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• 5000 users, 600 projects
• From 48 states; 65% from universities
• Hundreds of users each day
• 1500 publications per year
Systems designed for science



• Cori will support the broad Office of Science research community and begin to transition the workload to 
more energy efficient architectures

• Cray XC system with over 9,300 Intel Knights Landing compute nodes – mid 2016
– Self-hosted, (not an accelerator) manycore processor with up to 72 cores per node 

– On-package high-bandwidth memory

• Data Intensive Science Support
– 10 Haswell processor cabinets (Phase 1) to support data intensive applications – Summer 2015

– NVRAM Burst Buffer to accelerate data intensive applications

– 28 PB of disk, >700 GB/sec I/O bandwidth

• Robust Application Readiness Plan
– Outreach and training for user community

– Application deep dives with Intel and Cray
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• Edison is the HPCS* demo system (serial #1)
• First Cray Petascale system with Intel processors (Ivy Bridge), Aries 

interconnect topology
• Very high memory bandwidth (100 GB/s per node)
• 5,576 nodes, 133K cores, 64 GB/node
• Exceptional application performance 

*DARPA High Productivity Computing System program



• Four story, 140,000 GSF, 300 offices, 20Ksf 
HPC floor, 12.5->40 MW

• Located for collaboration
– LBNL, CRD, Esnet, UCB

• Exceptional energy efficiency
– Natural air and water cooling
– Heat recovery
– PUE < 1.1
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if(task_no==0) {

     ret = MPI_Recv(&herBuffer, 50, MPI_DOUBLE, totTasks-1, 0, MPI_COMM_WORLD, 
&status);
     ret = MPI_Send(&myBuffer, 50, MPI_DOUBLE, totTasks-1, 0, MPI_COMM_WORLD);

} else if (task_no==(totTasks-1)) {

     ret = MPI_Recv(&herBuffer, 50, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &status);
     ret = MPI_Send(&myBuffer, 50, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
        
}

This code hangs because both Task 0 and Task N-1 are blocking on MPI_Recv
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edison% make
cc -c -g hello.c
cc -o hello -g  hello.o

Compile for debugging

Set up the parallel run environment
edison% qsub –I –V –lmppwidth=24
edison% cd $PBS_O_WORKDIR

edison% module load ddt
edison% ddt ./hello

Start the DDT debugger



At hang, tasks are in 3 different 
places.

Task 0 is at line 44

Press Go and then Pause when 
code appears hung.
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SparklinesStatistics



• Parallel debuggers with a graphical user interface
– DDT (Distributed Debugging Tool)
– TotalView

• Specialized debuggers on Hopper and Edison
– STAT (Stack Trace Analysis Tool)

• Collect stack backtraces from all (MPI) tasks

– ATP (Abnormal Termination Processing)
• Collect stack backtraces from all (MPI) tasks when an application fails

– CCDB (Cray Comparative Debugger)
• Comparative debugging
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Thread Activity





• Cori will begin to transition the workload to 
more energy efficient architectures

• Cray XC system with over 9300 Intel Knights 
Landing (Xeon-Phi) compute nodes

– Self-hosted, (not an accelerator) manycore processor 
with 72 cores per node 

– On-package high-bandwidth memory

System named after Gerty Cori, 
Biochemist and first American woman to 
receive the Nobel prize in science.



Edison (Ivy-Bridge):
● 12 Cores Per CPU
● 24 Virtual Cores Per CPU

● 2.4-3.2 GHz

● Can do 4 Double Precision 
Operations per Cycle (+ multiply/add)

● 2.5 GB of Memory Per Core

● ~100 GB/s Memory Bandwidth

Cori (Knights-Landing):
● Up to 72 Physical Cores Per CPU
● Up to 288 Virtual Cores Per CPU

● Much slower GHz

● Can do 8 Double Precision 
Operations per Cycle (+ multiply/add)

● < 0.3 GB of Fast Memory Per Core
         < 2 GB of Slow Memory Per Core

● Fast Memory has ~ 4-5x DDR4 
Bandwidth



Breakdown of Application Hours 
on Hopper and Edison 2013





Need to explicitly consider both inter and on-node 
parallelism in application.

Existing applications may suffer from:
- Memory overhead due to duplicated data in traditional 

MPI tasks
- Lack of SIMD/Vectorization expressiveness in app.
- Potential MPI latency in all-to-all communication patterns

Possible Solutions:
MPI+MPI, MPI+OpenMP, PGAS (MPI+PGAS), Task Based 
Programming



PARATEC computes parallel 
FFTs across all processors. 

Involves MPI all-to-all 
communication (small 
messages, latency bound).

Reducing the number of MPI 
tasks in favor OpenMP 
threads makes large 
improvement in overall 
runtime.

Figure Courtesy of Andrew Canning



  do i = 1, n
      a(i) = b(i) + c(i) 
  enddo



  do i = 1, n
      a(i) = b(i) + c(i) 
  enddo



  do i = 1, n
      a(i) = a(i-1) + b(i) 
  enddo

  do i = 1, n
      if (a(i) < x) cycle
      if (a(i) > x) … 
  enddo



for (many iterations) {
   … many flops …
   et = exp(outcome1)
   tt = pow(outcome2,3)
   IN = IN * et +tt
}



for (many iterations) {
   … many flops …
   et = exp(outcome1)
   tt = pow(outcome2,3)
   IN = IN * et +tt
}

for (many iterations) {
   … many flops …
   et(i) = exp(outcome1)
   tt(i) = pow(outcome2,3)
}

for (many iterations) {
    IN = IN * et(i) + tt(i)
}



for (many iterations) {
   … many flops …
   et = exp(outcome1)
   tt = pow(outcome2,3)
   IN = IN * et +tt
}

for (many iterations) {
   … many flops …
   et(i) = exp(outcome1)
   tt(i) = pow(outcome2,3)
}

for (many iterations) {
    IN = IN * et(i) + tt(i)
}

30% speed up for entire application!





~40% speed up
 for kernel



Consider the following loop:

Assume, n & m are very large such that a & b don’t fit into 
cache.

Then,

During execution, the number of loads From DRAM is 

n*m + n



Consider the following loop: Assume, n & m are very large such that a & b don’t fit into cache.

Assume, n & m are very large such that a & b don’t fit into 
cache.

Then,

During execution, the number of loads From DRAM is 

n*m + n

Requires 8 bytes loaded from DRAM per FMA (if supported).  Assuming 100 GB/s bandwidth on 
Edison, we can at most achieve 25 GFlops/second (2 Flops per FMA)

Much lower than 460 GFlops/second peak on Edison node. Loop is memory bandwidth bound.





Loads From DRAM:

n*m + n 
Loads From DRAM:

m/block * (n+block) 
= n*m/block + m

Improving Memory Locality. Reducing bandwidth required.
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MPI/OpenMP
Scaling Issue

IO bottlenecks

Use Edison to 
Test/Add OpenMP 

Improve Scalability. 
Help from 

NERSC/Cray COE 
Available.

Utilize High-Level 
IO-Libraries. Consult 

with NERSC about 
use of Burst Buffer.

Utilize 
performant / 

portable 
libraries

The Dungeon:
Simulate kernels on KNL. 
Plan use of on package 

memory, vector 
instructions.

The Ant Farm!

Communication 
dominates beyond 
100 nodes

Code shows no 
improvements 
when turning on 
vectorization

OpenMP 
scales only to 
4 Threads

large cache 
miss rate

50% Walltime 
is IO

Compute intensive 
doesn’t vectorize

Can you 
use a 

library?
Create micro-kernels or 

examples to examine 
thread level 

performance, 
vectorization, cache use, 

locality.

Increase 
Memory 
Locality

Memory bandwidth
bound kernel



Can You 
Increase Flops 

Per Byte Loaded 
From Memory in 
Your Algorithm?

Make 
Algorithm
Changes

Explore Using 
HBM on Cori 

For Key Arrays

Is 
Performance 
affected by 
Half-Clock 

Speed?

Run Example 
at “Half Clock” 

Speed

Run Example 
in “Half 

Packed” Mode

Is 
Performance 
affected by 

Half-
Packing?

Your Code is at least 
Partially Memory 
Bandwidth Bound

You are at 
least 

Partially 
CPU Bound

Make Sure Your 
Code is 

Vectorized! 
Measure Cycles 
Per Instruction 

with VTune

Likely Partially 
Memory Latency 

Bound 
(assuming not IO or 

Communication 
Bound) 

Use IPM and Darshan to 
Measure and Remove 
Communication and IO 
Bottlenecks from Code

Can You 
Reduce 
Memory 

Requests Per 
Flop In 

Algorithm?

Try Running 
With as Many 

Virtual 
Threads as 
Possible (> 

240 Per Node 
on Cori)

Make 
Algorithm
Changes

YesYes

Yes Yes

No

No No

No

The Ant Farm Flow Chart
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Measure memory 
bandwidth usage in 
VTune. (Next Talk)

Compare to Stream 
GB/s. 

If 90% of stream, you 
are memory bandwidth 

bound.

If less, more tests need 
to be done. 
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Run Example 
in “Half 

Packed” Mode

 aprun -n 24 -N 12 - S 6 ... VS  aprun -n 24 -N 24 -S 12 ...

If you run on only half of the cores on a node, each core you do run 
has access to more bandwidth 

If your performance changes, you are at least partially memory bandwidth bound



If your performance changes, you are at least partially memory bandwidth bound

Run Example 
in “Half 

Packed” Mode

 aprun -n 24 -N 12 - S 6 ... VS  aprun -n 24 -N 24 -S 12 ...

If you run on only half of the cores on a node, each core you do run 
has access to more bandwidth 



aprun --p-state=2400000 ... VS aprun --p-state=1900000 ...

Reducing the CPU speed slows down computation, but doesn’t 
reduce memory bandwidth available.

If your performance changes, you are at least partially compute bound

Run Example 
at “Half Clock” 

Speed



What to do?

1. Try to improve memory locality, 
          cache reuse 

2. Identify the key arrays leading to high memory bandwidth usage and make sure they are/will-
be allocated in HBM on Cori. 

Profit by getting ~ 5x more bandwidth GB/s.



What to do?
1. Make sure you have good OpenMP scalability. Look at VTune to see thread activity for major 

OpenMP regions.

2. Make sure your code is vectorizing. Look at Cycles per Instruction (CPI) and VPU utilization 
in vtune. 

See whether intel compiler vectorized loop using compiler flag: -qopt-report=5



Complex-Division (without -fp model fast=2)



You may be memory latency bound (or you may be spending all your time in IO and Communication). 

If running with hyper-threading on Edison improves performance, you *might* be 
latency bound:

If you can, try to reduce the number of memory requests per flop by accessing 
contiguous and predictable segments of memory and reusing variables in cache as 
much as possible.

On Cori, each core will support up to 4 threads. Use them all.

 aprun -j 2 -n 48 ….  aprun -n 24 ….VS





★
★

★

Distributed Data

Overhead Data

MPI Task 1

Distributed Data

Overhead Data

MPI Task 2

Distributed Data

Overhead Data

MPI Task 3

…



In house code (I’m one of main developers). Use as “prototype” for App 
Readiness.



In house code (I’m one of main developers). Use as “prototype” for App 
Readiness.

Significant Bottleneck is large matrix reduction like operations. Turning arrays 
into numbers.



1. Target more on-node parallelism. (MPI model already failing users)
2. Ensure key loops/kernels can be vectorized. 

Example: Optimization steps for Xeon Phi Coprocessor

Refactor to Have 3 
Loop Structure:

Outer: MPI
Middle: OpenMP
Inner: Vectorization

Add OpenMP

Ensure 
Vectorization



ngpown typically in 
100’s to 1000s. Good 
for many threads.

ncouls typically in 
1000s - 10,000s. 
Good for 
vectorization. 

Original inner loop. 
Too small to 
vectorize!

Attempt to save work 
breaks vectorization 
and makes code 
slower.

!$OMP DO reduction(+:achtemp)
  do my_igp = 1, ngpown
    ...
    do iw=1,3

      scht=0D0
      wxt = wx_array(iw)

      do ig = 1, ncouls

        !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

        wdiff = wxt - wtilde_array(ig,my_igp)
        delw = wtilde_array(ig,my_igp) / wdiff
        ...
        scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)
        scht = scht + scha(ig)

      enddo ! loop over g
      sch_array(iw) = sch_array(iw) + 0.5D0*scht

    enddo   

    achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

  enddo





Why KNC worse than Haswell for GPP Kernel?

• 2S Haswell 27.9s      KNC  39.9s     (Bandwidth bound on KNC, but not on Haswell)

  do my_igp = 1, ngpown (OpenMP)

           do iw = 1 , 3

                do ig = 1, igmax

                     load wtilde_array(ig,my_igp) 819 MB, 512KB per row

                     load aqsntemp(ig,n1) 256 MB, 512KB per row

                     load I_eps_array(ig,my_igp) 819 MB, 512KB per row

                     do work (including complex divide) depends on ig, iw ...
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Without blocking we spill out of L2 on 
KNC and Haswell. But, Haswell has L3 to 
catch us.



Why KNC worse than Haswell for GPP Kernel?

• 2S Haswell 27.9s      KNC  39.9s     (Bandwidth bound on KNC but not on Haswell)

  igblk = 2048

  do my_igp = 1, ngpown (OpenMP)

      do igbeg = 1, igmax, igblk

           do iw = 1 , 3

                do ig = igbeg, min(igbeg + igblk,igmax)

                     load wtilde_array(ig,my_igp) 819 MB, 512KB per row

                     load aqsntemp(ig,n1) 256 MB, 512KB per row

                     load I_eps_array(ig,my_igp) 819 MB, 512KB per row

                     do work (including divide)

Required Cache size to reuse 3 times:

1536 KB

L2 on KNC is 256 KB per Hardware Thread
L2 on Has. is 256 KB per core

L3 on Has. is 3800 KB per core

Without blocking we spill out of L2 on 
KNC and Haswell. But, Haswell has L3 to 
catch us.



gppkernel speedups

Igblk=2048 - to enable reuse of L2 cache on KNC

• Morning:      2S Haswell 27.9s      KNC  39.9s

• Afternoon:      2S Haswell 27.5s      KNC  29.7s

The loss of L3 on MIC makes locality more important.



How much performance can we get from 3 arrays in Fast Memory?

• Identify the candidate (key arrays) for HBM
– VTune Memory Access tool can help to find key arrays

– Using NUMA affinity to simulate HBM on a dual socket system

– Use FASTMEM directives and link with jemalloc/memkind libraries

BGW Results:
•All memory on Near Me
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On Edison (NERSC Cray XC30):
real, allocatable :: a(:,:), b(:,:), c(:)
!DIR$ ATTRIBUTE FASTMEM :: a, b, c
% module load memkind jemalloc
% ftn -dynamic -g -O3 -openmp mycode.f90
% export MEMKIND_HBW_NODES=0
% aprun -n 1 -cc numa_node numactl --membind=1 --cpunodebind=0 .
/myexecutable

On Haswell:

Link with ‘-ljemalloc -lmemkind -lpthread –lnuma “

% numactl --membind=1 --cpunodebind=0 ./myexecutable

Application
All 
memory 
on far 
memory

All 
memory 
on near 
memory

Key arrays 
on near 
memory

BerkeleyGW baseline 52% faster 52.4% 
faster

EmGeo baseline 40% faster 32% faster

XGC1 baseline 24% faster



hy

Bandwidth collection on Haswell. Now *Mostly* not bandwidth bound. 



General Exploration of two OpenMP regions 

The dynamic loop is now core bound, not memory bound. Removing the divide shows it 
to be the culprit!





High Level Lessons

1. Optimizing code for Cori is not always straightforward. It is a continual 
discovery process that involves many sequential and coupled changes.



2013 - Poor locality, loop ordering issues 

Disclaimer - this is a rough schematic



2014 - Refactored loops, improved locality 

Disclaimer - this is a rough schematic



2014 - Vectorized Code 

Disclaimer - this is a rough schematic



2015 - Cache Blocking

Disclaimer - this is a rough schematic



High Level Lessons

1. Optimizing code for Cori is not always straightforward. It is a continual 
discovery process that involves many sequential and coupled changes.

2. Use profiling tools like VTune and CrayPat on Edison to find and characterize 
hotspots.

3. Understanding bandwidth and compute limitations of hotspots are key to 
deciding how to improve code.





Why Complex Divides so Slow?

Code performance now limited by complex divides

why??

For complex division in performance critical loop, I had already removed the explicit complex divide but what is 
faster? 

a)  c =1 / c     vs.       b)

c/d) Compiling with/without -fp-model fast=2

r = c * conjg(c)
r = 1 / r
c = conjg(c) * r



Real-Division (with or without -fp model fast=2)



Complex-Division (with -fp model fast=2)



?
Approximation:

a. Real Division

b. Complex Division

c. Complex Division 
+ -fp-model fast=2

Wall Time:

6.37 seconds

4.99 seconds

5.30 seconds



Approximation:

a. Real Division

b. Complex Division

c. Complex Divsion + 
-fp-model=fast

Wall Time:

6.37 seconds

4.99 seconds

5.30 seconds



Approximation:

a. Real Division

b. Complex Division

c. Complex Division + -
fp-model fast=2

d. Complex Division + -
fp-model=fast=2 + !
dir$ nounroll

Wall Time:

6.37 seconds

4.99 seconds

5.30 seconds

4.89 seconds



Overall Improvement Notes

BGW GPP Kernel   0-10% Pretty optimized to begin with. Thread scalability improved by fixing ifort allocation performance. 
BGW FF Kernel 2x-4x Unoptimized to begin with. Cache reuse improvements
BGW Chi Kernel 10-30% Moved threaded region outward in code
BGW BSE Kernel 10-50% Created custom vector matmuls

ifort
ifort

(Nathan)




