transformation", matmul...)
 02/25/2016
 CS267 Lecture 12
 6

A brief history of (Dense) Linear Algebra software (1/7)

- In the beginning was the do-loop...
 - Libraries like EISPACK (for eigenvalue problems)
- Then the BLAS (1) were invented (1973-1977)
 - Standard library of 15 operations (mostly) on vectors
 - "AXPY" ($y = \alpha \cdot x + y$), dot product, scale ($x = \alpha \cdot x$), etc
 - Up to 4 versions of each (S/D/C/Z), 46 routines, 3300 LOC
 - Goals
 - · Common "pattern" to ease programming, readability
 - · Robustness, via careful coding (avoiding over/underflow)
 - Portability + Efficiency via machine specific implementations
 - Why BLAS 1? They do O(n¹) ops on O(n¹) data
 - Used in libraries like LINPACK (for linear systems)
 - Source of the name "LINPACK Benchmark" (not the code!)

02/25/2016 CS267 Lecture 12 8

Current Records for Solving Dense Systems (11/2015)

- Linpack Benchmark
- Fastest machine overall (www.top500.org)
 - Tianhe-2 (Guangzhou, China)
 - 33.9 Petaflops out of 54.9 Petaflops peak (n=10M)
 - 3.1M cores, of which 2.7M are accelerator cores
 Intel Xeon E5-2692 (Ivy Bridge) and
 Xeon Phi 31S1P
 - 1 Pbyte memory
 - 17.8 MWatts of power, 1.9 Gflops/Watt
- Historical data (www.netlib.org/performance)
 - Palm Pilot III
 - 1.69 Kiloflops
 - n = 100

02/25/2016

CS267 Lecture 12

9

A brief history of (Dense) Linear Algebra software (2/7)

- But the BLAS-1 weren't enough
 - Consider AXPY ($y = \alpha \cdot x + y$): 2n flops on 3n read/writes
 - Computational intensity = (2n)/(3n) = 2/3
 - Too low to run near peak speed (read/write dominates)
 - Hard to vectorize ("SIMD' ize") on supercomputers of the day (1980s)
- So the BLAS-2 were invented (1984-1986)
 - Standard library of 25 operations (mostly) on matrix/ vector pairs
 - "GEMV": $y = \alpha \cdot A \cdot x + \beta \cdot x$, "GER": $A = A + \alpha \cdot x \cdot y^T$, $x = T^{-1} \cdot x$
 - Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC
 - Why BLAS 2? They do O(n2) ops on O(n2) data
 - So computational intensity still just $\sim (2n^2)/(n^2) = 2$
 - OK for vector machines, but not for machine with caches
 02/25/2016
 CS267 Lecture 12

10

3

A brief history of (Dense) Linear Algebra software (3/7)

- The next step: BLAS-3 (1987-1988)
 - Standard library of 9 operations (mostly) on matrix/matrix pairs
 - "GEMM": $C = \alpha \cdot A \cdot B + \beta \cdot C$. $C = \alpha \cdot A \cdot A^T + \beta \cdot C$. $B = T^{-1} \cdot B$
 - Up to 4 versions of each (S/D/C/Z), 30 routines, 10K LOC
 - Why BLAS 3? They do O(n3) ops on O(n2) data
 - So computational intensity $(2n^3)/(4n^2) = n/2 big$ at last!
 - · Good for machines with caches, other mem. hierarchy levels
- How much BLAS1/2/3 code so far (all at www.netlib.org/blas)
 - Source: 142 routines, 31K LOC, Testing: 28K LOC
 - Reference (unoptimized) implementation only
 - Ex: 3 nested loops for GEMM
 - Lots more optimized code (eq Homework 1)
 - Motivates "automatic tuning" of the BLAS
 - Part of standard math libraries (eq AMD ACML, Intel MKL)

02/25/2016 CS267 Lecture 12 11

A brief history of (Dense) Linear Algebra software (4/7)

- LAPACK "Linear Algebra PACKage" uses BLAS-3 (1989 now)
 - Ex: Obvious way to express Gaussian Elimination (GE) is adding multiples of one row to other rows – BLAS-1
 - How do we reorganize GE to use BLAS-3? (details later)
 - Contents of LAPACK (summary)
 - Algorithms that are (nearly) 100% BLAS 3
 - Linear Systems: solve Ax=b for x
 - Least Squares: choose x to minimize ||Ax-b||₂
 - Algorithms that are only ≈50% BLAS 3
 - Eigenproblems: Find λ and x where $Ax = \lambda x$
 - Singular Value Decomposition (SVD)
 - Generalized problems (eg $Ax = \lambda Bx$)
 - Error bounds for everything
 - Lots of variants depending on A's structure (banded, A=A^T, etc)
 - How much code? (Release 3.6.0, Nov 2015) (www.netlib.org/lapack)
 - Source: 1750 routines, 721K LOC, Testing: 1094 routines, 472K LOC
 - Ongoing development (at UCB and elsewhere) (class projects!)
 - · Next planned release June 2016

13

15

A brief history of (Dense) Linear Algebra software (5/7)

- Is LAPACK parallel?
 - Only if the BLAS are parallel (possible in shared memory)
- ScaLAPACK "Scalable LAPACK" (1995 now)
 - For distributed memory uses MPI
 - More complex data structures, algorithms than LAPACK
 - · Only subset of LAPACK's functionality available
 - · Details later (class projects!)
 - All at www.netlib.org/scalapack

02/25/2016 CS267 Lecture 12

Success Stories for Sca/LAPACK (6/7)

- · Widely used
 - · Adopted by Mathworks, Cray, Fujitsu, HP, IBM, IMSL, Intel, NAG, NEC, SGI, ...
 - 7.5M webhits/year @ Netlib (incl. CLAPACK, LAPACK95)
- · New Science discovered through the solution of dense matrix systems
 - · Nature article on the flat universe used ScaLAPACK
 - · Other articles in Physics Review B that also use it
 - 1998 Gordon Bell Prize
- Cosmic Microwave Background Analysis, BOOMERanG collaboration, MADCAP code (Apr. 27, 2000).
- www.nersc.gov/assets/NewsImages/2003/ newNERSCresults050703.pdf

02/25/2016

CS267 Lecture 12

A brief future look at (Dense) Linear Algebra software (7/7)

14

- PLASMA, DPLASMA and MAGMA (now)
 - Ongoing extensions to Multicore/GPU/Heterogeneous
 - Can one software infrastructure accommodate all algorithms and platforms of current (future) interest?
 - · How much code generation and tuning can we automate?
 - Details later (Class projects!) (icl.cs.utk.edu/{{d}plasma,magma})
- Other related projects
 - Elemental (libelemental.org)
 - · Distributed memory dense linear algebra
 - "Balance ease of use and high performance"
 - FLAME (z.cs.utexas.edu/wiki/flame.wiki/FrontPage)
 - · Formal Linear Algebra Method Environment
 - Attempt to automate code generation across multiple platforms
- So far, none of these libraries minimize communication in all cases (not even matmul!)

Back to basics: Why avoiding communication is important (1/3) Algorithms have two costs: 1.Arithmetic (FLOPS) 2. Communication: moving data between • levels of a memory hierarchy (sequential case) · processors over a network (parallel case). DRAM 02/25/2016 CS267 Lecture 12

Why avoiding communication is important (2/3) • Running time of an algorithm is sum of 3 terms: # flops * time per flop # words moved / bandwidth # messages * latency • Time per flop << 1/ bandwidth << latency · Gaps growing exponentially with time

communication

· Minimize communication to save time

CS267 Lecture 12 18 02/25/2016

Goal:Organize Linear Algebra to Avoid Communication

- Between all memory hierarchy levels
 - L1 ↔ L2 ↔ DRAM ↔ network, etc
- Not just hiding communication (overlap with arithmetic)
 - Speedup $\leq 2x$
- Arbitrary speedups/energy savings possible
- · Later: Same goal for other computational patterns
 - · Lots of open problems

02/25/2016 CS267 Lecture 12 21

Communication Lower Bounds: Prior Work on Matmul

- Assume n³ algorithm (i.e. not Strassen-like)
- · Sequential case, with fast memory of size M
 - Lower bound on #words moved to/from slow memory = Ω (n³ / M^{1/2}) [Hong, Kung, 81]
 - · Attained using blocked or cache-oblivious algorithms
- Parallel case on P processors:
 - Let M be memory per processor; assume load balanced
 - Lower bound on #words moved = Ω ((n³/p) / M^{1/2})) [Irony, Tiskin, Toledo, 04]
 - If M = $3n^2/p$ (one copy of each matrix), then lower bound = Ω ($n^2/p^{1/2}$)
 - Attained by SUMMA, Cannon's algorithm

02/25/2016 CS267 Lecture 12 23

Review: Blocked Matrix Multiply

 Blocked Matmul C = A·B breaks A, B and C into blocks with dimensions that depend on cache size

```
... Break A^{nxn}, B^{nxn}, C^{nxn} into bxb blocks labeled A(i,j), etc ... b chosen so 3 bxb blocks fit in cache for i=1 to n/b, for j=1 to n/b, for k=1 to n/b  
C(i,j) = C(i,j) + A(i,k) \cdot B(k,j) \qquad ... \quad b \times b \text{ matmul}, \quad 4b^2 \text{ reads/writes}
```

- When b=1, get "naïve" algorithm, want b larger ...
- $(n/b)^3 \cdot 4b^2 = 4n^3/b$ reads/writes altogether
- Minimized when $3b^2$ = cache size = M, yielding $O(n^3/M^{1/2})$ reads/writes
- What if we had more levels of memory? (L1, L2, cache etc)?
 - Would need 3 more nested loops per level
 - · Recursive (cache-oblivious algorithm) also possible

02/25/2016 CS267 Lecture 12 22

New lower bound for all "direct" linear algebra

```
Let M = "fast" memory size per processor
= cache size (sequential case) or O(n<sup>2</sup>/p) (parallel case)
#flops = number of flops done per processor
```

```
#words_moved per processor = \Omega(\text{#flops / M}^{1/2})
```

#messages_sent per processor = Ω (#flops / M^{3/2})

- · Holds for
 - Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...
 - Some whole programs (sequences of these operations, no matter how they are interleaved, eg computing A^k)
 - Dense and sparse matrices (where #flops << n³)
 - Sequential and parallel algorithms
 - Some graph-theoretic algorithms (eg Floyd-Warshall)
- Generalizations later (Strassen-like algorithms, loops accessing arrays)
 02/25/2016
 CS267 Lecture 12
 24

6

New lower bound for all "direct" linear algebra

Let M = "fast" memory size per processor

= cache size (sequential case) or O(n²/p) (parallel case)

#flops = number of flops done per processor

#words moved per processor = $\Omega(\text{#flops / M}^{1/2})$

#messages sent per processor = Ω (#flops / M^{3/2})

- Sequential case, dense n x n matrices, so O(n3) flops
 - #words moved = $\Omega(n^3/M^{1/2})$
 - #messages_sent = $\Omega(n^3/M^{3/2})$
- Parallel case, dense n x n matrices
 - Load balanced, so O(n³/p) flops processor
 - One copy of data, load balanced, so $M = O(n^2/p)$ per processor
 - #words_moved = $\Omega(n^2/p^{1/2})$

SIAM Linear Algebra Prize, 2012

• #messages_sent = $\Omega(p^{1/2})$

02/25/2016 CS267 Lecture 12

Can we attain these lower bounds?

- Do conventional dense algorithms as implemented in LAPACK and ScaLAPACK attain these bounds?
 - · Mostly not yet, work in progress
- If not, are there other algorithms that do?
 - Yes
- · Goals for algorithms:
 - · Minimize #words moved
 - Minimize #messages_sent
 - · Need new data structures
 - · Minimize for multiple memory hierarchy levels
 - · Cache-oblivious algorithms would be simplest
 - · Fewest flops when matrix fits in fastest memory
 - · Cache-oblivious algorithms don't always attain this
- · Attainable for nearly all dense linear algebra
 - Just a few prototype implementations so far (class projects!)
 - Only a few sparse algorithms so far (eg Cholesky)

02/25/2016 CS267 Lecture 12

26

Outline

- History and motivation
 - What is dense linear algebra?
 - Why minimize communication?
 - Lower bound on communication
- Parallel Matrix-matrix multiplication
 - · Attaining the lower bound
- Other Parallel Algorithms (next lecture)

02/25/2016 CS267 Lecture 12 27

Parallel Matrix-Vector Product

- Compute $y = y + A^*x$, where A is a dense matrix
- Layout:
 - 1D row blocked
- A(i) refers to the n by n/p block row that processor i owns,
- x(i) and y(i) similarly refer to segments of x,y owned by i
- · Algorithm:
 - · Foreach processor i
 - Broadcast x(i)
 - Compute y(i) = A(i)*x
- Algorithm uses the formula

$$y(i) = y(i) + A(i)*x = y(i) + \sum_{i} A(i,j)*x(j)$$

02/25/2016

CS267 Lecture 12

Matrix-Vector Product y = y + A*x

- A column layout of the matrix eliminates the broadcast of x
 - But adds a reduction to update the destination y
- A 2D blocked layout uses a broadcast and reduction, both on a subset of processors
 - sqrt(p) for square processor grid

02/25/2016

30

Parallel Matrix Multiply

- Computing C=C+A*B
- Using basic algorithm: 2*n3 Flops
- · Variables are:
 - · Data layout: 1D? 2D? Other?
 - Topology of machine: Ring? Torus?
 - Scheduling communication
- Use of performance models for algorithm design
 - - = α + n* β
- Efficiency (in any model):
 - serial time / (p * parallel time)
 - perfect (linear) speedup ↔ efficiency = 1

02/25/2016

CS267 Lecture 12

31

29

Matrix Multiply with 1D Column Layout

• Assume matrices are n x n and n is divisible by p

May be a reasonable assumption for analysis, not for code

- A(i) refers to the n by n/p block column that processor i owns (similiarly for B(i) and C(i))
- B(i,j) is the n/p by n/p sublock of B(i)
 - in rows j*n/p through (j+1)*n/p 1
- Algorithm uses the formula

$$C(i) = C(i) + A*B(i) = C(i) + \Sigma_i A(j)*B(j,i)$$

02/25/2016

CS267 Lecture 12

32

Matrix Multiply: 1D Layout on Bus or Ring

· Algorithm uses the formula

$$C(i) = C(i) + A*B(i) = C(i) + \Sigma_i A(j)*B(j,i)$$

- First consider a bus-connected machine without broadcast: only one pair of processors can communicate at a time (ethernet)
- Second consider a machine with processors on a ring: all processors may communicate with nearest neighbors simultaneously

02/25/2016 CS267 Lecture 12 33

MatMul: 1D layout on Bus without Broadcast

Naïve algorithm:

```
C(myproc) = C(myproc) + A(myproc)*B(myproc,myproc)
for i = 0 to p-1
for j = 0 to p-1 except i
    if (myproc == i) send A(i) to processor j
    if (myproc == j)
        receive A(i) from processor i
        C(myproc) = C(myproc) + A(i)*B(i,myproc)
barrier
```

Cost of inner loop:

```
computation: 2*n*(n/p)^2 = 2*n^3/p^2
communication: \alpha + \beta*n^2/p
```

02/25/2016 CS267 Lecture 12

Naïve MatMul (continued)

Cost of inner loop:

```
computation: 2^*n^*(n/p)^2 = 2^*n^3/p^2
communication: \alpha + \beta^*n^2/p ... approximately
```

Only 1 pair of processors (i and j) are active on any iteration, and of those, only i is doing computation

=> the algorithm is almost entirely serial

Running time:

```
= (p^*(p-1) + 1)^*computation + p^*(p-1)^*communication
= 2^*n^3 + p^{2*}\alpha + p^*n^{2*}\beta
```

This is worse than the serial time and grows with p.

02/25/2016 CS267 Lecture 12 35

Matmul for 1D layout on a Processor Ring

34

· Pairs of adjacent processors can communicate simultaneously

```
Copy A(myproc) into Tmp

C(myproc) = C(myproc) + Tmp*B(myproc, myproc)

for j = 1 to p-1

Send Tmp to processor myproc+1 mod p

Receive Tmp from processor myproc-1 mod p

C(myproc) = C(myproc) + Tmp*B( myproc-j mod p, myproc)
```

- Same idea as for gravity in simple sharks and fish algorithm
 - May want double buffering in practice for overlap
 - · Ignoring deadlock details in code
- Time of inner loop = $2*(\alpha + \beta*n^2/p) + 2*n*(n/p)^2$

02/25/2016 CS267 Lecture 12 36

Matmul for 1D layout on a Processor Ring

- Time of inner loop = $2*(\alpha + \beta*n^2/p) + 2*n*(n/p)^2$
- Total Time = 2*n* (n/p)2 + (p-1) * Time of inner loop
- $\approx 2*n^3/p + 2*p*\alpha + 2*\beta*n^2$
- (Nearly) Optimal for 1D layout on Ring or Bus, even with Broadcast:
 - · Perfect speedup for arithmetic
 - A(myproc) must move to each other processor, costs at least (p-1)*cost of sending n*(n/p) words
- Parallel Efficiency = 2*n³ / (p * Total Time)

=
$$1/(1 + \alpha * p^2/(2*n^3) + \beta * p/(2*n))$$

37

39

- = 1/(1 + O(p/n))
- Grows to 1 as n/p increases (or α and β shrink)
- · But far from communication lower bound

02/25/2016 CS267 Lecture 12

Summary of Parallel Matrix Multiply

- SUMMA
 - Scalable Universal Matrix Multiply Algorithm
 - Attains communication lower bounds (within log p)
- Cannon
 - · Historically first, attains lower bounds
 - More assumptions
 - · A and B square
 - P a perfect square
- 2.5D SUMMA
 - Uses more memory to communicate even less
- · Parallel Strassen
 - · Attains different, even lower bounds

02/25/2016 CS267 Lecture 12

SUMMA Algorithm

- SUMMA = Scalable Universal Matrix Multiply
- Presentation from van de Geijn and Watts
 - www.netlib.org/lapack/lawns/lawn96.ps
 - Similar ideas appeared many times
- Used in practice in PBLAS = Parallel BLAS
 - www.netlib.org/lapack/lawns/lawn100.ps

02/25/2016 CS267 Lecture 12 40

SUMMA uses Outer Product form of MatMul

- C = A*B means $C(i,j) = \Sigma_k A(i,k)*B(k,j)$
- Column-wise outer product:

$$C = A*B$$

=
$$\Sigma_k A(:,k)^*B(k,:)$$

- = Σ_k (k-th col of A)*(k-th row of B)
- Block column-wise outer product

$$C = A*B$$

$$= A(:,1:4)*B(1:4,:) + A(:,5:8)*B(5:8,:) + ...$$

= Σ_k (k-th block of 4 cols of A)*

(k-th block of 4 rows of B)

02/25/2016

CS267 Lecture 12

41

SUMMA – n x n matmul on $P^{1/2}$ x $P^{1/2}$ grid

- C[i, j] is $n/P^{1/2} \times n/P^{1/2}$ submatrix of C on processor P_{ii}
- A[i,k] is n/P1/2 x b submatrix of A
- B[k,j] is b x n/P^{1/2} submatrix of B
- $C[i,j] = C[i,j] + \Sigma_k A[i,k]*B[k,j]$
 - · summation over submatrices
- · Need not be square processor grid

02/25/2016 CS267 Lecture 12

SUMMA- n x n matmul on $P^{1/2}$ x $P^{1/2}$ grid

For k=0 to n/b-1

for all i = 1 to $P^{1/2}$

owner of A[i,k] broadcasts it to whole processor row (using binary tree) for all i=1 to $P^{1/2}$

owner of B[k,j] broadcasts it to whole processor column (using bin. tree)

Receive A[i,k] into Acol

Receive B[k,j] into Brow

C_myproc = C_myproc + Acol * Brow

02/25/2016

CS267 Lecture 12

43

SUMMA Costs

```
For k=0 to n/b-1
```

for all i = 1 to $P^{1/2}$

owner of A[i,k] broadcasts it to whole processor row (using binary tree)

... #words = $\log P^{1/2} *b*n/P^{1/2}$, #messages = $\log P^{1/2}$

all j = 1 to $P^{1/2}$

owner of B[k,j] broadcasts it to whole processor column (using bin. tree)

... same #words and #messages

Receive A[i,k] into Acol

Receive B[k,j] into Brow

C_myproc = C_myproc + Acol * Brow ... #flops = 2n²*b/P

- Total #words = $\log P * n^2/P^{1/2}$
- Within factor of log P of lower bound
- ° (more complicated implementation removes log P factor)
- ° Total #messages = log P * n/b
 - Choose b close to maximum, n/P^{1/2}, to approach lower bound P^{1/2}
- ° Total #flops = 2n³/P

44

42

	Speed in Mflops of PDGEMM							
	Machine	Pro	cs Block		N		1	
	·		Size	2000	4000	1000	10	
PDGEMM = PBLAS routine	Cray T3E	4=2	x2 32	1055	1070		0	
for matrix multiply		16=4		3630				
		64=8		13456		1675	15	
Observations:	IBM SP2		4 50				0	
For fixed N, as P increases			16	2514			0	
Mflops increases, but			64	6205				
less than 100% efficiency	Intel XP/S M		4 32				0	
For fixed P, as N increases,	Paragon		16	1233 4496			0	
Mflops (efficiency) rises	B I I NOT		64 32				0	
	Berkeley NOV	32=4		2490				
			64	4130				
DGEMM = BLAS routine	Efficiency = M Machine			M)/(Procs*)		N		
for matrix multiply		proc	Mflops		2000	4000	10000	
	Cray T3E	600	360	4	.73	.74		
Maximum speed for PDGEMM				16	.63	.70	.75	
" B				64	.58	.62	.73	
= # Procs * speed of DGEMM	IBM SP2	266	200	4 16	.94			
	ID.II OI 2				.79	.89		
bservations (same as above):	115.11 p. 2					70	0.4	ll .
Observations (same as above): Efficiency always at least 48%		100		64	.48	.68	.84	i .
Observations (same as above): Efficiency always at least 48% For fixed N, as P increases,	Intel XP/S MP	100	90	64 4	.48		.84	ĺ
Observations (same as above): Efficiency always at least 48% For fixed N, as P increases, efficiency drops		100	90	64 4 16	.48 .92 .86	.89		
Observations (same as above): Efficiency always at least 48% For fixed N, as P increases, efficiency drops For fixed P, as N increases,	Intel XP/S MP Paragon			64 4 16 64	.48 .92 .86 .78	.89 .84	.84	
Disservations (same as above): Efficiency always at least 48% For fixed N, as P increases, efficiency drops	Intel XP/S MP	100	90	64 4 16	.48 .92 .86	.89		

Can we do better?

- Lower bound assumed 1 copy of data: $M = O(n^2/P)$ per proc.
- What if matrix small enough to fit c>1 copies, so M = cn²/P?
 - #words moved = Ω (#flops / M^{1/2}) = Ω (n² / (c^{1/2} P^{1/2}))
 - #messages = Ω (#flops / M^{3/2}) = Ω (P^{1/2} /c^{3/2})
- Can we attain new lower bound?
 - Special case: "3D Matmul": c = P^{1/3}
 - Bernsten 89, Agarwal, Chandra, Snir 90, Aggarwal 95
 - Processors arranged in P^{1/3} x P^{1/3} x P^{1/3} grid
 - Processor (i,j,k) performs C(i,j) = C(i,j) + A(i,k)*B(k,j), where each submatrix is n/P^{1/3} x n/P^{1/3}
 - Not always that much memory available...

02/25/2016 CS267 Lecture 12

2.5D Matrix Multiplication

- Assume can fit cn²/P data per processor, c > 1
- Processors form (P/c)^{1/2} x (P/c)^{1/2} x c grid

Example: P = 32, c = 2

02/25/2016 CS267 Lecture 12

2.5D Matrix Multiplication

- Assume can fit cn²/P data per processor, c > 1
- Processors form $(P/c)^{1/2}$ x $(P/c)^{1/2}$ x c grid

Initially P(i,j,0) owns A(i,j) and B(i,j) each of size $n(c/P)^{1/2} \times n(c/P)^{1/2}$

- (1) P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)
- (2) Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of $\Sigma_m A(i,m)^*B(m,j)$
- (3) Sum-reduce partial sums $\Sigma_m A(i,m)^*B(m,j)$ along k-axis so P(i,j,0) owns C(i,j)

Perfect Strong Scaling – in Time and Energy

- Every time you add a processor, you should use its memory M too
- Start with minimal number of procs: $PM = 3n^2$
- Increase P by a factor of c → total memory increases by a factor of c
- Notation for timing model:
- γ_T , β_T , α_T = secs per flop, per word_moved, per message of size m
- $T(cP) = n^3/(cP) [\gamma_T + \beta_T/M^{1/2} + \alpha_T/(mM^{1/2})]$ = T(P)/c
- Notation for energy model:
 - γ_E , β_E , α_E = joules for same operations
 - δ_{E} = joules per word of memory used per sec
 - ε_F = joules per sec for leakage, etc.
- E(cP) = cP { $n^3/(cP) [\gamma_E + \beta_E/M^{1/2} + \alpha_E/(mM^{1/2})] + \delta_EMT(cP) + \epsilon_ET(cP) }$ = E(P)
- c cannot increase forever: c <= P^{1/3} (3D algorithm)
 - Corresponds to lower bound on #messages hitting 1
- Perfect scaling extends to Strassen's matmul, direct N-body, ...
 - "Perfect Strong Scaling Using No Additional Energy"
 - "Strong Scaling of Matmul and Memory-Indep. Comm. Lower Bounds"
- · Both at bebop.cs.berkeley.edu

Classical Matmul

- Complexity of classical Matmul
- Flops: O(n³/p)
- Communication lower bound on #words: $\Omega((n^3/p)/M^{1/2}) = \Omega(M(n/M^{1/2})^3/p)$
- Communication lower bound on #messages: $\Omega((n^3/p)/M^{3/2}) = \Omega((n/M^{1/2})^3/p)$
- All attainable as M increases past $O(n^2/p)$, up to a limit: can increase M by factor up to p1/3 #words as low as $\Omega(n/p^{2/3})$

02/27/2014 CS267 Lecture 12 53

Extensions of Lower Bound and Optimal Algorithms

- For each processor that does G flops with fast memory of size M #words moved = $\Omega(G/M^{1/2})$
- Extension: for any program that "smells like"
 - Nested loops ...
 - That access arrays ...
 - Where array subscripts are linear functions of loop indices
 - Ex: A(i,j), B(3*i-4*k+5*j, i-j, 2*k, ...), ...
 - There is a constant s such that

#words moved = $\Omega(G/M^{s-1})$

- s comes from recent generalization of Loomis-Whitney (s=3/2)
- Ex: linear algebra, n-body, database join, ...
- Lots of open questions: deriving s, optimal algorithms ...

02/25/2016 CS267 Lecture 12 56

Proof of Communication Lower Bound on $C = A \cdot B$ (1/4)

- Proof from Irony/Toledo/Tiskin (2004)
- Think of instruction stream being executed
 - Looks like " ... add, load, multiply, store, load, add, ..."
 - multiplying n-by-n matrices C = A·B using the usual 2n³ flops, possibly reordered assuming addition is commutative/associative

Proof of Communication Lower Bound on $C = A \cdot B$ (3/5)

- Given segment of instruction stream with M loads & stores, how many adds & multiplies (F) can we do?
 - At most 2M entries of C, 2M entries of A and/or 2M entries of B can be accessed
- Use geometry:
 - Represent n³ multiplications by n x n x n cube
 - One n x n face represents A
 - each 1 x 1 subsquare represents one A(i,k)
 - One n x n face represents B
 - each 1 x 1 subsquare represents one B(k,j)
 - One n x n face represents C
 - each 1 x 1 subsquare represents one C(i,j)
 - Each 1 x 1 x 1 subcube represents one C(i,j) += A(i,k) · B(k,j)
 - May be added directly to C(i,i), or to temporary accumulator

60

Proof of Communication Lower Bound on $C = A \cdot B (3/4)$

cubes in black box with side lengths x, y and z = Volume of black box = x·y·z

- $= (xz \cdot zy \cdot yx)^{1/2}$
- = (#A□s · #B□s · #C□s)^{1/2}

C shadow

S shadow

(i,k) is in A shadow if (i,j,k) in 3D set (j,k) is in B shadow if (i,j,k) in 3D set (i,j) is in C shadow if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
cubes in 3D set = Volume of 3D set
≤ (area(A shadow) · area(B shadow) ·
area(C shadow)) ¹/²

61

Proof of Communication Lower Bound on $C = A \cdot B (4/4)$

- Consider one "segment" of instructions with M loads, stores
- Can be at most 2M entries of A, B, C available in one segment
- Volume of set of cubes representing possible multiply/adds in one segment is \leq (2M \cdot 2M \cdot 2M)^{1/2} = (2M) ^{3/2} \equiv F
- # Segments $\geq \lfloor 2n^3 / F \rfloor$
- # Loads & Stores = M · #Segments \geq M · $\lfloor 2n^3 / F \rfloor$ $\geq n^3 / (2M)^{1/2} - M = \Omega(n^3 / M^{1/2})$
- Parallel Case: apply reasoning to one processor out of P
 - # Adds and Muls $\ge 2n^3 / P$ (at least one proc does this)
 - M= n² / P (each processor gets equal fraction of matrix)
 - # "Load & Stores" = # words moved from or to other procs $\geq M \cdot (2n^3 / P) / F = M \cdot (2n^3 / P) / (2M)^{3/2} = n^2 / (2P)^{1/2}$

62