Architecting Paralle Software
Keutzer and Mattson

Architecting Parallel Software
with
Patterns

Kurt Keutzer, EECS, Berkeley

with thanks to Tim Mattson, Intel

and the PALLAS team
" SN /ININ

Outline TN
==> m What doesn’t work

m Pieces of the problem ... and solution

m General approach to architecting parallel sw

m Detail on Structural Patterns

m Detail on Computational Patterns

m High-level examples of architecting applications

S /ININ
The Challenge of Parallelism

Programming parallel processors is one of the challenges of our era

NVIDIA Tegra 2 system on a chip (SoC) Nvidia Fermi

Dual-core ARM Cortex A9.

16 cores, 48-way multithreaded, Tilera Tile64
Integrated GPU. Lots of DSP. .

4-wide Superscalar, dual-issue, 3

2-wide SIMD (half-pumped) ;
1GHz. 2 MB (16 x 128 KB) Registers, 1 Each tile has L1, L2, can run OS

2 single-precision GFLOPs peak (CPUs g (16 x 64 KB) L1 cache, 0.75 MB L2 Cache * 443 billion operations/sec.
only) . 500-833 MHz
50 Gbytes/sec memory
bandwidth

64 processors

© Kurt Keutzer 2

0 N/
Assumption #1: L K

How Not to develop parallel code

Initial Code

Profiler

Performance
profile

Fast enough

Not fast
enough

Lots of failures

Ship it N PE's slower than 1

Architecting Paralle Software
Keutzer and Mattson

" /‘\\/{\\
Steiner Tree Construction Time By A T
Routing Each Net in Parallel S

Benchmark Serial 2 Threads 3 Threads 4 Threads 5 Threads 6 Threads

adaptecl 1.68 1.68 1.70 1.69 1.69 1.69
newbluel 1.80 1.80 1.81 1.81 1.81 1.82
newblue2 2.60 2.60 2.62 2.62 2.62 2.61
adaptec2 1.87 1.86 1.87 1.88 1.88 1.88
adaptec3 3.32 3.33 3.34 3.34 3.34 3.34
adaptec4 3.20 3.20 3.21 3.21 3.21 3.21
adaptec5 4.91 4.90 4.92 4.92 4.92 4.92
newblue3 2.54 2.55 2.55 2.55 2.55 2.55
average 1.00 1.0011 1.0044 1.0049 1.0046 1.0046

, — - AN
Hint: What is this person thinking of? <~ T

Re-code with
more threads

% W
-]
) ‘ Y Edward Lee,
1 “The Problem
L @ with Threads”

Threads, |OCkS, semaphores, data races

' S
So What's the Alternative?

" EEE—— NN
Outline B %

m What doesn’t work
==> m Pieces of the problem ... and solution
General approach to architecting parallel sw
Detail on Structural Patterns
Detail on Computational Patterns
High-level examples of architecting applications

Architecting Paralle Software
Keutzer and Mattson

- EEE— VI " S /ININ
Principles of SW Design TN What's life like without modularity?”

After 15 years in industry, at one time overseeing the technology of 25 Spaghetti code
software products, my best principle to facilitate good software design
is modularity:

Modularity helps:

Architect: Makes overall design sound and comprehensible broke
Project manager: Hard to verify your code in isolation, and therefore hard to
= As a manager | am able to comfortably assign different optimize
modules to different developers
= | am also able to use module definitions to track development
Build a PERT chart for development progress
Build a “control panel” for current software quality
Module implementors: As a module implementor | am able to
focus on the implementation, optimization, and verification of my
module with a minimum of concern about the rest of the design
Modularity helps to identify key computations

Wars over the interpretation of the specification
Waiting on other coders
Wondering why you didn’t touch anything and now your code

Hard to parallelize without identifying key computations

Modularity will help us obviate all these

= Parnas, “On the criteria to be used on composing systems into
modules,” CACM, December 1972.

" S INA . N 7l
Big Step: /4"\4:*& Ogjec!-arlen!ea Brogramming is /4\4;&

\

Architectural Styles (cariand and shaw, 1996) Not Enough
Pipe and filter - e -_':_:‘ . .
e Focused on: Neglected:

Object oriented - Program modularity - Application
- Data locality concurrency

Event based . Architectural styles - Computational details
- Design patterns - Parallel

Layered SOFTWARE implementations

ARCHITECTURE
PERSCTIVES ON AN ENGRGING DISCIFUNE

Agent and repository

broadcast
medium

Process control

Architecting Paralle Software
Keutzer and Mattson

What's missing?: Is an executing
software program more like?

a) A building

b) A factory

g

We need to consider the machinery — but what is the machinery?

" S
Computations are the Machinery

HPC knows a lot about computations, application concurrency,
efficient programming, and parallel implementation

e ch;]

i mv+ ‘UIS-’M ”qtﬂ' V=0

ay e asT
e WS Wz} ’
o= F(P'y+ PTP.Fz)
minimize ||Waly J(w) :/ Di(|I(z +w) — I(2)[*)dz +
st For=y, e _
HGI _ ZHZ <e ¥ /n Vo (|VI(z 4+ w) — VI(z)|*)dz +

(./ Us(|Vul? + [Vol2)de
Q

14

A
reens ||..|

Defining Software Requirements for
Scientific Computing

COMPUTATIONAL RESEARCH DIVISION

Phillip Colella
Applied Numerical Algorithms Group
Lawrence Berkeley National Laboratory

/:\‘ N
freeen? ..,I

High-end simulation in the physical sciences consists of seven
algorithms:

COMPUTATIONAL RESEARCH DIVISION

+ Structured Grids (including locally structured grids, e.g. AMR)
* Unstructured Grids

* Fast Fourier Transform

* Dense Linear Algebra

» Sparse Linear Algebra

+ Particles

+ Monte Carlo

Well-defined targets from algorithmic and software standpoint.

Remainder of this talk will consider one of them (structured
grids) in detail.

Architecting Paralle Software
Keutzer and Mattson

" JEEE A /]. “
Par Lab’s contribution: from 7 t6 Unfortunately ... HPC approach to - j & .

Apps E1rS 2 o Iz Technically this is known as a monolithic architecture
é H.J o g = (ﬁ). 2| Sy ‘
Dwarves wln|la|lo|=|T 6 Health | Image [Speech

Graph Algorithms
Graphical Models
Backtrack / B&B
Finite State Mach,
Circuits

Dynamic Prog.
Unstructured Grid
Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)
Monte Carlo
N-Body

Understanding computations is not enough either 15

- /I "
How can we integrate these J X Outline
insights?

m What doesn’t work

We wish to find an approach to building software that gives m Pieces of the problem ... and solution

equal support for two key problems of software design — ==> » General approach to architecting parallel sw
how to structure the software and how to efficiently .
implement the computations m Detail on Structural Patterns

m Detail on Computational Patterns

m High-level examples of architecting applications

© Kurt Keutzer 19 20

Architecting Paralle Software
Keutzer and Mattson

" N/ "« I]
/NN /ININ
Alexander’s Pattern Language \ Uses of Patterns \
Christopher Alexander’s approach to Patterns give names and definitions to key elements of design
(cnv:!é::;}h::;::;e;e scribes a problem APattern Language This enables us to better:
which occurs over and over again iyt Teach design — a palette of defined design principals

in our environment, and then
describes the core of the solution
to that problem, in such a way that
you can use this solution a million

m Gives ideas to new programmers — approaches you may
not have considered

times over, without ever doing it m Gives a set of finiteness to experienced programmers — if
glettsamz way thce(-:‘;‘Eage f‘ A you’ve considered all the patterns then you can rest
Afexgr:de?nguage, ristopher Christopher Alexander assured you’ve considered the key approaches
Sara Ishikawa - Murray Silverstein
Ale;:?tgfrn; : rZa?l:; Sec;‘rlq;lr)natrﬁglé?g;lt‘i?rlr of e i Koy Guide de.5|gn - art'lculat-e design decisions s-uccmct.l)-/
cities (2. disfribution of towns) to Shiomo Angel Communicate design — improve documentation, facilitate

particular building problems (232. roof maintenance of software
cap)

A pattern language is an organized way
of tackling an architectural problem
using patterns

Main limitation:

It’s about civil not software
architecture!!!

21

T — /NN " S /NN
Uses of Patterns TN Architecting Parallel Software with Patterns < | | >

Patterns capture and preserve bodies of knowledge about key
design decisions

Useful implementation techniques Identify the Software Identify the Key

Likely challenges/bottlenecks that will come with the use of Structure Computations

:leso’:tt::;;‘ (e.g. repository bottleneck in agent and N - < - Graph Algorithms
+Agent-and-Repository * Dynamic programming

*Event-based « Dense/Spare Linear Algebra
+Process Control : * (Un)Structured Grids

Layered Systems * Graphical Models

» Model-view controller « Finite State Machines
e|terator « Backtrack Branch-and-Bound
*MapReduce * N-Body Methods

+Arbitrary Task Graphs « Circuits

*Puppeteer « Spectral Methods

24

Architecting Paralle Software
Keutzer and Mattson

" S
Architecting Parallel Software

Decompose Tasks Decompose Data

*Group tasks

ldentify data sharing

*Order Tasks Identify data access
Identify the Software Identify the Key
Structure Computations

25

Identify the SW Structure

= e

C] L1
2330~

These define the structure of our software but they do not
describe what is computed

Structural Patterns
*Pipe-and-Filter

*Agent-and-Repository

*Event-based
*Process Control
sLayered Systems

» Model-view controller
elterator

*MapReduce
Arbitrary Task Graphs
*Puppeteer

26

Analogy: Layout of Factory Plant

/NN

T
-

~

\}

27

Identify key computations

fees18lo| |8 -\
2l |alE[2]2]2 i
Dwarves wln|a|O|=S|T <o(Health | Image [Speech

Graph Algorithms
Graphical Models
Backtrack / B&B
Finite State Mach,|
Circuits

Dynamic Prog.
Unstructured Grid

Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)
Monte Carlo

N-Body

Computational patterns describe the key computations but not how
they are implemented

Architecting Paralle Software
Keutzer and Mattson

- - /INMIN
Analogy: Architected Factory T %
4 N
- J/
Raises appropriate issues like scheduling, latency, throughput,
workflow, resource management, capacity etc.
29 30

" S
Architecting Parallel Software

Structural Patterns % Computational Patterns

*Pipe-and-Filter %

*Agent-and-Repository

Remember this Poor Guy ...

*Graph-Algorithms
*Dynamic-Programming
*Dense-Linear-Algebra

*Sparse-Linear-Algebra

Re-code with
more threads

*Event-based
*Unstructured-Grids

«Structured-Grids
*Graphical-Models

*Layered Systems
*Model-view-controller

*Arbitrary Task Graphs . .

*Finite-State-Machines @
*Puppeteer *Backtrack-Branch-and-Bound & Edward Lee,
*Iterator/BSP -N-Body-Methods 4 “The Problem
*MapReduce «Circuits with Threads”

-Spectral-Methods Threads, locks, semaphores, data races

*Monte-Carlo

32

Architecting Paralle Software
Keutzer and Mattson

Vi

What's this person thinking of .2~ T

< Need to integrate the insights into computation provided
by HPC with the insights into program structure provided
by software architectural styles

Software
architecture [

=
) L
N

&

1
computational patterns structural patterns

33

AN
Outline Z X

m What doesn’t work

m Pieces of the problem ... and solution

m General approach to architecting parallel sw
== m Detail on Structural Patterns

m Detail on Computational Patterns

m High-level examples of architecting applications

34

" JEEE /‘\\/2\\
Inventory of Structural Patterns 4\
1. pipe and filter

. iterator

. MapReduce

. blackboard/agent and repository

. process control

Model View Controller

. layered

. event-based coordination

. puppeteer

10. static task graph

35

e VI
Elements of a structural pattern </ 1>

m Components are where the computation
happens

m A configuration is
a graph of
components
(vertices) and
connectors
(edges)

m A structural
patterns may be
described as a
familiy of graphs.

S

Connectors are where the communication happens

36

Architecting Paralle Software
Keutzer and Mattson

Pattern 1: Pipe and Filter

«Filters embody computation
*Only see inputs and produce

\r l *Pipes embody

communication
Filter 3] [Filter 2]

L /‘\\/’\\

Exit condition met? ‘ 17

Examples?

m May have feedback
[Filter 6] [Filter 7
Examples?
37
" JEE /A’\éﬂ&
Pattern 2: Iterator Pattern 4\
I ‘ Initialization condition ‘
Variety of
functions
performed
asynchronously
Synchronize
results of iteration

" S /ININ
. . /,/%l\
Examples of pipe and filter 3
= Almost every large software program has a pipe and filter structure at
the highest level
]
Erogram [cnoose Examples] [Fealure Extractlon]
Build =
Internal o
Representation model
Optimize
Generate H
Code v
Object [Results] [User Feedback]
code
Compiler Image Retrieval System Logic optimizer
38
]

39

I
Example of Iterator Pattern:
Training a Classifier: SVM Training

17

Update Iterator Structural Pattern
surface
c
=
©
=
N L yiay + oz =k l :n-'r
e o ®
0, € Identify
Outlier
All points within 17
acceptable error? Yes
40

10

Architecting Paralle Software
Keutzer and Mattson

" S /N
Pattern 3: MapReduce

To us, it means
A map stage, where data is mapped onto independent
computations
A reduce stage, where the results of the map stage are
summarized (i.e. reduced)

Examples of Map Reduce

m General structure:
m Map a computation across distributed data sets

m Reduce the results to find the best/(worst), maxima/
(minima)

&«

Support-vector machines (ML)
» Map to evaluate distance from
the frontier

* Reduce to find the greatest
outlier from the frontier

\V

Speech recognition

* Map HMM computation
to evaluate word match

* Reduce to find the most-
likely word sequences

42

Map
My s e e
v
Reduce
Reduce
Examples?

a1
" JEEE / \\/K\

Pattern 4: Agent and Repository
ek

Examples?

Repository/
Blackboard

(i.e. database)
Agent 3 'I Agent 4

Agent and repository : Blackboard structural pattern

Agents cooperate on a shared medium to produce a result

Key elements:
Blackboard: repository of the resulting creation that is
shared by all agents (circuit database)
Agents: intelligent agents that will act on blackboard
(optimizations)
Manager: orchestrates agents access to the blackboard and
creation of the aggregate results (scheduler)

43

Example: Compiler Optimization

E /‘\\/’;

Constant Common-sub-expression
i r limination
folding \ A el

e [~ _Proaran
fusion Program Strength-reduction
representation

Dead-code elimination

Software (1
pipelining

Optimization of a software program

= Intermediate representation of program is stored in the
repository

= Individual agents have heuristics to optimize the program

m Manager orchestrates the access of the optimization agents to
the program in the repository

m Resulting program is left in the repository

44

11

Architecting Paralle Software
Keutzer and Mattson

AN

m Optimization of integrated circuits
Integrated circuit is stored in the repository

integrated circuit

circuit repository
m Resulting optimized circuit is left in the repository

Individual agents have heuristics to optimize the circuitry of an

m Manager orchestrates the access of the optimization agents to the

Example: Logic Optimization \
timing timing timing timing
opt agent 1 opt agent 2 optagent3 | ©ttttt opt agent N
\ - v L
Circuit ¥
Database | ||
e s

45

" BN
Pattern 5: Process Control

input variables

control manipulated
parameters @ -Varlables
/ controlled
actuators variables

Source: Adapted from Shaw & Garlan 1996, p27-31.

m Process control:
Process: underlying phenomena to be controlled/computed
Actuator: task(s) affecting the process
Sensor: task(s) which analyze the state of the process

Controller: task which determines what actuators should be
effected
Examples?

46

Examples of Process Control

Return aif ——»

Furnace

Hot air —

Thermonstat

Gas-valve control
Temperature-setting control

user Timing
timing constraints ﬁ

Temperature sensor

constraints
(P, Gircuit .(P_.

Launching
transformations

Process control
structural pattern

47

" S /‘\\/";K
Pattern9 Puppeteer !\

Need an efficient way to manage and control the interaction of
multiple simulators/computational agents

Puppeteer Pattern — guides the interaction between the tasks/
puppets to guarantee correctness of the overall task

Puppeteer: 1) schedules puppets 2) manages exchange of data
between puppets

Difference with agent and repository?

No central repository

Data transfer between tasks/puppets
Framework
-M

i nter

Examples?

48/17

12

Architecting

Paralle Software

Keutzer and Mattson

Video Game

4917

- N
Model of circulation %

*Modeling of blood moving in blood vessels

*The computation is structured as a controlled interaction
between solid (blood vessel) and fluid (blood) simulation codes
* The two simulations use different data structures and the
number of iterations for each simulation code varies

* Need an efficient way to manage and control the interaction of
the two codes

® Legena:

| -Solidtimestep

1 -Interpolated
solid position

| -Fluidtimestep

‘ Tractions l | Tractions l

Solid Code Data Broker Fluid Code
Simulation of Interface Simulation of
Blood Vessel Blood

‘[Velocities, Tractions ,[Velocities, Tractions

R
Pattern 10: Static Task Graph

Tasks receive inputs and produce outputs

All data sharing is through explicit messaging (arrow “>” means
message passing communication)

Task configuration is statically defined and may not be changed at
runtime

Example?

" JEE /}’.\/1
Example: one game architecture 4 \
There exist fixed dependencies between subsystems
Can be modeled as an arbitrary task graph

Example: Moving the zombie
1 Keyboard -> Al -> Physics -> Graphics

Physics - Effects

Graphics

13

Architecting Paralle Software

Keutzer and

Mattson

Outline

What doesn’t work

Pieces of the problem ... and solution
General approach to architecting parallel sw
Detail on Structural Patterns

== m Detail on Computational Patterns

m High-level examples of architecting applications

53

" JEE /‘\\/YK

You explore these every class

A”"S)

2 = |
Dwarves O | Health | Image |Speech| Music

Embed
SPEC

Games
ML

Ea‘—a—f?’
rowse

DB
HPC

Graph Algorithms,
Graphical Models
Backtrack / B&B
Finite State Mach,|
Circuits

Dynamic Prog.
Unstructured Grid
Structured Grid
Dense Matrix

Sparse Matrix
Spectral (FFT)
Monte Carlo

N-Body |

Outline

What doesn’t work

Pieces of the problem ... and solution
General approach to architecting parallel sw
Detail on Structural Patterns

Detail on Computational Patterns

==> m High-level examples of architecting applications

55

" JEE /‘\\/FK

Automatic Speech Recognition 4 \

= 8

What can | help yoy With?

14

Architecting Paralle Software
Keutzer and Mattson

AR
Large Vocabulary Continuous Speech Recognition

)
}\\ 1A

System Diagram

:EH‘WES Gaussian Mixture Model HMM Acoustic
rom one for One Phone State .
frame Mixture Components Phone Model Pronunciation Model
Recognition Network =] omputing 3000 0O
s 5] amancere 0000 - 0O HOP hhaap
Acoustic | Pronunciation = Language o each mixlu‘m 0oooo o .
Model Model Model H components 1 - : ¢ : oN aan
o (afalala ¥l
PCF paap
Speech Word Computing Q000 O ‘ l
ore weighted sum _—
Signal Features Inference Sequence of all components ()
Processing o s o
I thin]
Module 0 Engine I fank _Bigram
D I am Language Model
o _— 5 .58, .25.¢
§:382 iE

= |Inference engine based system

= Used in Sphinx (CMU, USA), HTK (Cambridge, UK), and Julius (CSRC, Japan) [10,15,9]
= Modular and flexible setup

= Shown to be effective for Arabic, English, Japanese, and Mandarin R ition Network

57/69 58

4|
J \ Key computation: HMM Inference Algorithm i\

(An instance of: Graphical Models) (implemented with: Dynamic Programming)

|
) \\l LVCSR Software Architecture

Recognition Network

Pipe-and-filter

Acoustic || Pronunciation || Language
Model Model Model

= Finds the most-likely sequence of states that produced the observation

GMM
Inference Engine (___ Graphical Model) mlt][s,] = r?a]x mlt —1[s;—1]- P(sylsi—1) - P(x;s;)
v

Beam Search Iterations o N (™) (] ~ e,
¥ ynamic Frontier Rec Network Transition Probability
Active State Cor*putation Steps Programming . 5 .
Pipe and Filter_) Viterbi Algorithm L ds:
— Obs1 Obs2 Obs3 Obs4 egends: -
. - . @ Astate 4 An Observation
Lar—rs L
Speech ¥4 .
Feature state1 @ @0/ N @ > P(x)s,) " m[t-1[s,]
Extractor
state2 @—— ’/ ‘/.",:' @ ™ Peslsy) @ mials]
Speech Word state3 @] ‘ @ Markov Condition:
Features Sequence ! .
I think State4 @ @ ‘ [mflls] = o PO 0808101,
I therefore
(iterative Refinement) I am

J. Chong, Y. Yi, A. Faria, N.R. Satish and K. Keutzer, "Data-Parallel Large Vocabulary Continuous Speech
ition on i ", i pplications and Arch. 2008, pp. 23-35, June 2008

59/69 60/69

Architecting Paralle Software
Keutzer and Mattson

I . .
1‘/ \\x Iterative Refinement Structural Pattern J \

= One iteration per time step

= Identify the set of probable
states in the network given
acoustic signal given
current active state set

= Prune unlikely states

= Repeat

Structural Patterns Model-View-Controller
Pipe-and-Filter
Agent-and-Repository Map-Reduce
Process-Control Layered-Systems

Event-Based/Implicit- Arbitrary-Static-Task-Graph
Invocation

Puppeteer

61/69

|
) \\\ Inference Engine in LVCSR

= Three steps of inference
0. Gather operands from irregular data structure to runtime buffer
1. Perform observation probability computation
2. Perform graph traversal computation

Parallelism in the inference engine:

Viterbi Algorithm
Obs 1 Obs 2
0. Gather operand A~

1. & Pxls) state2
2. © mls] State3

State4

State 1

62/69

Each Filter is a Map Reduce

0. Gather operands

mitlls] = max - mlr —1][si-1] - P(silsi—1) - P(ulsi)

B Gather and coalesce each of the above operands for every s,
B Facilitates opportunity for SIMD

0. Gather operand

Parallelism in the inference engine:

1. W PGis)
2.9 mdls]

63/69

Each Filter is Map Reduce K\
1. observation probability computation

mlt]s,] = max mft—1][s,—1] - P(s;|s;—1) - P(x¢|s;)

Si—1

B Gaussian Mixture Model Probability
B Probability that given this feature-frame (e.g. 10ms) we are in

this state/phone
1. & P(xls)

Parallelism in the inference engine:

1.k Plxis)
2. 9 m[dls]

64/69

16

Architecting Paralle Software
Keutzer and Mattson

J

I | 1. Observation Probability

\ Computational Patterns

= Observation probabilities are computed from Gaussian Mixture Models
= Each Gaussian probability in each mixture is independent
= Probability for one phone state is the sum of all Gaussians times the
mixture probability for that state

pla; | i £) = Z_mg(z,- | 1, 5)

= mem{—%m =) E (25 -)}

i

= Gaussian I;I:‘x(uresModel for One Computational Patterns
" Mt Comaanents Finte State Machnes
I~ 000000000 0000 Dynamic-Programming Backtrack-Branch-and-
000000000 . 0000 z";u": ebod
. F9900000070000 1 Samatons o
‘000000000, 0000 UEITELEEEES SpectralMethods
- o Structured Grids Monte-Carlo
000000000 0000
¢
Dan Klein’s CS288, Lecture 9 65/69

= Put all together the inference engine is dynamic programming

Computational Patterns Graphical-Models
Graph-Algorithms Finite-State-Machines
e
= ~ Bound
Dense-Linear-Algebra N-Body-Methods
Sparse-Linear-Algebra Circuits
_— - - Unstructured-Grids Spectral-Methods
Parallelism in the inference engine: Structured-Grids Monte-Carlo

Viterbi Algorithm
Obs 1 Obs 2 Obs 3

0. Gather operand . X
state1 ©
1. k& Pxs)
State 2
State3
2.0 mlis,] 9
Stated

o
-3
4
a

<4
ES]

@000 E

67/69

Each Filter is Map Reduce

2. graph traversal computation
B Map probability computation across distributed data sets —
perform multiplication as below

B Reduce the results to find the maximally likely states

mlt]ls;] = max m[t—1][s,_1] - P(s;|s;—1) - P(xc|s;)

St-1

Parallelism In the Inference engine:

1. W Plxis)
2. 9 mldls,]

max
2. 0 m[dls]

66/69

Pipe-and-filter

Recognition Network

Acoustic || Pronunciation || Language
Model o« Model

Inference Engine

Graphical Model
Beam Search Iterations

E 3 Dynamic
Active State Computation Steps Programming

Pipe and Filter

e S

Speech
Feature
Extractor

Word
Sequence
I think
therefore
I am

Speech
Features

I(Iterative Refi j

68/69

17

Architecting Paralle Software
Keutzer and Mattson

|
J- \' This Approach Works

PALLAS has a 10-year history of accelerating critical applications

Observations Time a a a a a
[4
nnanaalmannannll IIIIEEHVYVEI

00000000000000000000000000000

(a)(a)(a)(a){a)(a)(a)(a)fa)(a)(a)(a)(a)(a)(a){a)(a)(a)(a){a)(a)(a)(a)(a)(a)(a)(a)(a)(a) MRI Reconstruction 100x IEEE TMI 2012
00000000000 CO0DOOO0O0O0O00000606O0OCO SVM Training Wx s
,00000000000000000000000000000 SVM Deployment 109x
£00000000000000000000000000000 Value-at-risk 60x Wiley 2011
5000000000000000000000000000060 Option Pricing 25x
2S000000000000000000000000OOOO0OO Speech Recognition 11x Interspeech 2010,2011
0000000000000000000000000000OO Video Event Detection 78x ICMR2015
7000000000000 OODDOOOODDOOOO000O Contour Detection 130x ICCV2009
0000000000000000000000000006060 Object Recognition O
00000000000000000000000000000 Poselets 20x eV abio
000000000000 00000000000000000 Optical Flow 32x VPR 2015
. Deformable Parts Models 45x
Image Convolution 8x ICIP 2013
Wreck nice beach Deep Neural Network Training 47 - 140x CVPR 2016
Recognize Sl o Ht tupics ko patllinn (Eoflsas Ty, USENER Anpociatinm, Berkeben, CAUSAr 1o Tk °°“f”";‘;jeg

R\

j‘) \\x Outline 1‘) \& Recap: Architecting Parallel Software

\D
B What doesn’t work 1. Start with a compelling, ’ Image
B Pieces of the problem ... and solution ‘a’;:)fl‘i’cr:t':;‘l“ sensitive ‘ . (Cllzssiifatitim
B General approach to architecting parallel sw

B Detail on Structural Patterns
B Detail on Computational Patterns

Catanzaro, Sundaram, Keutzer, “Fast SVM Training and Classification on
Graphics , ICML 2008

3. Define computations

B High-level examples of architecting applications 2.Define the | |dentify the Identify the | ;<10 Giructural
.t overall structure Software Key 1 1
ummary Structure Computations | ©ements
4. Compose Structural L =

and computational
patterns to yield
software architecture)
] = W9 4 £

Pipe&Filter | MepReduce StctredGid

71/69 "Image Feature Extraction for Mobile Processors", Mark Murphy, Hong Wang, Kurt Keutzer ISWC '09 72/69

Architecting Paralle Software
Keutzer and Mattson

OPL/PLPP 2012

Garlan and Shaw
Architectural Styles

Findin =
Task Dex
Data Decomposition

Parallel Algorithm Strategy Pattern
Task-Parallelism
Divide and Conquer

Implementation Strategy Patterns

SPMD Fork/Join
Kernel-Par. Actors

Parallel Execution Patterns
Coordinating Processes
Stream processing

Concurrency Fi

¢ N
Structural Patterns ‘Model-View-Controller Computational Pattern

Pipe-and-Filter Iterative-Refinement Graph-Algorithms Berkeley View
Agent-and-Repository Map-Rer o204 ARG Dynamic-Programming | 13 dwarfs

constructs (not expressed as patterns)

Dense-Linear-Algebra
!m!E oo R

FRER PRt et

L‘.‘] !n 1ck-Branch-and-Bound

D $h
Design Evaluation

Discrete-Event
Geometric-Decomposition
Speculation

PATTERNS
FOR PARALLEL
PROGRAMMING

ed-Queue Distributed-Array
c Shared-Data

Algorithms and Data structure

Shared Address Space Threads

Task Driven Execution

T]

[& Synchronization

| Structural Patterns |

*Pipe-and-Filter
*Agent-and-Repository
*Event-based

*Layered Systems
*Model-view-controller
Arbitrary Task Graphs
*Puppeteer
*Iterator/BSP
*MapReduce

*The modularity provided by
organized.

« Even the most complex a
into manageable modules

structural patterns make me feel

pplication can be broken down

75/69

omputationa
Make me Feel Smart

Apps

Embed
SPEC

Games

e , =
=S|I 6 Health | Image [Speech| Music |Browse

DB

Dwarves
Graph Algorithms
Graphical Models
Backtrack / B&B []
Finite State Mach.

Circuits | I |
Dynamic Prog.
Unstructured Grid
Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)
Monte Carlo

[N-Body .

For many years computation has been like a big ball of yarn
Computational patterns help us to unravel it into 13 strands
Alan Kay “Perspective is worth 100 IQ points.”

Computational patterns give us perspective on computation 7a/68

The key to productive and efficient parallel programming is creating a
good software architecture — a hierarchical composition of:
Structural patterns: enforce modularity and expose invariants

= | showed you six — four more will be all you ever need
Computational patterns: identify key computations to be parallelized
Orchestration of computational and structural patterns creates

architectures which greatly facilitates the development of parallel
programs:

Short Course Hosted at Intel Software University Website:
+ Engineering Parallel Software with Patterns
» http://university.intel.com/
Semester Long Course Taught at Berkeley and Hosted at XSEDE
» https:/icvw.cac.cornell.edu/eps/default
Patterns: https://patterns.eecs.berkeley.edu/

76/69

19

Architecting Paralle Software
Keutzer and Mattson

" S
More examples

77

20

