CS267 Applications of Parallel Computers

www.cs.berkeley.edu/~demmel/cs267_Spr16/

Lecture 1: Introduction

Jim Demmel

EECS & Math Departments

demmel@berkeley.edu

1

Units of Measure • High Performance Computing (HPC) units are: - Flop: floating point operation, usually double precision unless noted - Flop/s: floating point operations per second - Bytes: size of data (a double precision floating point number is 8 bytes) Typical sizes are millions, billions, trillions... Mega Mflop/s = 10⁶ flop/sec Mbyte = 2²⁰ = 1048576 ~ 10⁶ bytes Giga Gflop/s = 10^9 flop/sec Gbyte = $2^{30} \sim 10^9$ bytes Tflop/s = 10^{12} flop/sec Tbyte = $2^{40} \sim 10^{12}$ bytes Tera Pflop/s = 10¹⁵ flop/sec Pbyte = 2⁵⁰ ~ 10¹⁵ bytes Peta Exa Eflop/s = 10¹⁸ flop/sec Ebyte = 2⁶⁰ ~ 10¹⁸ bytes Zetta Zflop/s = 10²¹ flop/sec Zbyte = 2⁷⁰ ~ 10²¹ bytes Yflop/s = 10²⁴ flop/sec Ybyte = 2⁸⁰ ~ 10²⁴ bytes Yotta Current fastest (public) machine ~ 55 Pflop/s, 3.1M cores - Up-to-date list at www.top500.org 01/19/2016 CS267 - Lecture 1 3

• Listing	the 500 most powerful computers world
- Solve	ick: Rmax of Linpack e Ax=b, dense problem, matrix is random nated by dense matrix-matrix multiply
- ISC'	ed twice a year: xy in June in Germany r in November in the U.S.
	rmation available from the TOP500 te at: www.top500.org

#	Site	Manufacturer	Computer	Country	Cores	Rmax	Power
<i>"</i>	Sne	manuracturer	Computer	Country	Cores	[Pflops]	[MW]
1	National University of Defense Technology	NUDT	Tianhe-2, NUDT TH-IVB-FEP, Xeon 12C 2.2GHz, IntelXeon Phi	China	3,120,000	33.9	17.
2	Oak Ridge National Laboratory	Cray	Titan, Cray XK7, Opteron 16C 2.2GHz, Gemini, NVIDIA K20x	USA	560,640	17.6	8.2
3	Lawrence Livermore National Laboratory	IBM	Sequoia, BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	1,572,864	17.2	7.8
4	RIKEN Advanced Institute for Computational Science	Fujitsu	K Computer, SPARC64 VIIIfx 2.0GHz, Tofu Interconnect	Japan	795,024	10.5	12.
5	Argonne National Laboratory	IBM	Mira, BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	786,432	8.59	3.9
6	Los Alamos NL / Sandia NL	Cray	Trinity, Cray XC40, Xeon E5 16C 2.3GHz, Aries	USA	301,0564	8.10	
7	Swiss National Supercomputing Centre	Cray	Piz Daint, Cray XC30, Xeon E5 8C 2.6GHz, Aries, NVIDIA K20x	Switzerland	115,984	6.27	2.3
8	HLRS – Stuttgart	Cray	Hazel Hen, Cray XC40, Xeon E5 12C 2.5GHz, Aries	Germany	185,088	5.64	
9	King Abdullah University of Science and Technology	Cray	Shaheen II, Cray XC40, Xeon E5 16C 2.3GHz, Aries	Saudi Arabia	196,608	5.54	2.8
10	Texas Advanced Computing Center/UT	Dell	Stampede, PowerEdge C8220, Xeon E5 8C 2.7GHz, Intel Xeon Phi	USA	462,462	5.17	4.5

						_	
	Site	Manufacturer	Computer	Country	Cores	Rmax [Pflops]	Роw [MV
1	National University of Defense Technology	NUDT	Tianhe-2, NUDT TH-IVB-FEP, Xeon 12C 2.2GHz, IntelXeon Phi		3,120,000	33.9	1
2	Oak Ridge National Laboratory	Cray	Titan, Cray XK7, Opteron 16C 2.2GHz, Gemini, NVIDIA K20x	USA	560,640	17.6	8
3	Lawrence Livermore National Laboratory	IBM	Sequoia, BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	1,572,864	17.2	7
4	RIKEN Advanced Institute for Computational Science	Fujitsu	K Computer, SPARC64 VIIIfx 2.0GHz, Tofu Interconnect	Japan	795,024	10.5	1
5	Argonne National Laboratory	IBM	Mira, BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	786,432	8.59	3
6	Los Alamos NL / Sandia NL	Cray	Trinity, Cray XC40, Xeon E5 16C 2.3GHz, Aries	USA	301,0564	8.10	
7	Swiss National Supercomputing Centre	Cray	Piz Daint, Cray XC30, Xeon E5 8C 2.6GHz, Aries, NVIDIA K20x	Switzerland	115,984	6.27	2
8	HLRS – Stuttgart	Cray	Hazel Hen, Cray XC40, Xeon E5 12C 2.5GHz, Aries	Germany	185,088	5.64	
10	Texas Advanced Computing Center/UT	Dell	Stampede, PowerEdge C8220, Xeon E5 8C 2.7GHz, Intel Xeon Phi	USA	462,462	5.17	4
40	Lawrence Berkeley National Laboratory	Cray	Edison, Cray XC30, Intel Xeon E5-2695v2, 2.4GHz	USA	133,824	1.65	

4

01/19/2016

- Continued exponential increase in computational power
 - Can simulate what theory and experiment can't do

25

- Continued exponential increase in experimental data
 - Moore's Law applies to sensors too

CS267 - Lecture 1

- Need to analyze all that big data

Experiment	Nt	N _p	N _b	Limiting Data	Notes
COBE (1989)	2x10 ⁹	6x10 ³	3x10 ¹	Time	Satellite, Workstation
BOOMERanG (1998)	3x10 ⁸	5x10 ⁵	3x10 ¹	Pixel	Balloon, 1st HPC/NERSC
(4yr) WMAP (2001)	7x10 ¹⁰	4x107	1x10 ³	?	Satellite, Analysis-bound
Planck (2007)	5x10 ¹¹	6x10 ⁸	6x10 ³	Time/ Pixel	Satellite, Major HPC/DA effort
POLARBEAR (2007)	8x10 ¹²	6x10 ⁶	1x10 ³	Time	Ground, NG-multiplexing
CMBPol (~2020)	10 ¹⁴	10 ⁹	10 ⁴	Time/ Pixel	Satellite, Early planning/design
ata compression		1		1	

erful computers must be parallel processors

Outline

Why pop

all

Commercial problems too

Including your laptops and handhelds

· Large CSE problems require powerful computers

- Jim Demmel, EECS & Mathematics
- GSIs:
 - Orianna DeMasi, EECS
 - Marquita Ellis, EECS
- Contact information on web page

01/19/2016	

CS267 - Lecture 1

53

15