5/5/16

CS267 Final Project Presentations

May 5, 2016

Parallel Finite Element Analysis

Thanh Do, Parham Aghdasi, and Hussain AlSalem

1. Object-oriented finite element analysis toolbox
2. Python multiprocessing package

3. Parallel direct stiffness assembly

4. Parallel linear solver SuperLU

22.026.5 ——T——T——T——T——

— impo:
impo:

8.103.1 -
29810
1.096.6 |

4034

Time (sec)

1484
546
20.1

74

PR IR I B | . . for i1
0 20,000 40,000 60,000 80,000 100,000 120,000 140,000
Matrix Size

5/5/16

Team 2: CHAITANYA ALURU, ACE HAIDREY, ROHIT MURALIDHARAN

Parallel N-Queens

* Problem: Place n non-conflicting @
gueens on an n x n board @
» Serial Solution: Depth first search,
place one queen at a time @
* Parallelization: Can’t just evenly @
divide search tree.
W

* Fix: Use Master Worker paradigm

Team 2: CHAITANYA ALURU, ACE HAIDREY, ROHIT MURALIDHARAN

Runtime Improvements

Runtime over Increasing k Runtime over Increasing n
100
10
) J 1 1 13 14 1 1 1
k n
For n = 16, we saw consistent times for k-values of 2 through 6, With k =4, we saw a steady exponential increase in runtime over
before a steep increase as we went past 8. increasing values of n.

5/5/16

Cluster 1

X
Cluster 4

Similarity score Histogram for k=2

Oty

Cluster 2

Largest Stable
Cluster Formation

A

Similarity Scores
for K=2 to K=9

Similarity score Histogram for k=5

Cluster 3

. "t-ﬁi'
CIusierS

Parallel Stable K-means }

[Emin Arakelian Fadi Kfoury

Jason Poulos]

Runtime Comparison

] [serial

-

8
=3
150 | |Muttithreading: 3 Threads e~ L
» gpSimilarity acora Histogram for ke3 Multiprocessing: 3 Processes -@- -7
8
& -
S
8 .2
100 e
CarsstoSere - 4
Similarity score Histogram for k=6 C - -
> 3
5 -
[- o
L7 .
50 e -
g -
=~ .- I
Similarity score Histogram for k=9 i e T
= Ce--
—--
--
o
500 600 700 800 900 1000

Number of Samples

Richard Barnes

Filling

T

5/5/16

31000

5/5/16

© BNPS.CO.UK

1

ME-

5/5/16

Priority-flood: An optimal depression-filling and watershed-labeling

Computers & Geosciences

journal homepage: www.elsevier.com/locate/cageo

algorithm for digital elevation models

Richard Barnes **, Clarence Lehman”, David Mulla

Source Cells Dimensions Adjective Time (min) Min/Cell
Gomes et al. [10] 3-10° 50,000x 50,000 huge 58 1-10-8
Do et al. [6] 2-10° 36,002x54,002 huge 21 1-10—8
Do et al. [7] 2.10° 36,002x54,002 huge ??

Yildirim et al. [27] 2-10° 45056x49,152 large 77

Arge et al. [2] 1-10° 33454x31,866 massive 3720 3.10°°6
Lindsay [14] 9.10% 37,201x25,201 massive 8.6 1-10°8
Tesfa et al. [22] 6-10% 24,856x24,000 large 20 3.10-8
Wallis et al. [24] 4.10% 14,949x27,174 large 8 2.10-%
Danner et al. [5] 3-10% 7 massive 445 1-10-%
Metz et al. [17, 18] 2-10% ?? massive 32 6107

5/5/16

Source Cells Dimensions Adjective Time (min) Min/Cell
This paper 2102 ~1,291,7152 rather large 291 8-10—°
Gomes et al. [10] 3.10° 50,000x50,000 huge 58 1-10—8
Do et al. [6] 2-10° 36,002x54,002 huge 21 1-10-8
Do et al. [7] 2-10° 36,002x54,002 huge 77
Yildirim et al. [27] 2107 45,056x49,152 large 77
Arge et al. [2] 1-10° 33,454x 31,866 massive 3720 3.10-¢
Lindsay [14] 9-10% 37,201x25,201 massive 8.6 1-10—8
Tesfa et al. [22] 6-10% 24,856x24,000 large 20 3.10°8
Wallis et al. [24] 4108 14949x27,174 large 3 2.10-8
Danner et al. [3] 3.108 7?7 massive 445 1-10-%
Metz et al. [17, 18] 2-10% 77 massive 32 6-10-7
N (a) Wall-Time (b) Speed-up Ratio
10°7 = 30
T (]
10‘5—
- ds
® ‘D“"_' ® ned 20 ds
E i pon % & ned
1T iy % * o
E = ® srtm_r1 L%J ® pas
mb': ® srtm_r2 10- & sttm
® srtm_rg
m‘s—
ot | ||m|| 1 |.||||||| ' |.|.||n|| - 0-, ! |
10%% 10 105 10" 10"* 107 0 10 20 30 40 50
Cells Cores
(c) Strong Scaling (d) Weak Scaling
100 = 100=
> 80~ ds >, 80 ds
2 ned 2 - pan
% # pan % # pas
= ® pas £ & sim
w # sim w # ned
60-
60 =
Il) 1'D 2'D S'D 4'D E:D lD llD Z'D 3'D 4'D

Cores

Cores

5/5/16

Francois Belletti

Te m gi n e francois.belletti@berkeley.edu

The scalable multivariate time series
analysis engine

o Id = x, diff req. = 0 N Gaussian fuzzy join kernel
08
2 o6
o 20 40 60 80 100 ©
Time L
o Id =y, diff req. = 0 g
8) g o2
8
) 00
=5
3
- 7071 0 =05 0.0 0.5 1.0
Time - _ Lag .
Irregular asynchronous data Implicit Gaussian fuzzy matching
feeds in frequency domain
t/ €obs(Y)
,
)) SPxy(f) = FTx(NFTy ()= > e /0%y,
Leve.rage frequ.ency—tlme domain seas(X)
duality to provide:
¢ Scalability
¢ Data agnostic use ' €obs(Y)
g IFT(SPxy)(h)= Y. FT(F)(t—t —h)X:Yy.
tEobs(X)

Graph of operations on processes

Logical execution flow in Physical execution flow in
Temgine Temgine

N |

=8 B E

‘ Add((), (V) ‘

NS

‘ Merge(Add((X), (V). U)

All operations have two definitions:

Time domain
Frequency domain

Cross-correlogram of
Merge(Addi(X), (¥)). U)

L

AR model of
Merge(Addi(X), (V). U)

5/5/16

Scalable linear model estimation

.
Fourier p ion for

Communication

medium
N (bottleneck)
Device 0 1= (i, .
) Compute Fourier | Device 2
‘ransform on —
prescribed
e | —
(") to driver Tssamma |
00 10
(%) L
)
i
Sum for u.!(.'ﬁn\'l‘l"s«::uyty‘ separatly re— 5
Device 1 '=(&]
T - ootan
Y ooseay
_mme —
DT i e (R
s > . — 2ol
Fomnal > —
maea
Device 3

Inverting cross-correlation

tr oy " v i . matrix yields a linear model
b (on master)

compre nals
in frequency domain correlogram

Output

Parallelization of Coarse-Grained
Molecular Dynamics

* Coarse-grained model to simulate amyloid protein aggregation.

» Implicit representation of solvent.

» Utilized to study protein thermodynamics.

» Faster code will enable us to reach longer timescales and hence better
insights to understand plaque formation implicated in Alzheimer’s disease.

F = F;: d + Enon—honded + F

onde: random

Parallelization Prospect

+ Existing code is of O(n?)

* Decomposition of the particles on a grid
for calculating non-bonded forces

* Small system size ideal for OpenMP
Parallelization

5/5/16

Materials
Project

Optimization of Quantum Chemistry

code (VASP) on a local compute cluster

Danny Broberg
Materials Science & Engineering

Density Functional Theory Approaches for optimization:

Charge Density Plot Density of States 1. Profiled subroutines

cache32000

IS 2. FFT optimization
i. different FFT
libraries cachedooo
ii. block sizes for cachesoo
packing data
iii. Reduction of
T data based on cacnez000

symmetry

Charge Accumulation cache16000

DOSISupercel ()

Charge Depletion

cacheao0n

5 @)

020 40 60 80 100 120 140
Total Run Time (seconds)

...and many more physically relevant properties

3. Analyzed parallel efficiency and scaling for different

Problem: methods of distributing k-points and electronic
DFT scales as o(N3) bands based on number of atoms/cores used
l 24 Core Calculation 40 Core Calculation
2
. : : :
Motivates:

|
<l
Tuning performance of x
VASP for the compute

cluster’s hardware

KPAR value

x
K ..

KPAR value

2 4 5 8 10 20
NPAR value

2 3 4 6 8 12
NPAR value

Parallel Genetic Minimization Algorithm

I

Coincidences measured between
an event in a target cell and
an even in a scatlering cell

Convolve Physics With Instrument e o
Scattered
Neutrons

Parallel Incident
Neutron Beam

Josh Brown

UC Berkeley
Nuclear Engineering
Cs 267 Spring 2016

2
1
1
1
1
1

Tight Yeild (MeVee)

2
3
=
=
=
z
z
]
—

; 7

creceer '"|

80 100 120 140 160 180 200 220 240 260 280
Time of Flight (ns)

L 1 Il 1
80 100 120 140 160 180 200 220 240 260 280
Time of Flight (ns)

BERKELEY LAB

NUCLEAR SCINCE and SECURTY CONSORTIN

10

5/5/16

Parallel Tempering for reversible-jump Markov

Chain Monte Carlo

Jane Yu and Jeffrey Chan
Computer Science Division, UC Berkeley

May 5, 2016

Low temp erature

High temp erature

1/2

11

Parallel Tempering Chains

W -

i

| [T pr T

Monte Carlo Step

Scaling Structure Learning via Parallel Computing

“ DNA hybridization arrays
measure the expression level of
multiple genes simultaneously.
We aim to find the underlying
gene interactions using linear
regression algorithm with
regularization.

¥ Assume each node represents a
gene, X, and the problem can be
formulated as:

4 P
min Y |5 —x"B|5+A X% I8l
i=

1reiby 14

' Estimating a lot of f takes a

long time!

“ The above problem can be solved
using the generalized procedure:

Xinlei Pan, Baiyu Chen

B= mg"HY* XBlI3+AlIBI

where Y € Ryx1, X € Rnxpand B € Rpxq.It can be 508

solved via the following algorithm according to [3] 5

Initalization: Initialize p = I 3°

Iteration: Calculate new B value: Sos
B = {XTX + E\(BD)}IXTY, H
where, o - Eoz
Zy(p) = Fdiag By 10-2), .., 1By 1-2)

Termination: Iterate until [|8®) — g(0-D|| < .

Variable Selection: During the iteration if || /]| < eta

then this /" entry will be deleted

Parallel Strong Scaling

+ Original Algorithm
<~ Optimized Algorithm

5 10 15
Number of Processing Elements
Parallel Weak Scaling

+ Original Algorithm
+ Oplimized Algorithm

5 10 15
Number of Processing Elements
Parallel Running Time

+ Original Algorithm
+ Optimized Algorithm

5 10 15
Number of Processing Elements

5/5/16

12

Blocked Time Analysis for Machine Learning

Workloads on Distributed Computing System

Jiayuan Chen, Bill Kim, Jian Qiao

5/5/16

0.6

Methodology: Results:
Blocked Time Analysis - end-to-end estimation Infinitely fast network or disk I/0O only gives limited

of optimized job completion time amount of speedup
Task stragglers and CPU overhead are the bottleneck
Workload: (Apache Spark cluster on EC2 & Cori)

Block-Matrix Multiplication Percent Reduction in Job Completion Time:
Logistic Regression with SGD

_ No Disc No No
D?Speedup from eliminating stragglers: perfect parallel Network Stragglers
1 — EC2:BMM 4.5% 4.2% 32.7%
05|) i
ol Q EC2: SGD 0% 0% 11.2%
3l
o2 ! B Cori: BMM | 2.8% N/A 35.8%
wf g B
‘ ¥ k2 Cori:SGD | TBD N/A TBD
matmul_ec2 matrnul_cori sgd_ec2

Parallelization of PaSR: A Partially Stirred Reactor Model

Byung Gon Song, Jim Oreluk, Yulin Chen

Why does a PaSR matter?
* Between two idealized reactors. Perfect reactant mixture (PSR) & no reactant mixture
(PFR)
» Offers alternate testbed for the evaluation of certain regimes in turbulent combustion
¢ Simulations conducted with full chemical kinetics!

* Directly relevant to particle-tracking pdf for transport methods in multi-dimensional flow
Computational Pattern

“Monte Carlo Methods: A Computational Pattern for our Pattern Language” by Kurt Keutzer
* Numerical-centric perspective, task-centric perspective, data-centric perspective

1) Structural Patterns : MapReduce

2) Computational Patterns: Dense Linear Algebra

MapReduce is a programming model which is conceptually similar to Message Passing Interface having reduce and
scatter operations. MPI was more suitable for our program because of following disadvantages of MapReduce:

1) Programming model is very restrictive for time — 1l:end time

2) Cluster management is hard for particle = l:number of particles
computation on particles

Results end
* 28x speed-up on 46 processors for non-premixed methane | _ reduction
* More complex chemical mechanisms are no longer output

intractable and can be efficiently investigated Simplified model of the FORTRAN program

CS267 May 5, 2016

13

5/5/16

Parallel Algorithms on NVME
Richard Chiou, Harsha Simhadri

Nonvolatile memories (e.g. Flash) are
replacing DRAM.

Writes are much more expensive than
reads for nonvolatile memory - we can
optimize algorithms accordingly.

SPEED

How does algorithm performance on a

= I U ExPrESS B

single node with NVM compare to that

of a cluster with DRAM? | i

We experimented on node F15 of
LBNL'’s Firebox cluster.

* BEN CORBETT
* LUCAS SERVEN
* RUNDONG TIAN

14

5/5/16

David Dinh

Iy . .
O/ASPIRE space-Bounded Recursive PDF Scheduling (i

UC Berkeley

Tradeoff between space and parallelism in many nested parallel algorithms. For example, consider
inner product-like algorithms. In tall-skinny matrix multiply (below), case 3 exhibits tradeoff. Making
the wrong choices on tradeoffs can significantly degrade performance - order-of-magnitude difference
between tuned tradeoffs and MKL!

I X E — . Case 1: Split on m - in place multiplication
i X - = . Case 2: Split on k - in place multiplication

Case 3: Split on n - needs temporary matrix »

- X I = .+. for BFS step)

2 Opéimal Tuned
8 Hourstic

Interface based on Cilk Plus hyperobjects.

Restrict dynamic allocation only happens via hyperobjects in
order to make it tractable for the the runtime to make decisions.
Maintain invariants from space-bounded schedulers that
guarantee optimality for cache and running time while using
parallel depth-first ordering to achieve good space bounds.

Implementation notes: being built using existing task scheduling framework on C++/pthreads.

Main tasks are to implement a locking doubly-linked list to store the tasks in depth-first order,and a
way to handle online BFS/DFS decision-making.

Ninh Hai DO HYBRID PARALLELIZATION OF THE HIGH ORDER
Department of Mechanical Engineering SPECTRAL SOLVER '1'0 LAPLACE EQU AT[ON

University of California, Berkeley
ninhdo@berkeley.edu USING om AND MPI

CS267 - Applications of Parallel Computers — Spring 2016

Abstract
High order spectral method is a powerfil numerical Parallelization Sequential Scheme
method. It is, however, computation-expensive, typically to
non-linear problem demanding a large number of Strong Scaling read INPUT
frequency modes. We developed a sequential algorithm, 8
then attempting hybrid parallelization using OpenMP and 7
MPI. The strong scaling is fine to some extent while the 86 Attempt MPI
weak scaling and MPI works are still in progress ES
Ea s
i 3
Introduction : £
g T 1 6 12 18 2% — 2
#of cores Z Y
o hotspots
artificial viscoelastic wave carpet Figure 3. Strong scaling of the hybrid parallelization.
to extract wave energy. Weak scaling and MPI works are still in progress.
A courtesy of NASA
Validating Results
Figure 2. The developing stage
of wave carpet necessitates e Profiling

the computational modelling.
to simulate the interaction of
surface waves - viscoelastic
bottom.

A courtesy of TAFLab,

I Running Time Percentage

oo
‘ arigh
b £ road oput
ners
: o outut

Figure 5. Manual profiling produces the pie chart as above,

indicating those processes that occupy most running time.
‘ i Attempted Vtune Amplifier XE 2016, details in the report.
)

Mathematical Formulation
V=0 htm<z<n (mass continuity)

Laplace equation:
e BC)

srface BC)

where, d) C Conclusion
7 elevation subscript s : surface « Attempt OpenMP and MPI. There are still
@ : velocity potential subscripts : bottom Figure 4. a.b.c. Qualitative check: Wave damping over time. rooms for improvement

.5 y: derivative wrt. time, x or y, respectively.
b*and k*: damping ratio and restoring
respectively

of numerical vs analytical + Works to be continued.
results produces error convergence test diagram.

15

5/5/16

Asynchronous Deep Deterministic Policy Gradient

Environment Environment Environment
i Replay Pool Replay Pool
Update Update
@]

network

Minimize Loss:
L(69) = E, 4.« [(Q(s.al09) — y(s,a,s'|09))?]

y(s.a,s')09) = r(s,a) +vQ(s", u(s'10"))69)

] B

Results

. Challenging to perform well under parallelization
than other standard methods of RLs

. Good performance:
. Sensitive to hyperparameters

. Important to use replay pool

16

5/5/16

Distributed Memory Parallelization of Read

Error Correction BayesHammer Algorithm
Sayna Ebrahimi

Constructing Hamming graph

Bayesian sub-clustering to find center of each k-mer's sub-cluster

1
2
3. Filter sub-cluster centers to form a set of solid k-mers.
4

Graph traversal and counting the majority vote of solid k-mers

Reads k-mers HG1(X) ACGTGTGATGCATGATCG ACGTGTGATGCATGATCG
ACGTGTG ACGTG ACATG

CGTGT —— CGTGAGATGCA

GIGTG ACCTG . GTGAGATGCAT
ACATGTG ACATG ACGIG CGTGT TGTGATGCATG TGTGATGCATG

CATGT

CATGT GTGATGCATGA GTGATGCATGA

ATGTG ATGTG CCTGT ., lhkaTccaTGAT
ACCTGTC ACCTG

gzg’g GTGTG CTGIC ATGCATGATCG ATGCATGATCG

ACGTGAGATGCATGATCG

Hamming graph* of distance 1 Error correction of a contig”

Berkeley

UNIVERSITY OF CALIFORNIA

* Nikolenko, Sergey ., Anton I. Korobeynikov, and Max A. Alekseyev. "BayesHammer: Bayesian clustering for
error correction in single-cell sequencing." BMC genomics 14.1 (2013): 1.

Multistate Protein Design Optimiz

Motivation:
e Multistate protein models are better at capturing the
natural flexibility of proteins
e The large number of hyperparameters significantly
affect model performance

Goal: Parallelize a cuckoo search optimization algorithm
(biased random walk) to search through the hyperparameter
space.

Computational Patterns: Map Reduce and some n-body
Structural Pattern: Iterator

Results:
e 3 orders of magnitude increase in speed
e Can now run locally instead of on cluster

Key Parallelization Details:
e Armadillo Library for matrix computations (includes
LAPACK and BLAS)
Load balancing and synchronization
Scale for population size, scale for number of iterations

4.0

N hEW'é'

Bacterial natural DHFR
M20 loop profile

ation

Optimization from python
implementation
(>24 hours)

25

— Single Thread
— Four Threads

29 Idealized 1/4 Runtime

Total Time (s)

0 50 100 150

Population Size

200 250 3

== B

Optimization from C++
parallel implementation
(under 5 minutes)

2 Tianjiao Zhang, Jenelle Feather
CS267 Final Project, 2016

17

5/5/16

Parallelizing Reinforcement Learning

Some parallelism is easy in RL...

E OPTIMIZATIO 0
N (update

... But bottlenecks prevent high performance & scaling

Optimization and experience processing are done
centrally, (often by a single thread), requiring
significant data transfer

Often poor load-balancing (e.g., exp-

eriment length varies) Synchron-
Require all procecessors to equalize ization
parameters before continuing cost

Our proposed setup

Communication

Experience i

Experience 3
Optimizatior
2

Experience
Opﬁmizaﬁor@
Optimizatios 3
1

- Each process performs some optimization locally
- Share only the update (or current parameters)

- Can run asynchronously and lock-free

- Key question: how to manage communication?

Allows divergent policies: L
Less communication:

- Mayimprove - More up-to-date param

exp_loratlon .. . - Mightscale worse
- Delicate for optimization

Our algorithms scale better, but performance impact is unclear

Scaling

Weak scaling for H r

— aligather sync

—— gossiping async
gossiping sync
serial large

— shared async
shared sync

10 Rerations

All methods we propose scale better.
Notice scaling worsens after 6 processors
due to hyperthreading on the machine on
which we tested

Algorithm performance

Our learning is often faster in
early iterations, but we are
overtaken by the classical
method (is hyper-

parameter tuning to blame?)

Experiment details

Hardware
Processor: Intel Core i7-5280K
CPU @3.30GHz x12

Graphics: GeForce GTX TITAN X
Memory: 32GB

Problem instance

Test MDP: MuloCo Hopper
Total steps per iter: 36.000
Time horizon: 1000

Learning rate: 0.01
Iterations: 500 ¢

18

5/5/16

Efficient Synchronous Stochastic Gradient Descent

reducing communication cost in Synchronous SGD

Previous Method
Input: T, B, init params
Output: final params
for t =1 to T
load batch(B);
calc_gradient() ;
sync() ;
update_params () ;

end

Too much
communication
cost

Our Method
Input: T, L, B, init params
Output: final_ params
for t =1 to T/L
for 1 =1 to L
load batch(B);
calc gradient();
update params () ;
end
sync() ;

end

Reduce loss with less synchronization

Experiment on MNIST dataset.
Ours (blue) achieves the same loss with significantly less synchronization.

— L=1,B=100
— L=1, B=1000
— L=3,B=1000

00
0

]_SID ZUID 25;0 3(;0 35;0 400
#iteration (i.e. #synchronization)

19

5/5/16

MPI Parallelization of
AMRStencil Framework

CS267 Final Project

Chris L. Gebhart
Jingyi Wang

Berkeley

UNIVERSITY OF CALIFORNIA

AMRStencil

AMRStencil:
» Framework for a domain specific programming language

Designed to facilitate:

+ Calculations on unions of rectangles
+ Stencil calculations

* Domain refinement

Only functional in serial, now moving to parallel!

Berkeley

UNIVERSITY OF CALIFORNIA

20

5/5/16

Progress

« Implement a non-trivial serial code for testing 4th order finite
volume solver for Shallow Water

* Rewrite key structures for MPI capability
* One domain patch per processor

+ No adaptivity (spatial or temporal)

« Simple rectangular domain

Berkeley

UNIVERSITY OF CALIFORNIA

Results

Serial Code:
» Correctly solves simplified version of Shallow Water Equations

Parallelization:
* A 40.3% percent speedup on 4 processors with respect to serial
Huge opportunity for speedup: rework RK4 subroutine

DB: sw_main.000000.vik
Cycle: 0

Future work:

+ Optimize code for performance

+ Implement multithreading via
OpenMP

* Implement Adaptive Mesh
Refinement

Berkeley

UNIVERSITY OF CALIFORNIA

21

5/5/16

Atmospheric Simulations for Next Generation
CMB Experiments

N. Goeckner-Wald, J. Savarit, R. Keskitalo, J. Borrill

The next generation of CMB experiments will face
significant data volume O(10 pB) and computation
challenges, including the need for O(10,000) Monte
Carlo realizations to establish systematic errors)

The atmosphere is a significant contaminant in data

Current modeling paradigms scale quadratically in
detector number (data volume) due to large dense
matrix eigenvalue decompositions

Needed: A scalable, parallel Monte Carlo noise ;
generation code e C——— .
Dense pixel-pixel covariance matrix POLARBEAR CMB Experiment

Time-ordered real data N_detectors * N_detectors
N_detectors * Time samples

Correlated

mk 1 Eigenmode -
) iul. * decomposition * noise model +

MC data generation

Figure: J. Errand (arXiv astro-ph:1501.07911)

Significant computational and physical challenges

« Accurate noise models contain many

physical and computational challenges Gridded

Physical: Atmospheric dynamics on relevant
scales is not constrained by existing data

) L !
72 il 7 74 I L 7
e 74 V4 V4

« Computational: Simulating atmospheric
spectrum over very large atmospheric
volumes requires an efficient 3D FFT
operation

-

~~ Line of sight integrals
+ interpolation

« Computational: Effectively exploit shared-
memory parallelism to quickly perform many
line of sight integrals for each time step over
a simulated atmosphere

« Physical: What level or realism in noise Line of sight integrals
modeling is sufficient to capture the pixel- Physically Motivated * using telescope
9 P P Atmospheric model pointing, interpolate

pixel covariances seen in real data?
over focal plane
« Computational: The need to run O(10,000)
realizations of a single experiment containing Based on work by J. Errand
0(10,000) single observations (arXiv astro-ph:1501.07911)

22

5/5/16

Shot Boundary Detection
Alex Hall w/ PyCUda

Parallel Computing for

Community Detection

By: Goutam Murlidhar, Alper Vural,
Alagu Sanjana Haribhaskaran,

23

5/5/16

System Architecture

What This Means

e Processes Made Easier

o Analyzing large graphs like facebook, twitter networks

o Clustering biological data
o Analyzing Power Grids

Parallel Serial

shuttersteck o

24

5/5/16

Parallelizing Cartesian Tree Construction
on Multiple Nodes with PGAS

Andrew Head

Node1 Node2 Node2 Node 4 Performance by Thread Count (One Node)

\ ‘s" 2

[Y .
\5 Local E
access

DaGEnon

o @ ; 2 1 6 8 0 12
: L : " Performance by Thread Count (Multiple Nodes)

: @ : Sparse .

| H —

transfers
Problem Insight

12 24 36 48 60 72 84 96

Results

This work extends a parallel algorithm by Shun & Blelloch, 2014, A Simple Parallel Cartesian Tree Algorithm....
Cartesian tree photo modified from source at: https://upload.wikimedia.org/wikipedia/commons/d/d5/Cartesian tree.svg

Twitter Language Specifier on
Spark with GPU

25

5/5/16

Background - Twitter App, Spark and GPU

> Twitter Language Specifier App
1. Collect a Dataset of Tweets

. Our Goals:
2. Train a Kmeans Model
3. Apply the Kmeans modelin real-time AcFelerate Step 2&3
using GPUs
> Spark
» Afastand general big data processing engine with streaming
interface
> GPU

» Good at running massive computational intensive parallel jobs

2

Collect/ Twitter Data

> Training:
» Collect twitter data with varied sample sizes
» Each tweet comes with detected-language information

(we use as ground truth)

40

en ja es ar ptund fr tr ko in o it ru de nl ht et th pl el sv no Iv fa da zh wr ro iw hu hi eu oy o= bn

> Prediction:
» Use twitter streaming API to get live, real-time tweets
» Approx. 60 tweets per second, predict on various batch sizes

26

3

5/5/16

Slave 0

Overall Architecture

Slave n-1

Create RDD for objects Slave n
Map the partitions to different slaves
Transfer data to GPUs

Output results to new RDD
Collects result from the RDD

S e

Return results from GPUs B —

* ILIOPOULOS,FOTIS MANURANGSI,PASIN
WONG,SAM

27

5/5/16

Hogwild!

Asynchronous framework for parallelizing
algorithms for convex and sparse problems

— E.g. stochastic gradient descent
Question: is convexity necessary?

Constraint satisfaction problems (CSP) are highly
non-convex

— CSP = satisfy many clauses; clause = logical formula
Does Hogwild still work for CSP?

Parallel CSP

Heuristic for solving CSP
1. Start with an assignment

2. Fix an unsatisfied clause by resampling an assignment for
its variables randomly

3. Repeat!

Provably works for sparse instances (Lovasz Local Lemma)

Can we parallelize in Hogwild fashion?

28

5/5/16

Parallel CSP with Hogwild!

Idea: each thread fixes _ 10000 variables 100000 variables
unsatisfied clausesin - o —
parallel e | e
Sync: provably works = e e om b, A

—Sync e===Deterministic Hogwild Random Hogwild —==Qptimized Hogwild

but need locks
Hogwild!: asynchronous; 2 threads may try to change same variable

Deterministic: fix first violated clause
Random: fix a random violated clause

Optimized: recursively fix random violated clauses

Hogwild! works — massive scaling; non-convex OK

Group 29

GPU NUFFT (Non-uniform FFT)

Teresa Ou, Wenwen Jiang, and Frank Ong

29

5/5/16

Motivations

@ lterative MRI and tomographic imaging reconstruction:
NUFFT (Non-uniform FFT) is computational bottleneck
® Current toolboxes:

Most do not exploit the parallel computing architectures

Goal

Develop optimized NUFFT for GPU

Methods: GPU NUFFT (Non-Uniform FFT)

Radial EPI Splral Convolution Kernel
Cartesian Grid

.Ld/

k-Space Trajectory

= Interpolate onto oversampled
Cartesian grid

= Oversampled FFT

= Deapodize (pointwise multiplication)

® Coordination of grid updates
® Forward and adjoint 3D NUFFT
® Optimizations: sparse matrix and fftshift

30

5/5/16

Performance

GPU Forward NUFFT Speedup over CPU

100
= . .__f-——;;._*:—_:i
g ; o 2 40 60 B0 100 10 40
=— 0.1
g
o o001

0001

Image dimension (d x d x d pixels)

=P Speedup =S=GPUD Speedup =*=—GPU1 Spesdup ~GPU2 Speedup —®—GPU3 Speedup

CPU / GPU Forward NUFFT Runtime

a 60 80 100 120 140

Runtime (ms)

Image dimension (d x d x d pixels)

——(py =—8—GP —*—GPUL GPU2 —#=—Gpu3

=8—(PU Speedup =S=—GPUD Speedup —*—GPU1 Spesdup

10000

1000

Speedup

GPU Adjoint NUFFT Speedup over CPU

20 40 &0 B0 100 120 140

Image dimension (d x d x d pixels)

~GPUL Speedup =—=—GPUS Speedup

CPU / GPU Adjoint NUFFT Runtime

—

60 80 '_60 1Z.CI 140
Image dimension (d x d x d pixels)

=—8—(py =—S=—GPUQ —*—GPU1 GPUZ —#—gGPU3

Benchmarking Communication-Efficient Distributed
Optimization Algorithms on Spark
Chi Jin

For large scale datasets and ML tasks run on cluster,

P(w) = % > a(w).

i=1

min P(w),

what is the best communication-efficient algorithm.

Mini-batch SGD?
LBFGS, Splash, CoCoA/CoCoA+

Results:

Algorithm 4: Template of DMB algorithm for stochastic optimization.
re 7]
for j=1,2,...,rdo
reset §; =
for's =15 b/k do

Teceive input z, sampled i.i.d. from unknown distribution;
calculate g, = V. f (w;. z,);
calculate §; + 3; + gi;
end
start distributed vector sum to compute the sum of §; across all nodes;
finish distributed vector sum and compute average gradient g;
set (wji1,a541) = O(az, 35, 4);

end
Output: %E;ﬂ w;j

1. The description of essential ideas and applicability of above algorithms.

2. A comparison of their theoretical guarantees.

3. A comparison of their performance on Cori on benchmark datasets.

31

5/5/16

Parallel Random Forests

=== Nikhil Narayen, Aleks Kamko =

Serial Random Forests

e Ensemble method for learning
and classification o

e Main motivation is to train many treet, treety
‘dumb learners'to address A A A A
overfitting

e MNIST data set i e ©

o 60,000 images for all 10 digits " caegorye
Pejv) = if’.-tr|v|

32

5/5/16

Parallel Random Forests

e Many areas for parallelization for

Random Forests
o Simultaneous tree training
o Breadth-first node training

@A NVIDIA.

CUDA

o Feature splitting
e Our optimizations

o Using Thrust library to sort feature data in

o Parallelizing finding the best split amongst a
group of candidate features

parallel
o Using OpenMP to parallelize training of O enMP
individual trees and nodes i

Initial Results, 10K samples

Total Training + Prediction Time
600

450

300

Total

150

OMP + Cuda (Copy Cuda (Copy over, sort) Cuda (On-device Sort)
over, sort)

I Total

Serial

33

5/5/16

Initial Results, 10K samples

Individual Tree Training Time: Max, Avg, Min

8000 26.80 I Max

I Avg

0 Min
22.50

15.00

7.50

0.00

OMP + Cuda (Copy Cuda (On-device Sort) Cuda (Copy over, sort) Serial
over, sort)

Initial Results, 10K samples

The overhead of copying data to the GPU is too high, as seen in the
performance drop in our Copy-Over, Sort CUDA implementation
The overhead for organizing data with a single GPU thread is also too
high, as seen in the performance drop in our On-Device Sort CUDA
implementation

o Although, this implementation performs slightly faster than copy-over
Using OMP to sort multiple arrays simultaneously on the GPU overcomes
the overhead of copying data into the GPU

34

5/5/16

Hypotheses for Future Work

We expected GPU sorting to bring down forest training time, but this
wasn'’t the case in our initial experiments! We think that we observed this

for one or more of the following reasons:

e There is some cutoff number of elements below which it isn't worth

sorting with CUDA

e Processing sorted data asynchronously could shave off more time

e Using multiple GPU threads to organize feature data could potentially

speed up the On-Device sort implementation

We plan to experiment with these issues in the next few days.

ZIPG: SERVING QUERIES ON COMPRESSED GRAPHS

Anurag Khandelwal

* Distributed Graph Stores
* Social networks: FB, Twitter, LinkedIn
+ Challenges:
* Graphs are huge
© Facebook: ~10° nodes, ~10'2 edges, with rich attributes
* Graph queries are complex
 E.g:“Friends of my friends who like video games”
© Strict performance requirements

* Low latency, high throughput

* Our Approach:
+ Compression helps caching
© Decompression is expensive

* Execute queries directly on compressed
representation

* Graph layout that is

¢ flexible,amenable to compression & can scale.

Adjacency List, augmented with properties

S, 0 TpanTy D,...,D, P,....P,
S | TpoaTy D,,...D, Ppy..., P,
Ss I T T, D,,...,D, P .. P,

I. Partition by source
2. Compress using Succinct [NSDI’|5]; supports:

- decompression at random offsets

- search for arbitrary patterns w/o decompression
3. Distribute

— T

[| I | [] ageregator

shard-1 |... [shard-n|

shard-1 [... [shard-n]

shard-1 ... [shard-n|

[shard-1 [... [shard-n]

35

5/5/16

ZIPG: SERVING QUERIES ON COMPRESSED GRAPHS

- Datasets:

- twitter-2010 (social graph, 41 M nodes, 1.4 B edges, 250GB raw data)
- uk-2007-05 (web graph, |05M nodes, 3.7 B edges, 636GB raw data)

- Facebook’s TAO Workload (99.8% reads, .2% writes & updates)

Compression Factor

Compression factor Scaling Comparison with state-of-the-art
80000 80000
70000 70000
Z 60000 Z 60000
2 2
2.35x 2.4x
S s0000 < 50000
8 40000 247x 2 40000
_______ ———s £l £ 5x
3 30000 3 30000
¥ 20000 £ 20000
10000 10000
twitter2010 -2007-05 0 0
iter e twitter2010 k-2007-05 twitter2010 uk-2007-05
Dataset
Dataset Dataset
I server (32 cores) ® 10 servers (80 cores) Titan #ZipG

Takeaway: ~2x compression, with close to linear performance scaling,and 2.4 - 5x higher throughput than state-of-the-art

Cache Friendly Shuffles for ML

Goal: Minimize sum of losses

min F(x) = Z fi(x)

Maximilian Lam Horia Mania Maxim Rabinovich

zE€R4 i—1 A\

loss for data point i

Idea:

Go over each data point, and locally optimize.
Multiple threads perform independent updates.

36

5/5/16

Access Pattern

Data Points Model Parameters

fi
- Now: Go over data in
random order f2

- Our approach: choose
orderings that improve
cache locality

An experimental Result

14

e—e Regular
12f| e—e Cache-aware

10¢

Speedup

2 4 6 8 10 12
threads

* Word2Vec: 20m data points, 200 features

37

5/5/16

Communication Minimization
Under Approximate Correctness

Ke Li

« Most existing work focuses on the exact setting;
we consider the approximate setting.

« Given a parallel algorithm, we devise a way to
determine which variables should be
communicated.

« For variables that are not communicated, we use
randomly sampled values.

« We show the quantity we should control is the sum
of square roots of the mutual information between
the variables and the output.

Remote Local
data data

X1,..., X, uncommunicated variables

Y: algorithm output, which is in [117 l2]

If i (XY Xigr -, Xn) < 8/ (\/§<12 —zl)) ~ Viog(2/0),
then the output deviates by at most § with
probability of at least 1 — €.

Xingjie Pan
Yuhao Liu
Yanrong Li

Problem Statement

GPU Implementation of SASA
(Solvent Accessible Surface Area)
Calculate accessible surface on a union of spheres

Applications
« Molecular Dynamics

o Protein Structure Prediction

38

5/5/16

Algorithms

Xingjie Pan
Yuhao Liu
Yanrong Li

1. Sphere-level parallelism

b = #Blocks
t = #Threads per block

i N Vi

2. Circle-level intersection
CPU 3. Scan in dynamic memory
allocation
A 4. CUDA Reduction in area

77

sphere[1] - sphere[t] spher[t+1] -sphere[2t]

sphere[2t+1] - sphere[3t]

accumulation

sphere[bt+1] - sphere[n]

Results

Relative speed

0 I
Seriall Serial2 GPU

Xingjie Pan
Yuhao Liu
Yanrong Li
102 SASA Tentative Performance
—o—gvensasa|
e aeaisasa
opusess | |
10" ,«/"/‘ A
Sl
>
//I// 1
10°F 7 ST
et
=& (oo B </ef
o
P
102 /// /
// - e
:n’;//
o4
10% 10 10* 10% 10°
Number of spheres

39

A parallel implementation of RQRCP
Jianwei Xiao & Ruochen Liang

Problem: do partial QR factorization with pivoting to find low rank approximation

Previous work: RQRCP based on OpenMP on shared memory machines

Existing method: ScaL APACK subroutine PDGEQPF

Our work: RQRCP based on ScalL APACK on distributed memory machines

Result: less running time, similar approximation

Running time comparison Relative residual error comparison

Residual with proc=6

Runtime with proc=6
— RQRCP

— RQRCP
— PDGEQPF} — PDGEQPF
N 11— PDGEQRF
§ g

e

1 i
0 150 200 250 300 350 400 450 500) 0 250 300 350 400 450 500
approximation rank k ‘approximation rank k

Modeling Energy Transfer
Dynamics in Thylakoid
Membranes:

Parallel Matrix
Exponentiation

Jonathan Morris
Marten Lohstroh

5/5/16

40

5/5/16

Photosynthesis: Energy Transfer
on the Thylakoid Membrane

o
Q / e
2 3 / /“ \ ;
c 10
o b S s
= 0] - ON Lo s
g :
g 3
5 T
Q b4
X =)
2 wn
U_o
=,
8 3 8 3 ©
« - -

Mesoscopic Effects of Quantum
Dynamics: Classical Rate Matrix

Interdomain Transfer Described by Generalized Forster Theory:

IVM,NIZ ® *
kyen = o Re/0 dtAy (£)Fy(t),

Intradomain Transfer Described by Modified Redfield Theory:
e o
Ko = 2Re [dtA (DRSO Vyn(0),
0

Dynamics is given by first order ODE: Formal solution:

P(t) = KP(t) P(t) = X' P(0)

41

5/5/16

Reduced Algorithmic Complexity:
Krylov Subspace Method

Naive Solution:
eKt — Ve—)\tv—l
Krylov Subspace Projection:
AVm = Vm—‘,— 1 Hm

Compute Solution on smaller subspace:

P(t) = ||P(0)||o Vini1efimte,

Compute on the smaller subspace via scaling and squaring;
Padé Approximant Techniques.

= (o) P R(H) = Q(H) ' P(F)

Implementation: Scalable Library
for Eigenvalue Problem
Computations (SLEPc)

The sparse matrix computation library we leverage to implement
the required matrix exponentiation.

SLEPc:

e Uses PETSc data structures and employs MPI;
Is available on Cori, straightforward to install locally;
Has an object-oriented flavor and abstracts away from
most MPI subroutines through the use of “collective”
library functions;

e Provides scalable building blocks for solving large-scale
sparse eigenvalue problems.

42

5/5/16

Snowflake

A high-performance eDSL for Stencils in Python
Nathan Zhang

Snowflake

An eDSL for Stencils in Python

Performance comparable to Handwritten C/
OpenMP

Extending to OpenCL
Can apply high level optimizations and analyses

- Implemented Communication Avoiding Stencil
Decomposition

43

5/5/16

CUDA-based Evaluation of Generalized Winding Number for Mesh Repair and Tessellation

1. Motivation 2. Generalized Winding Number JiaXian Yao

1.1. Surface vs. Volume Rep 2.1. Definitions 2.2. Mesh Repair and Tessellation Pipeline

wlp) = o }g @ w o) = o [sintejanas
Ny s

Triangle Mesh Tetrahedral Mesh Measure Insideness Extract Inside Tets

1.2. Volume Rep is Essential 3. CUDA-based Evaluation of Generalized Winding Number
seconds seconds
% | W cpu:2aGHr 7w/ 3 GaRAM % M cpur 24 Ghei7w/ .68 Ram
24 { M GPU: Stampede w/ Uncoalesced Global Memory 180 - Ml GPU: Stampede w/ Uncoalesced Global Memory.
L] M GPU: stampede w/ Coalesced Global Memory & Shared Memory
2 165
2 150
1 15
1 20
Surface-based Volume-based 1 105
1 0
1.3. Non-manifold Triangle Mesh 0 .
s w0
. s
4 »
) - 20310
sevimersecions | > e P Pen foe fue 0 @ fe Bz Bie e
Dog SwaTvian sear fiyngbus Alen Object Crocode st Phone Woman'Hesd east
~ / IFIx || 428m s13m 931m 1406M 1664M IFIx 7] 3435M 3837M 12373m 15275M 20847M
Non-manifold Edges

4. Reference

Open Boundaries [1] Alec Jacobson, Ladislav Kavan, and Olga Sorkine. Robust Inside-Outside Segmentation using Generalized Winding Numbers, 2013.

Sparse Linear Algebra on Modern Data Processing Systems

Cathy Wu, Philipp Moritz

Map Shuffie Reduce
X 3% E3
X x% X X
X %XX s
X% X % ©
x‘xxxx § x‘xxxx
x X X X X X + O)
XX X X++EX ONORORO!
KAXKX
A L T(A)

—

MapReduce:
e (+) massively parallel
e (+) dynamic scaling of the cluster
e (-)rigid programming model

Sparse linear algebra workloads:
e flexible computation patterns
e fine grained tasks

Problem: Sparse Linear Algebra not well supported
on modern data processing frameworks like Spark

44

5/5/16

Sparse Linear Algebra on Modern Data Processing Systems

Our project: We investigate how sparse linear algebra can be implemented in next-
generation data processing systems

Design principles:
e remotely scheduled fine grained function calls
e remote and distributed objects

Operations:
e Sparse matrix vector multiply
e Cholesky decomposition

f Applications:
. e Machine learning, e.g. PageRank
"" e Optimization, e.g. nonlinear programming

Optimizing Fire Simulation
with GLSL

Yi Tong
Saurabh Mitra

45

5/5/16

Problem Statement

Numerical solutions to the Navier-Stokes equations in three dimensions for high-
resolution grids are intractably slow

We want to render a fire simulation at or near real-time speeds with overall Navier-
Stokes-like behavior

The Solution

Use a low-resolution Navier-Stokes
solver to drive a high volume of
particles.

Since particles are already being
rendered with OpenGL as small flame
sprites, use GLSL Compute Shaders
to linearly interpolate particle
velocities, temperatures, and
densities based on Navier-Stokes
grids before updating positions and
rendering each frame

46

5/5/16

CS 267 Project @ Berkeley [Spr'16] Rohan Padhye

Scaling Long-Sequence RNN training on GPUs
By storing only a fixed window W in GPU memory. Other states swapped to CPU memory on LRU basis.

Sequence Length T

Window size W

l GPU Memory Consumption for Default Mode

J —e-B=16
—e-B=64

4 B=128
—-B=256
3 —e-B=1024

— Max

Batch size

Poak Memory Usage (GB)

‘Sequence Length (T)

Seq 4 ﬂ—» Error GPU Memory Consumption for LRU mode (W=20)
{ | L I | |

Seq 5 ﬂ—‘ Error
{ | I I | |

Seq 6 4@‘—’ Error
{ | - I | |

Increasing T — Better precision
Increasing B — Better parallelism [upto B*]
GPU Memory required: {default: O(TB), LRU: O(WB)}

Peak Memory Usage (GB)
BX]
i el

Sequence Length (T)

Fast Parallel Gibbs Sampling on Discrete Bayesian

Daniel Seita Networks and Factor Graphs CS 267 Final Project
Problem Statement My Implementation
Given partially observed discrete data and a graphical model The code is implemented in the BIDMach toolkit. Features:

structure, find the “best” parameters (a.k.a. MAP estimation). 1. Sampling process is fused into matrix operations

0x1x---1 - 2. GPU kernels for matrix multiplication and other operators
Lx11 0 0 = argmax P(0 | D) 3. Update parameters after each mini-batch of data
D= X T 4 4. Data can be as large as disk or network storage space
x11x---0 PO)P(D|0) s. Supports “temperature” for Gibbs sampling (S.A.M.E.)
=argmax ———_-——
1 O R 4 P(D) (sparse) data
Columns = “possible worlds,” x = missing data [} [} Dirichlet
. A . .) 0 O3 ([pricy
Gibbs sampling is an MCMC algorithm for sampling the posterior. m = [current) o
It is sequential, but we can semi-parallelize it with graph coloring: -] o CPTs i CPTs
! ! m sampling
M / I pull from %7 m =3 jutbackin
* & ¢ ®
replicate data with SAME
Xo ~ P(Xo | X1, Xp, X3) o< P(Xo) P(X; | X1, Xo) Future work: more benchmarks (data and code), fix bottlenecks
X~ P(X3 | X07X1’X2) - P(X3 | Xl) Code available at: https:/github.com/BIDData/BIDMach

47

5/5/16

GPU Compression - Algorithm

The LZSS algorithm is a compression algorithm that takes advantage of repeated phrases in some text. That is,
when a word is repeated within a small frame of one another, the LZSS algorithm replaces the second

occurrence of that word with a reference to the first word. For example, we have the phrase:

yiwen song is a yiwen song.

We can compress to:

yiwen song is a (16,10).

GPU Compression - Use in HPC

Idea: Compress contents of communication sent over a network.
c=a+ Bm

Compression time per Byte = &

Compressed size to uncompressed size ratio = D
:>a—|—gm> a—+ BDm + km

g > D

B = .08 for 100Mbps network, 8 = .32 for 25Mbps network

48

5/5/16

GPU Compression - Performance Data

Wikipedia XML size vs deflation

........................

* FARAZ TAVAKOLI FARAHANI

49

5/5/16

Learning to Assemble Objects
from Volumetric Primitives

- Shubham Tulsiani

/'—>. J
N ﬁ@@@@© D N \E N Transf "

=
[|
=

:
1

Loss Function

We train a neural network to reconstruct an object by transforming and
composing volumetric primitives (cubes). We use a popular deep
learning framework “Torch’ and add functionality required for the 3D
spatial transforms and loss functions.

3D Spatial Transformer

Input
Image/Shape
_
L] E.
— /
et \
B |
Predicted Volumetric
Shape Flow Field Transformed
Primitive * Primitive
Assembled
L Shape

We implement GPU based trilinear interpolation
layer to transform shape primitives via flow fields
and also yield gradients for training neural networks

Distance Field
Computation for
Improved Loss Function

-

Target ~ Prediction Volumetric
Overlap Loss

The overlap loss function with spatial
transformer gives very local gradients
and will not correct the mis-aligned
green primitive

We add a loss penalizing
every unexplained target
point’s distance to the
closest primitive centre

We implement a GPU based distance
field computation layer for training
neural networks with this additional loss

50

