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Recap of Lecture 6

» Shared memory multiprocessors

» Caches may be either shared or distributed.
« Multicore chips are likely to have shared caches

+ Cache hit performance is better if they are distributed
(each cache is smaller/closer) but they must be kept
coherent -- multiple cached copies of same location must
be kept equal.

* Requires clever hardware (see CS252, CS258).
« Distant memory much more expensive to access.
» Machines scale to 10s or 100s of processors.
» Shared memory programming
« Starting, stopping threads.
« Communication by reading/writing shared variables.

 Synchronization with locks, barriers.
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Outline

* Distributed Memory Architectures
* Properties of communication networks
 Topologies
» Performance models
* Programming Distributed Memory Machines
using Message Passing
* Overview of MPI
« Basic send/receive use
» Non-blocking communication
* Collectives
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Historical Perspective

« Early distributed memory machines were:
* Collection of microprocessors.
» Communication was performed using bi-directional queues
between nearest neighbors.
» Messages were forwarded by processors on path.
- “Store and forward” networking
» There was a strong emphasis on topology in algorithms,
in order to minimize the number of hops = minimize time

T
1
™
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Network Analogy
» To have a large number of different transfers occurring at once,
you need a large number of distinct wires
* Not just a bus, as in shared memory
» Networks are like streets:
* Link = street.
» Switch = intersection.
« Distances (hops) = number of blocks traveled.
« Routing algorithm = travel plan.
* Properties:
* Latency: how long to get between nodes in the network.
» Street: time for one car = dist (miles) / speed (miles/hr)
» Bandwidth: how much data can be moved per unit time.
« Street: cars/hour = density (cars/mile) * speed (miles/hr) * #lanes
« Network bandwidth is limited by the bit rate per wire and #wires
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Design Characteristics of a Network

* Topology (how things are connected)
* Crossbar; ring; 2-D, 3-D, higher-D mesh or torus;

hypercube; tree; butterfly; perfect shuffle, dragon fly, ...

* Routing algorithm:
* Example in 2D torus: all east-west then all north-south
(avoids deadlock).
 Switching strategy:
« Circuit switching: full path reserved for entire message,
like the telephone.
» Packet switching: message broken into separately-
routed packets, like the post office, or internet
* Flow control (what if there is congestion):
« Stall, store data temporarily in buffers, re-route data to
other nodes, tell source node to temporarily halt,

discard, etc.
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Performance Properties of a Network: Latency

* Diameter: the maximum (over all pairs of nodes) of the
shortest path between a given pair of nodes.
« Latency: delay between send and receive times
« Latency tends to vary widely across architectures
* Vendors often report hardware latencies (wire time)
* Application programmers care about software
latencies (user program to user program)
» Observations:
« Latencies differ by 1-2 orders across network designs
* Software/hardware overhead at source/destination
dominate cost (1s-10s usecs)
» Hardware latency varies with distance (10s-100s nsec
per hop) but is small compared to overheads

« Latency is key for programs with many small messages
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Latency on Some Machines/Networks

8-byte Roundtrip Latency

Roundtrip Latency (usec)

. MPI \ I I
0 EI I E

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 1B/Opteron SP/Fed

« Latencies shown are from a ping-pong test using MPI
« These are roundtrip numbers: many people use 2 of roundtrip time
to approximate 1-way latency (which can’ t easily be measured)
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End to End Latency (1/2 roundtrip) Over Time
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« Latency has not improved significantly, unlike Moore’ s Law
« T3E (shmem) was lowest point — in 1997

Data from Kathy Yelick, UCB and NERSC
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Performance Properties of a Network: Bandwidth

* The bandwidth of a link = # wires / time-per-bit

» Bandwidth typically in Gigabytes/sec (GB/s),
i.e., 8* 220 bits per second

« Effective bandwidth is usually lower than physical link
bandwidth due to packet overhead.

Routing
and control
header
» Bandwidth is important for applications
. D

with mostly large messages Pead
Error code
Trailer
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Bandwidth on Existing Networks

Flood Bandwidth for 2MB messages
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* Flood bandwidth (throughput of back-to-back 2MB messages)
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Bandwidth (MB/sec)

Bandwidth Chart

Note: bandwidth depends on SW, not just HW
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Performance Properties of a Network: Bisection Bandwidth

* Bisection bandwidth: bandwidth across smallest cut that
divides network into two equal halves

» Bandwidth across “narrowest” part of the network

—O nf)ta .
T 11— .bisection
cut

bisection

cut™ =f == == == == == == ——-—r- - o -

bisection bw= link bw bisection bw = sqrt(p) * link bw

* Bisection bandwidth is important for algorithms in which
all processors need to communicate with all others
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Network Topology

* In the past, there was considerable research in network
topology and in mapping algorithms to topology.
* Key cost to be minimized: number of “hops” between
nodes (e.g. “store and forward”)
» Modern networks hide hop cost (i.e., “wormhole
routing”), so topology less of a factor in performance
of many algorithms

» Example: On IBM SP system, hardware latency varies
from 0.5 usec to 1.5 usec, but user-level message
passing latency is roughly 36 usec.

* Need some background in network topology

* Algorithms may have a communication topology
» Example later of big performance impact
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Linear and Ring Topologies

* Linear array
0—0—0—0—0—0—0—0

» Diameter = n-1; average distance ~n/3.
* Bisection bandwidth = 1 (in units of link bandwidth).
* Torus or Ring

AR S
Y

» Diameter = n/2; average distance ~ n/4.
* Bisection bandwidth = 2.
* Natural for algorithms that work with 1D arrays.
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Meshes and Tori — used in Hopper

Two dimensional mesh Two dimensional torus
* Diameter =2 * (sqrt(n ) — 1) * Diameter = sqrt(n)
« Bisection bandwidth = sqrt(n) < Bisection bandwidth = 2* sqrt(n)

* Generalizes to higher dimensions
* Cray XT (eg Hopper@NERSC) uses 3D Torus

« Natural for algorithms that work with 2D and/or 3D arrays (matmul)
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Hypercubes

* Number of nodes n = 2¢ for dimension d.
» Diameter = d.
« Bisection bandwidth = n/2.

° o—0 o’—.o_(. €

«0d 1d 2d 3d 4d

* Popular in early machines (Intel iPSC, NCUBE).
* Lots of clever algorithms.
+ See 1996 online CS267 notes. ,, o
+ Greycode addressing: b o_le 1o

» Each node connected to
d others with 1 bit different.
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Trees

» Diameter = log n.

* Bisection bandwidth = 1.

« Easy layout as planar graph.

» Many tree algorithms (e.g., summation).

* Fat trees avoid bisection bandwidth problem:
* More (or wider) links near top.
» Example: Thinking Machines CM-5.

B
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Butterflies

» Diameter = log n.
« Bisection bandwidth = n.

Ex: to get from proc 101 to 110,
Compare bit-by-bit and
Switch if they disagree, else not

* Cost: lots of wires.
» Used in BBN Butterfly.

* Natural for FFT.

<]
e ][

butterfly switch

multistage butterfly network
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Does Topology Matter?

1 MB multicast on BG/P, Cray XT5, and Cray XE6
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See EECS Tech Report UCB/EECS-2011-92, August 2011
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Dragonflies — used in Edison
» Motivation: Exploit gap in cost and performance between optical
interconnects (which go between cabinets in a machine room) and electrical
networks (inside cabinet)
+ Optical more expensive but higher bandwidth when long
* Electrical networks cheaper, faster when short
» Combine in hierarchy
* One-to-many via electrical networks inside cabinet
« Just a few long optical interconnects between cabinets
« Clever routing algorithm to avoid bottlenecks:
* Route from source to randomly chosen intermediate cabinet
* Route from intermediate cabinet to destination
« Outcome: programmer can (usually) ignore topology, get good performance
* Important in virtualized, dynamic environment
» Programmer can still create serial bottlenecks
» Drawback: variable performance
« Details in “Technology-Drive, Highly-Scalable Dragonfly Topology,” J. Kim.
W. Dally, S. Scott, D. Abts, ISCA 2008

02/09/2016
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Evolution of Distributed Memory Machines

« Special queue connections are being replaced by direct
memory access (DMA):
» Network Interface (NI) processor packs or copies messages.
» CPU initiates transfer, goes on computing.
* Wormhole routing in hardware:
* NlIs do not interrupt CPUs along path.
» Long message sends are pipelined.
* NIs don’t wait for complete message before forwarding
» Message passing libraries provide store-and-forward
abstraction:
» Can send/receive between any pair of nodes, not just along one wire.

» Time depends on distance since each Nl along path must
participate.
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Performance
Models
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Shared Memory Performance Models

+ Parallel Random Access Memory (PRAM)

+ All memory access operations complete in one clock
period -- no concept of memory hierarchy (“too good to
be true”).

* OK for understanding whether an algorithm has enough
parallelism at all (see CS273).

+ Parallel algorithm design strategy: first do a PRAM algorithm,
then worry about memory/communication time (sometimes
works)

» Slightly more realistic versions exist
» E.g., Concurrent Read Exclusive Write (CREW) PRAM.
« Still missing the memory hierarchy
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Latency and Bandwidth Model
» Time to send message of length n is roughly

Time = latency + n*cost_per_word
= latency + n/bandwidth
* Topology is assumed irrelevant.
- Often called “a—p model” and written
Time = a + n*f
» Usually o >>  >> time per flop.
« One long message is cheaper than many short ones.

o+ NP << n¥(o + 1%B)

+ Can do hundreds or thousands of flops for cost of one message.
» Lesson: Need large computation-to-communication ratio to

be efficient.
» LogP — more detailed model (Latency/overhead/gap/Proc.)
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Alpha-Beta Parameters on Various Machines

» These numbers were obtained empirically

machine - J a is latency in usecs
ggﬁg}l ;5 gggg B is BW in usecs per Byte
IBM/LAPI 9.4] 0.003
IBM/MPI 7.6] 0.004
Quadrics/Get 3.267| 0.00498
Quadrics/Shm 1.3 0.005] How well does the model
Quadrics/MPI 7.3] 0.005 Time = o + n*B
Myrinet/GM 7.7) 0.005] predict actual performance?
Myrinet/MPI 7.2 0.006
Dolphin/MPI 7.767| 0.00529
Giganet/VIPL 3.0 0.010
GigE/VIPL 4.6] 0.008
GigE/MPI 5.854| 0.00872
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—Model Time Varying Message Size & Machines —
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[ Measured Message Time
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Programming
Distributed Memory Machines
with
Message Passing
Slides from
Jonathan Carter (jtcarter@]bl.gov),

Katherine Yelick (yelick@cs.berkeley.edu),
Bill Gropp (wgropp@illinois.edu)
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Message Passing Libraries (1)

« Many “message passing libraries” were once available

* Chameleon, from ANL.

* CMMD, from Thinking Machines.

» Express, commercial.

* MPL, native library on IBM SP-2.

* NX, native library on Intel Paragon.

* Zipcode, from LLL.

* PVM, Parallel Virtual Machine, public, from ORNL/UTK.

* Others...

* MPI, Message Passing Interface, now the industry standard.
* Need standards to write portable code.
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Message Passing Libraries (2)

* All communication, synchronization require subroutine calls
* No shared variables

« Program run on a single processor just like any uniprocessor
program, except for calls to message passing library
» Subroutines for
« Communication
« Pairwise or point-to-point: Send and Receive
« Collectives all processor get together to
— Move data: Broadcast, Scatter/gather

— Compute and move: sum, product, max, prefix sum, ...
of data on many processors
* Synchronization

« Barrier
« No locks because there are no shared variables to protect
« Enquiries

How many processes? Which one am 1? Any messages waiting?
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Novel Features of MPI

» Communicators encapsulate communication spaces for
library safety

 Datatypes reduce copying costs and permit
heterogeneity

» Multiple communication modes allow precise buffer
management

 Extensive collective operations for scalable global
communication

* Process topologies permit efficient process placement,
user views of process layout

* Profiling interface encourages portable tools
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MPI] References

* The Standard itself:
« at http://www.mpi-forum.org
* All MPI official releases, in both postscript and HTML
« Latest version MPI 3.1, released June 2015
» Other information on Web:
« at http://www.mcs.anl.gov/research/projects/mpi/index.htm

« pointers to lots of stuff, including other talks and tutorials,
a FAQ, other MPI pages
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Books on MPI

Using MPI: Portable Parallel Programming

with the Message-Passing Interface (2" edition),
by Gropp, Lusk, and Skjellum, MIT Press,

1999.

Using MPI-2: Portable Parallel Programming
with the Message-Passing Interface, by Gropp,
Lusk, and Thakur, MIT Press, 1999.

MPI: The Complete Reference - Vol 1 The MPI Core, by
Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT
Press, 1998.

MPI: The Complete Reference - Vol 2 The MPI Extensions,

by Gropp, Huss-Lederman, Lumsdaine, Lusk, Nitzberg, = P’
Saphir, and Snir, MIT Press, 1998. v A ‘
Designing and Building Parallel Programs, by lan Foster, 4 M_e_’_.__
Addison-Wesley, 1995. E; e
Parallel Programming with MPI, by Peter Pacheco, Morgan- =
Kaufmann, 1997. -
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Finding Out About the Environment

» Two important questions that arise early in a
parallel program are:
* How many processes are participating in this
computation?
* Which one am |?
* MPI provides functions to answer these
questions:
*MPI_Comm_size reports the number of processes.

*MPI_Comm_rank reports the rank, a number between
0 and size-1, identifying the calling process
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Hello (C) Hello (Fortran)
#include "mpi.h"
#include <stdio.h> program main
include 'mpif.h'
. . . -
J{‘nt main( int argc, char *argv[] ) integer ierr, rank, size
int rank, size;
MPI_Init( &argc, &argv ); call MPI_INIT( ierr )
MPI Comm rank( MPI_COMM WORLD, &rank ); call MPI_COMM RANK( MPI_COMM WORLD, rank, ierr )
MPI_Comm_size( MPI_COMM WORLD, &size ); call MPI COMM SIZE( MPI COMM WORLD, size, ierr )
printf( "I am %d of %d\n", rank, size ); rint * _'I a; ' rank -, of_' size
MPI_Finalize(); p ! romm !
return 0; call MPI_FINALIZE( ierr )
} end
Note: hidden slides show Fortran and C++ versions of each example
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Hello (C++) Notes on Hello World
#include "mpi.h" * All MPI programs begin with MPI_Init and end with
#include <iostream> MPI_Finalize
* MPI_COMM_WORLD is defined by mpi.h (in C) or
int main( int arge, char *argv[] ) mpif.h (in Fortran) and designates all processes in the
{ MPI “job”

int rank, size;
MPI::Init(argc, argv);
rank = MPI::COMM WORLD.Get_rank();

« Each statement executes independently in each process
* including the printf/print statements

size = MPI::COMM WORLD.Get size(); » The MPI-1 Standard does not specify how to run an MPI
std: :°°uf\<.<, "I am " << rank << " of " << size << program, but many implementations provide
n";
MPI: :Finalize(); mpirun —-np 4 a.out
return 0;
}
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MPI Basic Send/Receive

* We need to fill in the details in

Process 0 Process 1

Send (data)

Receive (data)

* Things that need specifying:
 How will “data” be described?
» How will processes be identified?
» How will the receiver recognize/screen messages?
» What will it mean for these operations to complete?
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Some Basic Concepts

* Processes can be collected into groups

* Each message is sent in a context, and must be
received in the same context

* Provides necessary support for libraries

* A group and context together form a
communicator

* A process is identified by its rank in the group
associated with a communicator

* There is a default communicator whose group
contains all initial processes, called
MPI_COMM WORLD

02/09/2016 CS267 Lecture 7 Slide source: Bill Gropp, ANL
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MPI Datatypes

* The data in a message to send or receive is described
by a triple (address, count, datatype), where
» An MPI datatype is recursively defined as:
« predefined, corresponding to a data type from the language
(e.g., MPL_INT, MPI_DOUBLE)
« a contiguous array of MPI datatypes
« a strided block of datatypes
+ an indexed array of blocks of datatypes
« an arbitrary structure of datatypes
» There are MPI functions to construct custom datatypes,
in particular ones for subarrays

» May hurt performance if datatypes are complex
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MPI Tags

» Messages are sent with an accompanying user-
defined integer tag, to assist the receiving
process in identifying the message

* Messages can be screened at the receiving end
by specifying a specific tag, or not screened by
specifying MPI_ANY_TAG as the tagin a
receive

» Some non-MPI message-passing systems have
called tags “message types”. MPI calls them
tags to avoid confusion with datatypes

02/09/2016 CS267 Lecture 7 Slide source: Bill Gropp, ANL
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MPI Basic (Blocking) Send

e

MPI_Recv( B, 20, MPI_DOUBLE, 0, ... )

MPI_Send( A, 10, MPI_DOUBLE, 1, ...)

MPI_SEND (start, count, datatype, dest, tag,
comm)

» The message buffer is described by (start, count,
datatype).

« The target process is specified by dest, which is the rank of
the target process in the communicator specified by comm.

* When this function returns, the data has been delivered to
the system and the buffer can be reused. The message
may not have been received by the target process.
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MPI Basic (Blocking) Receive

AT ——

e

MPI_Send( A, 10, MPI_DOUBLE, 1, ...) MPI_Recv( B, 20, MPI_DOUBLE, 0, ....)
MPI_RECV(start, count, datatype, source, tag,
comm, status)

» Waits until a matching (both source and tag) message is
received from the system, and the buffer can be used

» source is rank in communicator specified by comm, or
MPI_ANY SOURCE

* tag is a tag to be matched or MPI_ANY TAG

» receiving fewer than count occurrences of datatype is
OK, but receiving more is an error

» status contains further information (e.g. size of message)
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A Simple MPI Program

#include “mpi.h”
#include <stdio.h>
int main( int argc, char *argv[])
{
int rank, buf;
MPI_Status status;
MPI_Init(&argv, &argc);
MPI_Comm_ rank( MPI_COMM WORLD, &rank );

/* Process 0 sends and Process 1 receives */
if (rank == 0) {
buf = 123456;
MPI_Send( &buf, 1, MPI_INT, 1, 0O, MPI_COMM WORLD) ;

else if (rank == 1) {
MPI Recv( &buf, 1, MPI INT, 0, 0, MPI_COMM WORLD,
- sstatus ); - -
printf( “Received %d\n”, buf );
}
MPI Finalize();
return 0;

}
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A Simple MPI Program (Fortran)

program main
include ‘mpif.h’
integer rank, buf, ierr, status(MPI_STATUS_SIZE)

call MPI_Init(ierr)
call MPI_Comm_rank( MPI_COMM WORLD, rank, ierr )
C Process 0 sends and Process 1 receives
if (rank .eq. 0) then
buf = 123456
call MPI_Send( buf, 1, MPI_INTEGER, 1, O,
* MPI_COMM WORLD, ierr )
else if (rank .eq. 1) then
call MPI_Recv( buf, 1, MPI_INTEGER, 0, O,

* MPI_COMM WORLD, status, ierr )
print *, “Received “, buf
endif
call MPI_Finalize (ierr)
end
021092016 CS267 Lecture 7 Slide source: Bill Gropp, ANL 48
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A Simple MPI Program (C++)

#include “mpi.h”
#include <iostream>
int main( int argc, char *argv[])
{
int rank, buf;
MPI::Init(argv, argc);
rank = MPI::COMM WORLD.Get rank();

// Process 0 sends and Process 1 receives
if (rank == 0) {
buf = 123456;
MPI::COMM WORLD.Send( &buf, 1, MPI::INT, 1, 0 );
}
else if (rank == 1) {
MPI::COMM WORLD.Recv( &buf, 1, MPI::INT, 0, 0 );
std: :cout << “Received “ << buf << “\n”;
}

MPI::Finalize();

return 0;
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Retrieving Further Information

+ Status is a data structure allocated in the user’ s program.
*InC:

int recvd_tag, recvd from, recvd_count;
MPI_Status status;

MPI_Recv(..., MPI_ANY SOURCE, MPI_ANY TAG, ..., &status )

recvd _tag = status.MPI_TAG;
recvd from = status.MPI_SOURCE;
MPI_Get count( &status, datatype, &recvd count );

02/09/2016 CS267 Lecture 7
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MPIl is Simple

* Many parallel programs can be written using just these
six functions, only two of which are non-trivial:

*MPI_INIT

*MPI_FINALIZE

*MPI_COMM SIZE

*MPI_COMM RANK

* MPI_SEND

+MPI_RECV
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Another Approach to Parallelism

« Collective routines provide a higher-level way to
organize a parallel program

* Each process executes the same communication
operations

* MPI provides a rich set of collective operations...

02/09/2016 CS267 Lecture 7 Slide source: Bill Gropp, ANL
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Collective Operations in MPI

* Collective operations are called by all processes in a
communicator

*MPI_BCAST distributes data from one process (the
root) to all others in a communicator

*MPI_REDUCE combines data from all processes in
communicator and returns it to one process

* In many numerical algorithms, SEND/RECEIVE can be
replaced by BCAST/REDUCE, improving both simplicity
and efficiency
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MPI can be simple

« Claim: most MPI applications can be written with only 6
functions (although which 6 may differ)

* Using point-to-point: « Using collectives:
*MPI_INIT *MPI_INIT
*MPI_FINALIZE *MPI_FINALIZE
*MPI_COMM SIZE *MPI_COMM SIZE
*MPI_COMM RANK *MPI_COMM RANK
*MPI_SEND * MPI_BCAST
*MPI_RECEIVE *MPI_REDUCE

* You may use more for convenience or performance
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Example: Calculating Pi

E.g., in a 4-process run, each
process gets every 4t interval.
Process 0 slices are in red.

 Simple program written in a data parallel style in MPI
« E.g., for a reduction (recall “tricks with trees” lecture), each
process will first reduce (sum) its own values, then call a
collective to combine them
« Estimates pi by approximating the area of the quadrant
of a unit circle

» Each process gets 1/p of the intervals (mapped round

robin, i.e., a cyclic mapping)
02/09/2016 CS267 Lecture 7 55
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Example: Plin C —1/2

#include "mpi.h"
#include <math.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_Init(&argc, &argv) ;
MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI_Comm_rank (MPI_COMM WORLD, émyid) ;
while (!done) {
if (myid == 0) {
printf ("Enter the number of intervals: (0 quits) ");
scanf ("%d", &n) ;
}
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM WORLD) ;
if (n == 0) break;
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Example: Plin C —2/2

h = 1.0 / (double) n;
sum = 0.0;
for (1 = myid + 1; i <= n; i += numprocs) {
x = h * ((double)i - 0.5);
sum += 4.0 * sqrt(l.0 - x*x);
}
mypi = h * sum;
MPI_Reduce (smypi, &pi, 1, MPI_DOUBLE, MPI_SUM, O,
MPI_COMM WORLD) ;
if (myid == 0)
printf("pi is approximately %.16f, Error is .16f\n",
pi, fabs(pi - PI25DT));
}
MPI_Finalize();
return 0;
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Example: Pl in Fortran — 1/2

program main
include ‘mpif.h’
integer done, n, myid, numprocs, i, rc
double pi25dt, mypi, pi, h, sum, x, z
data done/.false./
data PI25DT/3.141592653589793238462643/
call MPI_Init(ierr)
call MPI_Comm size (MPI_COMM WORLD,numprocs, ierr )
call MPI_Comm_rank (MPI_COMM WORLD,myid, ierr)
do while (.not. done)
if (myid .eq. 0) then
print *,”Enter the number of intervals: (0 quits)”
read *, n
endif
call MPI_Bcast(n, 1, MPI_INTEGER, O,
* MPI COMM WORLD, ierr )
if (n .eq. 0) goto TO ~

Example: Plin Fortran — 2/2

h =1.0/n
sum = 0.0
do i=myid+l,n,numprocs
x=h* (i - 0.5)
sum += 4.0 / (1.0 + x*x)
enddo
mypi = h * sum
call MPI_Reduce (mypi, pi, 1, MPI_DOUBLE_ PRECISION,
* MPI_SUM, 0, MPI_COMM_ WORLD, ierr )
if (myid .eq. 0) then
print *, "pi is approximately “, pi,
“, Error is “, abs(pi - PI25DT)

’

*

enddo
10 continue
call MPI_Finalize( ierr )
end
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Example: Plin C++ -1/2
#include "mpi.h"
#include <math.h>
#include <iostream>
int main(int argc, char *argv[])
{
int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI::Init(argc, argv);
numprocs = MPI::COMM WORLD.Get size();
myid = MPI::COMM WORLD.Get_rank();
while (!done) {
if (myid == 0) {
std: :cout << "Enter the number of intervals: (0
quits) ";
std::cin >> n;;
}
MPI::COMM WORLD.Bcast(&n, 1, MPI::INT, 0 );
if (n == 0) break;
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Example: Plin C++ -2/2

h = 1.0 / (double) n;
sum = 0.0;
for (1 = myid + 1; i <= n; i += numprocs) {
x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);
}
mypi = h * sum;
MPI: :COMM WORLD.Reduce (&mypi, &pi, 1, MPI::DOUBLE,
MPI::SUM, O0);
if (myid == 0)
std::cout << "pi is approximately “ << pi <<

“, Error is “ << fabs(pi - PI25DT) << “\n”;

}
MPI::Finalize();

return O;
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Svnchronization

*MPI Barrier( comm )
« Blocks until all processes in the group of the
communicator comm call it.
» Almost never required in a parallel program
« Occasionally useful in measuring performance and load
balancing
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Svnchronization (Fortran)

*MPI Barrier( comm, ierr )
* Blocks until all processes in the group of the
communicator comm call it.
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Svnchronization (C++)

ecomm.Barrier() ;
* Blocks until all processes in the group of the
communicator comm call it.
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Collective Data Movement
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Comments on Broadcast, other Collectives

« All collective operations must be called by all processes
in the communicator

* MPI_Bcast is called by both the sender (called the root
process) and the processes that are to receive the
broadcast

« “root” argument is the rank of the sender; this tells MPI which
process originates the broadcast and which receive
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More Collective Data Movement
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Collective Computation
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MPI Collective Routines

* Many Routines: Allgather, Allgatherv,
Allreduce, Alltoall, Alltoallv, Bcast,
Gather, Gatherv, Reduce, Reduce_scatter,
Scan, Scatter, Scatterv

«All versions deliver results to all participating
processes, not just root.

* V versions allow the chunks to have variable sizes.

*Allreduce, Reduce, Reduce_scatter, and Scan

take both built-in and user-defined combiner functions.

* MPI-2 adds Alltoallw, Exscan, intercommunicator
versions of most routines
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MPI Built-in Collective Computation Operations

« MPI_MAX

« MPI_MIN

« MPI_PROD

« MPI_SUM

+ MPI_LAND

« MPI_LOR

+ MPI_LXOR

+ MPI_BAND

« MPI_BOR

+ MPI_BXOR

+ MPI_MAXLOC
+ MPI_MINLOC
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