
Architecting Paralle Software	
Keutzer and Mattson	

1	

Architecting Parallel Software
with

Patterns

Kurt Keutzer, EECS, Berkeley

with thanks to Tim Mattson, Intel
and the PALLAS team

The Challenge of Parallelism
Programming parallel processors is one of the challenges of our era

© Kurt Keutzer 2

NVIDIA Tegra 2 system on a chip (SoC)
•  Dual-core ARM Cortex A9.
•  Integrated GPU. Lots of DSP.
•  1 GHz.
•  2 single-precision GFLOPs peak (CPUs

only)

Tilera Tile64
•  64 processors
•  Each tile has L1, L2, can run OS
•  443 billion operations/sec.
•  500-833 MHz
•  50 Gbytes/sec memory

bandwidth

Nvidia Fermi
•  16 cores, 48-way multithreaded,
•  4-wide Superscalar, dual-issue, 3
•  2-wide SIMD (half-pumped)
•  2 MB (16 x 128 KB) Registers, 1
•  MB (16 x 64 KB) L1 cache, 0.75 MB L2 Cache

3

Outline
n  What doesn’t work
n  Pieces of the problem … and solution
n  General approach to architecting parallel sw
n  Detail on Structural Patterns
n  Detail on Computational Patterns
n  High-level examples of architecting applications

4
4

Assumption #1:
How not to develop parallel code

Initial Code

Profiler	

Performance
profile

Re-code with
more threads

Not fast
enough

Fast enough

Ship it	
Lots of failures

N PE’s slower than 1

Architecting Paralle Software	
Keutzer and Mattson	

2	

5

Steiner Tree Construction Time By
Routing Each Net in Parallel

Benchmark Serial 2 Threads 3 Threads 4 Threads 5 Threads 6 Threads

adaptec1 1.68 1.68 1.70 1.69 1.69 1.69

newblue1 1.80 1.80 1.81 1.81 1.81 1.82

newblue2 2.60 2.60 2.62 2.62 2.62 2.61

adaptec2 1.87 1.86 1.87 1.88 1.88 1.88

adaptec3 3.32 3.33 3.34 3.34 3.34 3.34

adaptec4 3.20 3.20 3.21 3.21 3.21 3.21

adaptec5 4.91 4.90 4.92 4.92 4.92 4.92

newblue3 2.54 2.55 2.55 2.55 2.55 2.55

average 1.00 1.0011 1.0044 1.0049 1.0046 1.0046
6

Hint: What is this person thinking of?

Re-code with
more threads

Edward Lee,
“The Problem
with Threads”	

Threads, locks, semaphores, data races

So What’s the Alternative?

8

Outline
n  What doesn’t work
n  Pieces of the problem … and solution
n  General approach to architecting parallel sw
n  Detail on Structural Patterns
n  Detail on Computational Patterns
n  High-level examples of architecting applications

Architecting Paralle Software	
Keutzer and Mattson	

3	

Principles of SW Design
After 15 years in industry, at one time overseeing the technology of 25

software products, my best principle to facilitate good software design
is modularity:

Modularity helps:
¨  Architect: Makes overall design sound and comprehensible
¨  Project manager:

n  As a manager I am able to comfortably assign different
modules to different developers

n  I am also able to use module definitions to track development
¨  Build a PERT chart for development progress
¨  Build a “control panel” for current software quality

¨  Module implementors: As a module implementor I am able to
focus on the implementation, optimization, and verification of my
module with a minimum of concern about the rest of the design

¨  Modularity helps to identify key computations

What’s life like without modularity?
¨  Spaghetti code
¨  Wars over the interpretation of the specification
¨  Waiting on other coders
¨  Wondering why you didn’t touch anything and now your code

broke
¨  Hard to verify your code in isolation, and therefore hard to

optimize
¨  Hard to parallelize without identifying key computations

¨  Modularity will help us obviate all these
n  Parnas, “On the criteria to be used on composing systems into

modules,” CACM, December 1972.

Big Step:
Architectural Styles (Garland and Shaw, 1996)

¨ Pipe and filter

¨ Object oriented

¨ Event based

¨ Layered

¨ Agent and repository

¨ Process control

Object-Oriented Programming is
Not Enough

Focused on:
•  Program modularity
•  Data locality
•  Architectural styles
•  Design patterns

Neglected:
•  Application

concurrency
•  Computational details
•  Parallel

implementations

12

Architecting Paralle Software	
Keutzer and Mattson	

4	

What’s missing?: Is an executing
software program more like?
a) A building b) A factory

We need to consider the machinery – but what is the machinery?

Computations are the Machinery

14

HPC knows a lot about computations, application concurrency,
efficient programming, and parallel implementation	

COMPUTATIONAL RESEARCH DIVISION!

!‹#›!

Defining Software Requirements for
Scientific Computing

Phillip Colella
Applied Numerical Algorithms Group

Lawrence Berkeley National Laboratory

COMPUTATIONAL RESEARCH DIVISION!

!‹#›!

High-end simulation in the physical sciences consists of seven
algorithms:

•  Structured Grids (including locally structured grids, e.g. AMR)
•  Unstructured Grids
•  Fast Fourier Transform
•  Dense Linear Algebra
•  Sparse Linear Algebra
•  Particles
•  Monte Carlo

Well-defined targets from algorithmic and software standpoint.

Remainder of this talk will consider one of them (structured
grids) in detail.

Architecting Paralle Software	
Keutzer and Mattson	

5	

Par Lab’s contribution: from 7 to
13 families of computations

Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)
Monte Carlo
N-Body

Dynamic Prog.
Unstructured Grid

Finite State Mach.
Circuits

Apps

Dwarves E
m
be
d

S
P
E
C

D
B
G
am
es

M
L

H
P
C

C
A
D

Health Image Speech Music Browser
Graph Algorithms
Graphical Models
Backtrack / B&B

Understanding computations is not enough either

Unfortunately … HPC approach to
software architecture architecture

18

Technically this is known as a monolithic architecture

How can we integrate these
insights?
•  We wish to find an approach to building software that gives

equal support for two key problems of software design –
how to structure the software and how to efficiently
implement the computations

© Kurt Keutzer 19 20

Outline
n  What doesn’t work
n  Pieces of the problem … and solution
n  General approach to architecting parallel sw
n  Detail on Structural Patterns
n  Detail on Computational Patterns
n  High-level examples of architecting applications

Architecting Paralle Software	
Keutzer and Mattson	

6	

21

Alexander’s Pattern Language
Christopher Alexander’s approach to

(civil) architecture:
¨  "Each pattern describes a problem

which occurs over and over again
in our environment, and then
describes the core of the solution
to that problem, in such a way that
you can use this solution a million
times over, without ever doing it
the same way twice.“ Page x, A
Pattern Language, Christopher
Alexander

Alexander’s 253 (civil) architectural
patterns range from the creation of
cities (2. distribution of towns) to
particular building problems (232. roof
cap)

A pattern language is an organized way
of tackling an architectural problem
using patterns

Main limitation:
¨  It’s about civil not software

architecture!!!

Uses of Patterns
Patterns give names and definitions to key elements of design
This enables us to better:

¨  Teach design – a palette of defined design principals
n  Gives ideas to new programmers – approaches you may

not have considered
n  Gives a set of finiteness to experienced programmers – if

you’ve considered all the patterns then you can rest
assured you’ve considered the key approaches

¨  Guide design – articulate design decisions succinctly
¨  Communicate design – improve documentation, facilitate

maintenance of software

Uses of Patterns
Patterns capture and preserve bodies of knowledge about key

design decisions
¨  Useful implementation techniques
¨  Likely challenges/bottlenecks that will come with the use of

this pattern (e.g. repository bottleneck in agent and
repository)

24

• Pipe-and-Filter
• Agent-and-Repository
• Event-based
• Process Control
• Layered Systems
•  Model-view controller
• Iterator
• MapReduce
• Arbitrary Task Graphs
• Puppeteer

•  Graph Algorithms
•  Dynamic programming
•  Dense/Spare Linear Algebra
•  (Un)Structured Grids
•  Graphical Models
•  Finite State Machines
•  Backtrack Branch-and-Bound
•  N-Body Methods
•  Circuits
•  Spectral Methods

Architecting Parallel Software with Patterns

Identify the Software
Structure

Identify the Key
Computations

Architecting Paralle Software	
Keutzer and Mattson	

7	

25

Decompose Tasks
• Group tasks
• Order Tasks

Architecting Parallel Software

Identify the Software
Structure

Identify the Key
Computations

Decompose Data
• Identify data sharing
• Identify data access

26

Identify the SW Structure

Structural Patterns

These define the structure of our software but they do not
describe what is computed

• Pipe-and-Filter
• Agent-and-Repository
• Event-based
• Process Control
• Layered Systems
•  Model-view controller
• Iterator
• MapReduce
• Arbitrary Task Graphs
• Puppeteer

27

Analogy: Layout of Factory Plant
Identify key computations ….

Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)
Monte Carlo
N-Body

Dynamic Prog.
Unstructured Grid

Finite State Mach.
Circuits

Apps

Dwarves E
m
be
d

S
P
E
C

D
B
G
am
es

M
L

H
P
C

C
A
D

Health Image Speech Music Browser
Graph Algorithms
Graphical Models
Backtrack / B&B

Computational patterns describe the key computations but not how
they are implemented

Architecting Paralle Software	
Keutzer and Mattson	

8	

29

Analogy: Machinery of the Factory

30

Analogy: Architected Factory

Raises appropriate issues like scheduling, latency, throughput,
workflow, resource management, capacity etc.

• Pipe-and-Filter
• Agent-and-Repository
• Event-based
• Layered Systems
• Model-view-controller
• Arbitrary Task Graphs
• Puppeteer
• Iterator/BSP
• MapReduce

Architecting Parallel Software
Structural Patterns Computational Patterns

• Graph-Algorithms
• Dynamic-Programming
• Dense-Linear-Algebra
• Sparse-Linear-Algebra
• Unstructured-Grids
• Structured-Grids
• Graphical-Models
• Finite-State-Machines
• Backtrack-Branch-and-Bound
• N-Body-Methods
• Circuits
• Spectral-Methods
• Monte-Carlo 32

Remember this Poor Guy …

Re-code with
more threads

Edward Lee,
“The Problem
with Threads”	

Threads, locks, semaphores, data races

Architecting Paralle Software	
Keutzer and Mattson	

9	

33

What’s this person thinking of …?
v  Need to integrate the insights into computation provided

by HPC with the insights into program structure provided
by software architectural styles"

structural patterns computational patterns

Software
architecture

34

Outline
n  What doesn’t work
n  Pieces of the problem … and solution
n  General approach to architecting parallel sw
n  Detail on Structural Patterns
n  Detail on Computational Patterns
n  High-level examples of architecting applications

Inventory of Structural Patterns
1.  pipe and filter
2.  iterator
3.  MapReduce
4.  blackboard/agent and repository
5.  process control
6.  Model View Controller
7.  layered
8.  event-based coordination
9.  puppeteer
10.  static task graph

35 36

Elements of a structural pattern

n  Components are where the computation
happens

Connectors are where the communication happens

n  A configuration is
a graph of
components
(vertices) and
connectors
(edges)

n  A structural
patterns may be
described as a
familiy of graphs.

Architecting Paralle Software	
Keutzer and Mattson	

10	

37

Filter 6

Filter 5

Filter 4

Filter 2

Filter 7

Filter 3

Filter 1

Pattern 1: Pipe and Filter
• Filters embody computation	
• Only see inputs and produce
outputs	

• Pipes embody
communication 	

May have feedback	

Examples?	

38

Examples of pipe and filter
n  Almost every large software program has a pipe and filter structure at

the highest level

Logic optimizer	Image Retrieval System	Compiler	

39

Pattern 2: Iterator Pattern

iterate

Exit condition met?

Initialization condition

Synchronize
results of iteration

Variety of
functions
performed
asynchronously

Yes

No

Examples?	

40 40

Example of Iterator Pattern:
Training a Classifier: SVM Training

40

Update
surface

Identify
Outlier

iterate

Iterator Structural Pattern

All points within
acceptable error? Yes

No

Architecting Paralle Software	
Keutzer and Mattson	

11	

41

Pattern 3: MapReduce
To us, it means

¨  A map stage, where data is mapped onto independent
computations

¨  A reduce stage, where the results of the map stage are
summarized (i.e. reduced)

Map	

Reduce	

Map	

Reduce	

Examples?	

42

Examples of Map Reduce
n  General structure:
n  Map a computation across distributed data sets
n  Reduce the results to find the best/(worst), maxima/

(minima)

Speech recognition
•  Map HMM computation
to evaluate word match
•  Reduce to find the most-
likely word sequences

Support-vector machines (ML)
•  Map to evaluate distance from
the frontier
•  Reduce to find the greatest
outlier from the frontier

43

Pattern 4: Agent and Repository

Repository/
Blackboard

(i.e. database)

Agent 2 Agent 1

Agent 4

Agent and repository : Blackboard structural pattern
Agents cooperate on a shared medium to produce a result
Key elements:
¨  Blackboard: repository of the resulting creation that is

shared by all agents (circuit database)
¨  Agents: intelligent agents that will act on blackboard

(optimizations)
¨  Manager: orchestrates agents access to the blackboard and

creation of the aggregate results (scheduler)

Agent 3

Examples?	

44

Example: Compiler Optimization

Constant
folding

loop
fusion

Software
pipelining

Common-sub-expression
elimination

Strength-reduction

Dead-code elimination

Optimization of a software program
n  Intermediate representation of program is stored in the

repository
n  Individual agents have heuristics to optimize the program
n  Manager orchestrates the access of the optimization agents to

the program in the repository
n  Resulting program is left in the repository

Internal
Program

representation

Architecting Paralle Software	
Keutzer and Mattson	

12	

45

Example: Logic Optimization

n  Optimization of integrated circuits
n  Integrated circuit is stored in the repository
n  Individual agents have heuristics to optimize the circuitry of an

integrated circuit
n  Manager orchestrates the access of the optimization agents to the

circuit repository
n  Resulting optimized circuit is left in the repository

timing
opt agent 1

timing
opt agent 2

timing
opt agent 3

timing
opt agent N ……..	

Circuit
Database

46

Pattern 5: Process Control

n  Process control:
¨ Process: underlying phenomena to be controlled/computed
¨ Actuator: task(s) affecting the process
¨ Sensor: task(s) which analyze the state of the process
¨ Controller: task which determines what actuators should be

effected

process controller

input variables

controlled
variables

control
parameters

manipulated
variables

se
nso

rs

actuators

Source: Adapted from Shaw & Garlan 1996, p27-31.

Examples?	

47

Examples of Process Control

Circuit controller

user
timing

constraints

Spee
d?

Launching
transformations

Timing
constraints

Power?

Process control
structural pattern

Pattern 9: Puppeteer
•  Need an efficient way to manage and control the interaction of

multiple simulators/computational agents
•  Puppeteer Pattern – guides the interaction between the tasks/

puppets to guarantee correctness of the overall task
•  Puppeteer: 1) schedules puppets 2) manages exchange of data

between puppets
•  Difference with agent and repository?

•  No central repository
•  Data transfer between tasks/puppets

48/17

Puppet1 Puppet2
1

Puppet3

Puppetn

Framework	

Change Control Manager	

Interfaces	

Examples?	

Architecting Paralle Software	
Keutzer and Mattson	

13	

Video Game

49/17

Input Physics Graphics AI

Framework	

Change Control Manager	

Interfaces	

Model of circulation
• Modeling of blood moving in blood vessels
• The computation is structured as a controlled interaction
between solid (blood vessel) and fluid (blood) simulation codes
•  The two simulations use different data structures and the
number of iterations for each simulation code varies
•  Need an efficient way to manage and control the interaction of
the two codes
• 

50

Pattern 10: Static Task Graph
Tasks receive inputs and produce outputs
All data sharing is through explicit messaging (arrow “!” means

message passing communication)
Task configuration is statically defined and may not be changed at

runtime

Task 1

Task 3

Task 5

Task 2

Task 4

Example?	

Example: one game architecture
There exist fixed dependencies between subsystems
Can be modeled as an arbitrary task graph
Example: Moving the zombie

¨  Keyboard -> AI -> Physics -> Graphics

Input

Physics

Graphics

AI

Effects

Architecting Paralle Software	
Keutzer and Mattson	

14	

53

Outline
n  What doesn’t work
n  Pieces of the problem … and solution
n  General approach to architecting parallel sw
n  Detail on Structural Patterns
n  Detail on Computational Patterns
n  High-level examples of architecting applications

You explore these every class

Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)
Monte Carlo
N-Body

Dynamic Prog.
Unstructured Grid

Finite State Mach.
Circuits

Apps

Dwarves E
m
be
d

S
P
E
C

D
B
G
am
es

M
L

H
P
C

C
A
D

Health Image Speech Music Browser
Graph Algorithms
Graphical Models
Backtrack / B&B

55

Outline
n  What doesn’t work
n  Pieces of the problem … and solution
n  General approach to architecting parallel sw
n  Detail on Structural Patterns
n  Detail on Computational Patterns
n  High-level examples of architecting applications

Automatic Speech Recognition

Architecting Paralle Software	
Keutzer and Mattson	

15	

57/69	

Large	Vocabulary	Con0nuous		Speech	Recogni0on	

§  Inference	engine	based	system	
§  Used	in	Sphinx	(CMU,	USA),	HTK	(Cambridge,	UK),	and	Julius	(CSRC,	Japan)	[10,15,9]	

§  Modular	and	flexible	setup	
§  Shown	to	be	effecPve	for	Arabic,	English,	Japanese,	and	Mandarin	

Signal	
Processing	
Module	

Inference		
Engine	

Voice	
Input	

	

Recogni0on	Network	
	

	

Speech	
Features	
	

	

Word	
Sequence	

	

…

I think
therefore
I am

AcousPc	
Model	

PronunciaPon	
Model	

Language	
Model	

System Diagram

58"

Recogni0on	Network	

aa	

hh	

n	

HMM	AcousPc		
Phone	Model	

HOP	

ON	
POP	

CAT	

HAT	

IN	

THE	

...	

...	

...	

...	

...	

CA
T	

HA
T	

...
	

...
	

HO
P	

IN
	

...
	

O
N
	

PO
P	

...
	

TH
E	

...
	

Bigram		
Language	Model	

…
	

Features	
from	one	
frame	

Gaussian	Mixture	Model		
for	One	Phone	State	

…

…

…

…

…
 …	

…	

Mixture	Components	

Compu0ng		
distance	to	
each	mixture		
components	

Compu0ng	
weighted	sum	
of	all	components	

Speech Recognition at High Level!

...	
HOP		hh	aa	p	
...	
ON			aa	n	
...	
POP		p	aa	p	
...	

PronunciaPon	Model	

59/69	

Inference	Engine	

Beam Search Iterations

LVCSR	SoEware	Architecture	

Pipe-and-filter	

Graphical	Model	

Dynamic	
Programming	

Itera0ve	Refinement	

Pipe	and	Filter	
Word	
Seque
nce	
	
	Speech	

Feature	
Extractor	

Voice	
Input	
	
	

Speech	
Features	

	
	
	

…
	

I think
therefore
I am

Recogni0on	Network	
	
	
	
AcousPc	
Model	

PronunciaPon	
Model	

Language	
Model	

MapReduce	

Word	
Sequence	

	

	
I think
therefore
I am

Active State Computation Steps

60/69	

Key	computa0on:	HMM	Inference	Algorithm	

§  Finds	the	most-likely	sequence	of	states	that	produced	the	observaPon	

s	s	

x An Observation s	A State

P(xt|st)

P(st|st-1)

s	m [t-1][st-1]

s	m [t][st]

 Legends:

 Markov Condition:

An	instance	of:		Graphical	Models	 Implemented	with:	Dynamic	Programming	

J. Chong, Y. Yi, A. Faria, N.R. Satish and K. Keutzer, “Data-Parallel Large Vocabulary Continuous Speech
Recognition on Graphics Processors”, Emerging Applications and Manycore Arch. 2008, pp. 23-35, June 2008

s	 s	s	 s	

s	 s	s	 s	

s	 s	s	 s	

s	 s	s	 s	

State 1

State 2

State 3

State 4

Obs 1 Obs 2 Obs 3 Obs 4
x x x x

t

 Viterbi Algorithm

GMM	

Rec Network Transition Probability	Frontier	

Architecting Paralle Software	
Keutzer and Mattson	

16	

61/69	

Itera0ve	Refinement	Structural	PaPern	

Hidden	
Markov	
Model	

§  One iteration per time step
§  Identify the set of probable

states in the network given
acoustic signal given
current active state set

§  Prune unlikely states
§  Repeat

62/69	

Inference	Engine	in	LVCSR	

§  Three	steps	of	inference	
0. 	Gather	operands	from	irregular	data	structure	to	runPme	buffer	
1.  Perform	observaPon	probability	computaPon	
2.  Perform	graph	traversal	computaPon	

Parallelism	in	the	inference	engine:	

 0. Gather operand

s 2. m [t][st]

 1. P(xt|st)	x

63/69	

Each Filter is a Map Reduce
0. Gather operands

n  Gather	and	coalesce	each	of	the	above	operands	for	every	st		
n  Facilitates	opportunity	for	SIMD		

max 	

 0. Gather operand

64/69	

Each	Filter	is	Map	Reduce	
1.	observa0on	probability	computa0on

n  Gaussian	Mixture	Model	Probability	
n  Probability	that	given	this	feature-frame	(e.g.	10ms)	we	are	in	

this	state/phone	

max 	

 1. P(xt|st)	x

Architecting Paralle Software	
Keutzer and Mattson	

17	

65/69	

§  Observation probabilities are computed from Gaussian Mixture Models
§  Each Gaussian probability in each mixture is independent
§  Probability for one phone state is the sum of all Gaussians times the

mixture probability for that state

Dan Klein’s CS288, Lecture 9	

1.	Observa0on	Probability		
Computa0onal	PaPerns

66/69	

Each	Filter	is	Map	Reduce		
2.	graph	traversal	computa0on

n Map	probability	computaPon	across	distributed	data	sets	–	
perform	mulPplicaPon	as	below		

n  	Reduce	the	results	to	find	the	maximally	likely	states	

s 2. m [t][st]

max 	

67/69	

All	together:	Inference	Engine	in	LVCSR	

§  Put	all	together	the	inference	engine	is	dynamic	programming		

Parallelism	in	the	inference	engine:	

 0. Gather operand

s 2. m [t][st]

 1. P(xt|st)	x

68/69	

Inference	Engine	

Beam Search Iterations

LVCSR	SoEware	Architecture	

Pipe-and-filter	

Graphical	Model	

Dynamic	
Programming	

Itera0ve	Refinement	

Pipe	and	Filter	

Speech	
Feature	
Extractor	

Voice	
Input	
	
	

Speech	
Features	

	
	
	

…
	

Recogni0on	Network	
	
	
	
AcousPc	
Model	

PronunciaPon	
Model	

Language	
Model	

MapReduce	

Word	
Sequence	

	

	
I think
therefore
I am

Active State Computation Steps

Architecting Paralle Software	
Keutzer and Mattson	

18	

69/69	

Time Observations

S
pe

ec
h

M
od

el
 S

ta
te

s

Wreck a nice beach
Interpretation

HMM computed with Dynamic Programming

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

r z sr e e e e k k a a a g n n

a

y

a

y

a

y

a

y

a

y

a

y p p

i

y

i

y

i

y

c
h

c
h

Recognize speech
70/69	

This	Approach	Works	

Applica0on	 Our	Speedup	
MRI	ReconstrucPon	 100x	

SVM	Training	 20x	
SVM	Deployment	 109x	
Value-at-risk	 60x	
OpPon	Pricing	 25x	

Speech	RecogniPon	 11x	
Video	Event	DetecPon	 78x	
Contour	DetecPon	 130x	
Object	RecogniPon		 80x	

Poselets	 20x	
OpPcal	Flow	 32x	

Deformable	Parts	Models	 45x	
Image	ConvoluPon	 8x	

Deep	Neural	Network	Training	 47	-	140x	

PALLAS	has	a	10-year	history	of	acceleraPng	criPcal	applicaPons	

IEEE TMI 2012	

ICML 2008	

ICCV 2009	

ECCV 2010	

Interspeech 2010, 2011	

WACV 2011	

Wiley 2011	

CVPR 2016	

ICMR 2015	

CVPR 2015	
ICIP 2013	

“Considerations When Evaluating Microprocessor Platforms” In Proceedings of the 3rd USENIX conference
on Hot topics in parallelism (HotPar'11). USENIX Association, Berkeley, CA, USA.	

71/69	

Outline	

n What	doesn’t	work	
n  Pieces	of	the	problem	…	and	soluPon	
n  General	approach	to	architecPng	parallel	sw	
n  Detail	on	Structural	Pajerns	
n  Detail	on	ComputaPonal	Pajerns	
n  High-level	examples	of	architecPng	applicaPons	
n  Summary	

72/69	

Recap:	Architec0ng	Parallel	SoEware	

Identify the
Software
Structure

Identify the
Key

Computations

2. Define the
overall structure 	

3. Define computations
inside structural
elements	

4. Compose Structural
and computational
patterns to yield
software architecture	

Pipe&Filter	

"Image Feature Extraction for Mobile Processors", Mark Murphy, Hong Wang, Kurt Keutzer IISWC '09	

Catanzaro, Sundaram, Keutzer, “Fast SVM Training and Classification on
Graphics Processors”, ICML 2008

1. Start with a compelling,
performance sensitive
application.	

Image
Classification	

Architecting Paralle Software	
Keutzer and Mattson	

19	

73/69	
73	

Graph-Algorithms	

Dynamic-Programming	

Dense-Linear-Algebra	

Sparse-Linear-Algebra	

Model-View-Controller 	

Iterative-Refinement	

Map-Reduce	

Layered-Systems	

Puppeteer	

Pipe-and-Filter	

Agent-and-Repository	

Process-Control	

Event-Based/Implicit-Invocation	

Arbitrary-Static-Task-Graph	

Unstructured-Grids	

Structured-Grids	
Graphical-Models	
Finite-State-Machines	
Backtrack-Branch-and-Bound	
N-Body-Methods	
Circuits	
Spectral-Methods	
Monte-Carlo	

Applications	

Structural Patterns 	 Computational Patterns	

Task-Parallelism�
Divide and Conquer	

Data-Parallelism�
Pipeline	

Discrete-Event �
Geometric-Decomposition �
Speculation	

SPMD �
Kernel-Par.	

Fork/Join �
Actors �
Vector-Par	

Distributed-Array�
Shared-Data	

Shared-Queue�
Shared-Map �
Parallel Graph Traversal	

Coordinating Processes �
Stream processing 	

Parallel Execution Patterns	

Parallel Algorithm Strategy Patterns	

Implementation Strategy Patterns	

Communication	

Shared Address Space Threads	

Task Driven Execution	

Algorithms and Data structure	Program structure	

Synchronization	

Loop-Par.�
Workpile	

Thread/proc management	

Concurrency Foundation constructs (not expressed as patterns)	

Task Decomposition �
Data Decomposition	

Ordered task groups �
Data sharing	

Design Evaluation	

Finding Concurrency Patterns 	

OPL/PLPP	2012	

Garlan and Shaw	
Architectural Styles	

Berkeley View	
13 dwarfs	

74/69	

Computa0onal	PaPerns		
Make	me	Feel	Smart	

§  For	many	years	computaPon	has	been	like	a	big	ball	of	yarn	
§  ComputaPonal	pajerns	help	us	to	unravel	it	into	13	strands	
§  Alan	Kay	“PerspecPve	is	worth	100	IQ	points.”		
§  ComputaPonal	pajerns	give	us	perspecPve	on	computaPon	

75/69	

• Pipe-and-Filter
• Agent-and-Repository
• Event-based
• Layered Systems
• Model-view-controller
• Arbitrary Task Graphs
• Puppeteer
• Iterator/BSP
• MapReduce

Structural	PaPerns		
Make	me	Feel	Organized	

Structural Patterns

• The modularity provided by structural patterns make me feel
organized.
•  Even the most complex application can be broken down
into manageable modules

76/69	

Summary	

§  The	key	to	producPve	and	efficient	parallel	programming	is	creaPng		a	
good	sooware	architecture	–	a	hierarchical	composiPon	of:	

§  Structural	pajerns:	enforce	modularity	and	expose	invariants	
§  I	showed	you	six	–	four	more	will	be	all	you	ever	need	

§  ComputaPonal	pajerns:	idenPfy	key	computaPons	to	be	parallelized	
§  OrchestraPon	of	computaPonal	and	structural	pajerns	creates	

architectures	which	greatly	facilitates	the	development	of	parallel	
programs:	

Short Course Hosted at Intel Software University Website:
•  Engineering Parallel Software with Patterns

•  http://university.intel.com/
Semester Long Course Taught at Berkeley and Hosted at XSEDE
•  https://cvw.cac.cornell.edu/eps/default
Patterns: https://patterns.eecs.berkeley.edu/

Architecting Paralle Software	
Keutzer and Mattson	

20	

More examples

77

