# CS267 Class Project Suggestions

Spring 2016

## How to Organize A Project Proposal (1/2)

- Parallelizing/comparing implementations of an Application
- Parallelizing/comparing implementations of a Kernel
- Building /evaluating a parallel software tool
- · Evaluating parallel hardware

03/17/2015

CS267 Class Projects

## Class project suggestions

- · Many kinds of projects
  - Reflects broad scope of field and of students, from many departments
- Need to do one or more of design / program / measure some parallel application / kernel / software tool / hardware
- Can work alone or in teams
  - HW0 posted to help identify possible teammates based on interest
- What you need to do
  - Project proposal (< 1 page) ideally during spring break</li>
    - Many old project posters/videos posted on class web page
  - Feedback from instructor (ongoing conversations)
  - Poster presentations (+ recording short video presentation) on Thursday morning May 5, 8-11am (during RRR week), in Woz
  - Final report writeups due Monday May 9 at midnight (11:59pm)

03/17/2015

CS267 Class Projects

#### How to Organize A Project Proposal (2/2)

- What is the list of tasks you will try?
  - Sorted from low-hanging fruit to harder
- · What existing tools you will use, compare to?
  - Don't reinvent wheels, ok to compare to existing wheels to evaluate pros and cons
  - For applications, consider using frameworks like Chombo or PETSC or Trilinos
  - For applications, identify computational and structural patterns you plan to use
- What are your success metrics
  - Get application X up on Edison, solve problem Y
  - Get motif Z to run W times faster on GPU
  - Collect data V to evaluate/compare approaches

03/17/2015

CS267 Class Projects

## A few sample CS267 Class Projects

all posters and video presentations on class web page

- Content based image recognition
  - "Find me other pictures of the person in this picture"
- Faster molecular dynamics, applied to Alzheimer's Disease
- Better speech recognition through a faster "inference engine"
- Faster algorithms to tolerate errors in new genome sequencers
- · Faster simulation of marine zooplankton population
- Sharing cell-phone bandwidth for faster transfers

03/17/2015

CS267 Class Projects

5

## **More Prior Projects**

- 1. High-Throughput, Accurate Image Contour Detection
- 2. CUDA-based rendering of 3D Minkowski Sums
- 3. Parallel Particle Filters
- 4. Scaling Content Based Image Retrieval Systems
- Towards a parallel implementation of the Growing String Method
- 6. Optimization of the Poisson Operator in CHOMBO
- 7. Sparse-Matrix-Vector-Multiplication on GPUs
- 8. Parallel RI-MP2

03/17/2015

CS267 Class Projects

## **More Prior Projects**

- 1. Parallel FFTs in 3D: Testing different implementation schemes
- Replica Exchange Molecular Dynamics (REMD) for Amber's Particle-Mesh Ewald MD (PMEMD)
- 3. <u>Creating a Scalable HMM based Inference Engine for Large</u> Vocabulary Continuous Speech Recognition
- 4. Using exponential integrators to solve large stiff problem
- 5. Clustering overlapping reads without using a reference genome
- 6. An AggreGATE Network Abstraction for Mobile Devices
- Parallel implementation of multipole-based Poisson-Boltzmann solver
- 8. Finite Element Simulation of Nonlinear Elastic Dynamics using CUDA

03/17/2015

CS267 Class Projects

7

## Still more prior projects

- 1. Parallel Groebner Basis Computation using GASNet
- 2. Accelerating Mesoscale Molecular Simulation using CUDA and MPI
- 3. Modeling and simulation of red blood cell light scattering
- 4. NURBS Evaluation and Rendering
- 5. Performance Variability in Hadoop's Map Reduce
- 6. Utilizing Multiple Virtual Machines in Legacy Desktop Applications
- 7. How Useful are Performance Counters, Really? Profiling Chombo Finite Methods Solver and Parsec Fluids Codes on Nehalem and SiCortex
- 8. Energy Efficiency of MapReduce
- 9. Symmetric Eigenvalue Problem: Reduction to Tridiagonal
- 10. Parallel POPCycle Implementation

8