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White House Announces the National

Strategic Computing Initiative (NSCI)

THE WHITE HOUSE

Office of the Press Secretary

For Immediate Release July 29, 2015

EXECUTIVE ORDER

CREATING A NATIONAL STRATEGIC COMPUTING INITIATIVE

By the authority vested in me as President by th
Constitution and the laws of the United States of America,
and to maximize benefits of high-performance computing (HPC)
research, development, and deployment, it is hereby ordered as
follow.

Section 1. Policy. In order to maximize the benefit f
HPC for economic competitiveness and scientific discovery, the

United States Government must create a coordinated Federal
strategy in HPC research, development, and deployment.
Investment in HPC has contributed substantially to national
conomic prosperity and rapidly accelerated scientific
discover V. Creating and deploying technology at the leading
edge is vital to advancing my Administration's priorities and
spurring innovation. Accordingly, this order establishes the

National Strategic Computing Initiative (NSCI). The NSCI is a

Five goals:

1. Create systems that can apply
exaflops of computing power to
exabytes of data.

Keep the United States at the
forefront of HPC capabilities.

Improve HPC application
developer productivity.

Make HPC readily available.
Establish hardware technology

[DOE SC and NNSA] will execute a  for future HPC systems.
joint program focused on advanced

simulation through a capable

exascale computing ...




Big Data and HPC

Convergence in:
* Science

* Algorithms

« Software

« Systems




“Big Data” Changes Everything...What about
Science?




Transforming Science: Finding Data
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Computing Challenges:
 Search for scientific data on the web

 Automated metadata annotation / feature identification
- Data: images, genomes, simulations, MRI, MassSpec,...




Scientific Workflow Toda
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The Future of Experimental Science
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Transforming experimental science:
“Superfacility” for Science
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Computing Challenges:
 Robotics, Special purpose processors at experiments

 Mathematics / algorithm for real-time and offline analysis
 Massive numbers of simulations for inverse problems
* Networks and software for data movement, management



Scientific Discovery at the boundary of Simulation

and Observation: Climate and microbes
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New climate modeling methods, including AMR
“Dycore” produce new understanding of ice Genomes to watersheds Scientific Focus Area

Computlng Challenges:
Multimodal analysis from sensors, genomes, images..

* High performance methods and implementations

- Data-driven simulations to predict regional effects on
environment and weather events




Science at the Boundary of Simulation and
Observation: Understand and control energy
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Computing Challenges:
* Machine learning on materials simulation data

* Analysis problems for experimental data (tomographic
3D reconstruction, x-ray scattering, etc.)
* Real-time job execution mixed with batch jobs



Finding structure and function in noisy
data: Metagenomics data mining

Blind Spots
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Computing Challenges:
* Distributed memory graph algorithms / hash tables

 Low latency interconnects; low overhead communication
* Algorithms to separate and assembly genomes
 Many-to-Many comparisons against databases



Finding smaller signals in noisy, biased data:
Removing Systematlc Bias in Cosmoloayv
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New simulation models
and AMR code (Nyx)

Crowd Example: Astrophysicists
// sourced discover early nearby

Filtered

Computing Challenges:
« Better machine learning for event detection

 Removing systematic bias in experimental data
« Simulations to interpret data; data constrain simulations



Finding information across data modalities:
Computing and the BRAIN Initiative
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Computing Challenges:

« Multimodal analysis (MRI, EM, CT, MS,...)

* Graph algorithms (irregular sparse matrices) at scale



Languages for Random Access to Large
Memory

Perl to PGAS: Distributed Hash Tables

 Remote Atomics

« Dynamic Aggregation

« Software Caching (sometimes)

» Clever algorithms and data structures
(bloom filters, locality-aware hashing)

- Hash Table with “tunable” runtime
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Languages for Irregular Access: Data Fusion
in UPC++

Distributed Matrix Assembly
* Remote asyncs with user-controlled

\ [ovelocy resource management
,  Team idea to divide threads into
— manie injectors / updaters
— '
torth - 6x faster than MPI 3.0 on 1K nodes
- Seismic modeling for energy applications = Improving UPC++ team support
“fuses” observational data into simulation

« With UPC++, can solve larger problems 100
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French and Romanowicz use code with UPC++ phase to compute first ever whole-mantle
% Jlobal tomographic model using numerical seismic wavefield computations (F & R, 2014, GJI,
¥} extending F et al., 2013, Science). See F et al, IPDPS 2015 for parallelization overview. N0
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Science in embedded sensors:
Internet of Things

Transportation Modeling Power Grid Modeling
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Science Data
Big (and Growing)
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“Big Data” Challenges in Science
Volume, velocity, variety, and veracity

Biology Cosmology / Astronomy:

* Volume: Petabytes now; L * Volume: 1000x increase
computation-limited ' every 15 years

» Variety: multi-modal Variety: combine data
analysis on bioimages sources for accuracy

High Energy Physics : Materials:
» Volume: 3-5x in 5 years - o Sy * Variet_y: multiple models and
- Velocity: real-time filtering & &9l & experimental data

adapts to intended Veracity: quality and
observation resolution of simulations

Climate

* Volume: Hundreds of
exabytes by 2020

c Veracity: Reanalysis of 100-
) / year-old sparse data

Light Sources

» Velocity: CCDs outpacing
A Moore’s Law

. ¥+ \Veracity: noisy data for

' 3D reconstruction

~ 0
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BERKELEY LAB




Projected Data Rates Relative to 2010

Data Growth is Outpacing Computing
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Measurement technology getting better;
computation getting hardware
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Superfacility for 100,000 FPS Detector
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100 kFPS - 10s of TB / hour
» Real time analysis:
- Sparsification
— Clustering
- Dedicated network to NERSC
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Algorithms Convergence?
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Analytics vs. Simulation Kernels:

7 Giants of Data 7 Dwarfs of

Simulation
Basic statistics Monte Carlo methods
Generalized N-Body Particle methods

Graph-theory Unstructured meshes

Linear algebra Dense Linear Algebra
Optimizations Sparse Linear Algebra
Integrations Spectral methods

Alignment Structured Meshes




Software Convergence?
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Data Analytics: Case for PGAS

More Regular More Irregular

Message Passing Programming | Global Address Space Programming
Divide up domain in pieces Each start computing

Compute one piece Grab whatever / whenever
Send/Receive data from others

and many libraries UPC, CAF, X10, Chapel, GlobalArrays
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Languages for Random Access to Large
Memory

Perl to PGAS: Distributed Hash Tables

 Remote Atomics

« Dynamic Aggregation

« Software Caching (sometimes)

» Clever algorithms and data structures
(bloom filters, locality-aware hashing)

- Hash Table with “tunable” runtime
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Languages for Irregular Access: Data Fusion
in UPC++

Distributed Matrix Assembly
* Remote asyncs with user-controlled

\ [ovelocy resource management
,  Team idea to divide threads into
— manie injectors / updaters
— '
torth - 6x faster than MPI 3.0 on 1K nodes
- Seismic modeling for energy applications = Improving UPC++ team support
“fuses” observational data into simulation

« With UPC++, can solve larger problems 100
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French and Romanowicz use code with UPC++ phase to compute first ever whole-mantle
% Jlobal tomographic model using numerical seismic wavefield computations (F & R, 2014, GJI,
¥} extending F et al., 2013, Science). See F et al, IPDPS 2015 for parallelization overview.
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Divergent Ecosystems

1
P Applications and Community Codes

Application Level Mahout, R and Applications :

and |

: ~ | | Hive Plg || Sqoop Flume | FORTRAN, C, C++ and IDEs

e '

: o Map-Reduce Storm : Domain-specific Libraries Perf &

1 (8 > Debug

g¢ 8 5| ! (e.g.

nt | Hbase BigTable o | C"Ggi/’g‘;’;’:“g_ NA Libs PAPI)

Q. -

Middleware & 12 ¢ |3 (key=valus SIorE) .

Management @ ¢S : PFS Batch System
! |7 || HDFS (Hadoop File System) | LegLustre) || Scheduler || Monitoring
|
oo
= 1
. |
=1t | VMs, Containers and Cloud Services :
| | o o o o o o

System Software i I
: Linux OS variant | Linux OS variant
o [
I
Ethernet | | LocalNode | | Commodity | | IB+Enet | SAN+Local || x86+GPUsor
Cluster Hardware Switches Storage X86 Racks I Switches Storage Accelerators
Data Analytics Ecosystem " Computational Science Ecosystem

Dongarra and Reed, HPCWire, 2016
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Two ecosystems

Data / Cloud + Analytics

HPC / Simulation

Commodity processors

Commodity processors (latest)

Accelerators

DRAM

DRAM (+ NVRAM?)

Ethernet

Low latency / overhead interconnect

Local disk (+ NVRAM?) |

Shared disk filesystem (+ NVRAM)

Low density (air cooled)

High density (liquid cooled)

<50% utilization (never wait

>90%+ utilization (often wait)

Fault tolerant programming

After-the-fact checkpoint/restart

On-demand scheduling

Loosely coupled applications

Batch scheduling
Tightly coupled applications

Hadoop, SPARK,...

MPI, PGAS,...

¥ AL
O
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System Convergence?

~

A
frreereer I"l
B

BERKELEY

Lawrarce Bekei Natonal




Myth: Supercomputers are Expensive,
Clouds are Cheap

53x

® Commercial Cloud

To buy raw NERSC core hours costs more than NERSC budget

« Even ignoring the measured performance slowdown

 Doesn’t include consulting staff, account management,
licenses, bandwidth, software support: ~2/3 of NERSC’s Budget

Why?

« NERSC cost/core hours dropped 10x (1000%) from 2007 to 2011,
while Amazon pricing dropped 15% in the same period

Slowdown Relative
to HPC System
— —_ N
o ~ 00O N OO O
I
oo —
Y.,
S
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What is Exascale about?
Real performance on real applications

But let’s try something easier:
HPL: High Performance LINPACK
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TOP 500 Performance Projection -
The Old Picture From 2007
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Performance Development

June 2013
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What Limits Computer Performance?




Computing is energy-constrained
A*
At ~$1M per MW, energy costs are substantial
» 1 petaflop in 2008 used 3 MW

* 1 exaflop in 2018 at 200 MW fusual chip scaling”

Missing Tihanhe-2 at 18MW

12
k"ega""’at.tS' = Goal: 1 Exaflop in 20 MW
1 per machine ]
10,  (Kogge/Shalf) = 20 pJ / operation
8 Note: The 20 pJ / operation is
4 « Independent of machine size
6 —— * Independent of # cores used
per application
4  But “operations” need to be
useful ones
2

92 '96 ‘00 ‘04 ‘08 ‘12 ‘16
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Flop/s

Computational Science has Moved through

1.E+18
1.E+17
1.E+16
1.E+15
1.E+14
'1.E+13
1.E+12
1.E+11
1.E+10
1.E+09
1.E+08

Difficult Technology Transitions

Application Performance Growth
(Gordon Bell Prizes)

Attack of the
“killer cellphones”?
The rest of the

Attack of the = computing world

“killer micros” gets parallelism

1995 2000 2005 2010 2015

37
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“Exascale” Challenges Affect
Performance Growth at all Scales

1) Power is the primary constraint These are all at
2) Parallelism (1000x today) the node levels
3) Processor architecture will change Happening NOW!
4) Data movement dominates * IEme"gi“Q _

5) Memory grf)wth will not k.eep up sgflfjt??)?smal:‘cf

6) Programming models will change

— Hard to use
7) Algorithms must adapt _ Non-portable
8) 1/0 performance will not keep up — Non-durable
9) Resilience will be critical at this
scale

10) Interconnect bisection must scale

38



Lightweight Cores are the Future

Cell phone
processor (0.1 -
Watt, 4 Gflop/s)

ok s 14 11 5 g BB ROl 1y ny 0 b |ga o
Shared L3 Cache- - f

llzl

Server processor (100 Watts, 50 Gflop/s)

« Small, simple cores are energy and area efficient

— 10-100x more energy efficient
 Want to encourage “parallel thinking” in algorithms

= and software

~
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Take Home Message for Data and HPC
(aka Analysis and Simulation)

“Roofline” your code
Understand motifs of your applications

Question conventional wisdom: a
system of type X is best

Data is as important to science as
business, society,...

Clouds and HPC centers are optimized
for different usage, but the underlying
. components are the same
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Questions?




