

GAMESMAN
A finite, two-person, perfect-information game generator

by

Daniel Dante Garcia

(ddgarcia@cs.berkeley.edu)

B.S. Computer Science and Engineering (Massachusetts Institute of Technology) 1990
B.S. Electrical Engineering (Massachusetts Institute of Technology) 1990

A report submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Elwyn R. Berlekamp, Chair
Professor Brian A. Barsky

Abstract

“Why write a program when you can write a program to write a program?”

– Author unknown

This report introduces GAMESMAN, a system for generating graphical
parametrizable game applications. Programmers write game ‘modules’ for a specific
game, which when combined with our libraries, compile together to become stand-
alone X-window applications as shown in Figure A.1 below. The modules only need
contain information about the rules of the game and how the game ends. If the
game is small-enough, it may be solved, and the computer can play the role of an
oracle, or “perfect” opponent. This oracle can advise a novice player how to play, and
teach the strategy of the game even though none was programmed into the system!
If a game is too large to be solved exhaustively, the game programmer can add
heuristics to provide an imperfect computer opponent. Finally, the application can
provide a useful utility to two human players who are playing each other, since it be
a “referee” who constrains the users’ moves to be only valid moves, can update the
board to respond to the move, and can signal when one of the players has won.

GAMESMAN

module for
1210

X and text
application

for
1210

module for
TicTacToe

module for
Tac Tix

X and text
application

for
TicTacToe

X and text
application

for
Tac Tix

module for
dodgem

X and text
application

for
dodgem

Figure Abstract.1: The Overall Picture of GAMESMAN

1

Dedication

To my parents, Raymond and Deborah, whose enduring love and simple,
generous acts of allowing their 6-year-old son to play when he needed to play and to
beat them at chess fostered a love for games that has not abated in the 21 years
since.

- i -

Table of Contents

1. Introduction..1

2. Definition of Terms ..2
2.1 Position .. 2
2.2 Slot ... 2
2.3 Piece ...2
2.4 Move ...3
2.5 Value, or Outcome... 3

2.5.1. Win .. 5
2.5.2. Lose ... 5
2.5.3. Tie.. 6
2.5.4. Primitive positions and terminating criteria 6
2.5.5. Value-equivalent moves. .. 6

2.6 Perfect opponents ..7
2.7 Partisan vs. Impartial games ... 7
2.8 The misère game vs. the standard game 8
2.9 Solving games..9
2.10 Static-evaluation ... 9
2.11 MINIMAX Heuristic.. 11

3. Prior Work .. 13
3.1 David Wolfe’s games toolkit.. 13
3.2 Anders Kierulf’s Smart Game Board 14
3.3 Rhys Hollow’s Gamemaster.. 15
3.4 What does GAMESMAN provide?.. 16

4. What games can be solved by GAMESMAN?............................. 17
4.1 Finite.. 17
4.2 2-Person ... 17
4.3 Perfect Information ... 18

5. What are the mechanics of generating a game?......................... 20
5.1 Set global variables ... 20
5.2 Choose a Representation for Positions and Moves.................. 20
5.3 Additional issues if the game is to be solved 21

5.3.1. Compact .. 21
5.3.2. Unique ... 21
5.3.3. Constant-Time Mapping Function .. 22
5.3.4. Example: Tic-Tac-Toe ... 22

5.4 Write the Subroutines... 22

6. Categorizing Games... 24
6.1 Categorizing games by total number of positions 24

6.1.1. Dart-Board without Capture ... 24
6.1.1.1 Number of moves upper bound ... 25
6.1.1.2 Number of positions upper bound....................................... 25

- ii -

6.1.1.3 Examples .. 26
6.1.2. Dart-Board with Capture ... 26

6.1.2.1 Number of moves upper bound ... 26
6.1.2.2 Number of positions upper bound....................................... 27
6.1.2.3 Examples .. 27

6.1.3. Rearranger .. 27
6.1.3.1 Number of moves upper bound ... 27
6.1.3.2 Number of positions upper bound....................................... 28
6.1.3.3 Examples .. 28

6.1.4. Impartial Removal.. 28
6.1.4.1 Number of moves upper bound ... 28
6.1.4.2 Number of positions upper bound....................................... 29
6.1.4.3 Examples .. 29

6.1.5. Partisan Removal ... 29
6.1.5.1 Number of moves upper bound ... 29
6.1.5.2 Number of positions upper bound....................................... 29
6.1.5.3 Examples .. 30

6.1.6. Hybrids.. 30
6.1.7. Comparisons.. 30

6.2 Categorizing games by type of interactions............................. 31
6.2.1. Single-piece removal/placement .. 32
6.2.2. Single-piece movement... 32
6.2.3. Multiple-piece removal/placement... 32
6.2.4. Multiple-piece movement ... 33
6.2.5. Hybrids.. 33

6.3 Examples of the categories of popular games.......................... 33

7. User Interface Issues ... 35
7.1 Customization: giving users the options 35
7.2 Interactively choosing a move .. 35

7.2.1. Single-piece removal/placement .. 36
7.2.2. Single-piece movement... 36

7.2.2.1 Outline vs. Opaque drags .. 37
7.2.2.2 Computer-assisted movements ... 37

7.2.3. Multiple-piece removal/placement... 38
7.2.3.1 Single toggle click .. 39
7.2.3.2 Click-drag selection rectangle ... 39
7.2.3.3 Click-drag selection line .. 40

7.2.4. Multiple-piece movement ... 41
7.2.4.1 Group select and move... 41
7.2.4.2 Individual select and move.. 42

7.2.5. Hybrid example : Nine Men’s Morris..................................... 43
7.2.5.1 Phase I : Single-piece placement... 44
7.2.5.2 Phase II : Single-piece movement 44
7.2.5.3 Phase III : Rearranger... 44

7.3 Displaying all possible moves... 44
7.3.1. Single-piece removals/placements ... 44
7.3.2. Single-Piece movements... 45

7.3.2.1 Arrows .. 45

- iii -

7.3.2.2 Cursor-initiated highlighting .. 45
7.3.3. Multiple-piece removal/placement... 46
7.3.4. Multiple-piece movements ... 47
7.3.5. Improving the possible moves display................................... 47

7.3.5.1 Displaying value-equivalent moves 47
7.3.5.2 Cycle the available moves one at a time............................. 48

8. Self-Evaluation .. 49
8.1 Benefits .. 49

8.1.1. Analysis tool.. 49
8.1.2. Consistent interface.. 49
8.1.3. Facility to design, prototype and test a new game 49
8.1.4. Database to introduce and teach new games........................ 49
8.1.5. Hooks to incorporate game parametrization......................... 49
8.1.6. Perfect opponent ... 50
8.1.7. Strategies can be evaluated for small games........................ 50
8.1.8. Fun .. 50

8.2 Limitations .. 51
8.2.1. Space.. 51
8.2.2. Time... 51
8.2.3. An Example : Tac Tix on an Alpha workstation 52

8.3 Optimizations .. 53
8.3.1. Parallel and distributed computing....................................... 53
8.3.2. Stored position table... 53
8.3.3. Symmetry.. 54
8.3.4. Component-equivalent positions ... 55
8.3.5. Delayed evaluation... 55
8.3.6. Intelligence and Heuristics .. 56

9. Future Enhancements ... 58
9.1 Cross-network games .. 58
9.2 Object-Oriented Graphical Programming................................ 58
9.3 Graphics & Animation .. 58
9.4 Graphical Move History.. 59
9.5 Different computer strategies... 59
9.6 Implement optimizations .. 59
9.7 Write more modules .. 59
9.8 Port to different platforms & distribute................................... 59

10. The GAMESMAN User Interface ... 61
10.1 The GAMESMAN textual user interface 61
10.2 The GAMESMAN graphical user interface 67

11. Summary .. 79

Acknowledgments... 80

Appendices.. 81
Appendix A Module Specifications in C and Tcl/Tk..................................... 82

A.1 Module specifications in C ... 82

- iv -

A.2 Module specifications in Tcl/Tk ... 85
Appendix B Description and Rules of Games .. 88

B.1 1,2,...,4 / 1,2,...,10 / One Line Nim.. 88
B.2 Tac Tix / Nimbi ... 89
B.3 Tic-Tac-Toe / Noughts and Crosses.. 89
B.4 Dodgem.. 89
B.5 Checkers / Draughts ... 90
B.6 Chess ... 91
B.7 Connect-Four .. 91
B.8 Dots and Boxes ... 92
B.9 Fox and Geese / Wolves and Sheep / Asalto.......................... 92
B.10 Go... 93
B.11 Gomuku / Go-Bang / Renju and Pente / Ninuki Renju 94
B.12 Hex... 94
B.13 Hoppers / Halma / Chinese Checkers 95
B.14 L Game, The.. 96
B.15 Mancala / Awari / Wari .. 96
B.16 Nim.. 97
B.17 Nine Men’s Morris .. 97
B.18 Othello / Reversi ... 98
B.19 Roundabouts / Surakarta ... 99

Bibliography ... 101

- v -

List of Figures

Figure Abstract.1..1
The Overall Picture of GAMESMAN

Figure 2.1 ..2
A Tic-Tac-Toe position

Figure 2.2 ..2
The 9 Tic-Tac-Toe slots

Figure 2.3 ..3
The two Tic-Tac-Toe pieces

Figure 2.4 ..4
A branch in a Tic-Tac-Toe game-tree

Figure 2.5 ..7
A winning Tic-Tac-Toe position with three value-equivalent winning moves

Figure 2.6 ..8
A game with a positive value if a position is only the board configuration, and not
the board position and whose turn it is.

Figure 2.7 .. 10
The static evaluator for Othello

Figure 2.8 .. 11
Sub-goal static evaluators for Othello

Figure 2.9 .. 11
The Combining function for Othello’s sub-goal evaluators

Figure 2.10.. 12
MINIMAX run on a small example with two levels of look-ahead.

Figure 3.1 .. 13
The interface for the games toolkit. Here we ask for the game-theoretical value of
the 2×2 square position and find out it is a 1|-1. Next we calculate the value of the
3×2 rectangle and find out it is 2|-1/2. When we ask which is a better position for
the left player, we find that rectangle is better.

Figure 3.2 .. 14
The Smart Game Board Othello module user interface

Figure 3.3 .. 16
The Gamemaster toolkit with the Othello rulebook. The available moves are
shown in black, and the pieces animate when being captured. The triangle at the
right indicates whose turn it is to play.

- vi -

Figure 4.1 .. 18
A simple example of the game “1,2,...,4” played by two players, Player 1 and 2. The
bold arrows are the options played by perfect opponents. Dashed bold arrows are
losing moves and solid bold arrows are winning moves. Highlighted boxes are the
winning positions.

Figure 6.1 .. 31
The relation of number of positions and the number of slots for different
categories. The Rearranger values were calculated assuming the board was a third
filled with X pieces, a third with O pieces and a third empty. The Partisan
Removal values were calculated assuming the number of X and O pieces each
varied between zero and a third of the board.

Figure 6.2 .. 32
The interconnection of move-selection interactions.

Figure 6.3 .. 34
Examples of the categories of popular games.

Figure 7.1 .. 36
A graphical example of single-piece placement.

Figure 7.2 .. 36
Highlighting a valid slot when the cursor is over it. Note that the cursor is in an
invalid region in the image on the left, so the display does not highlight anything.
In the image on the right, the cursor is over a valid slot, which is highlighted.

Figure 7.3 .. 37
A graphical example of the interface for single-piece movement.

Figure 7.4 .. 37
Outline vs. Opaque drags of the cursor

Figure 7.5 .. 38
Computer-Aided Movement octant and quadrant with the safety region in the
center which the cursor has to be outside of to register as a move.

Figure 7.6 .. 39
A graphical example of multiple-piece removal using the single toggle-click
approach.

Figure 7.7 .. 40
A graphical example of multiple-piece selection using the click-drag selection
rectangle.

Figure 7.8 .. 40
A graphical example of multiple-piece selection using the click-drag selection line.

Figure 7.9 .. 42

- vii -

A graphical example of multiple-piece movement using the group-select-and-move
method with the click-drag selection rectangle method to initially select the set of
pieces to move.

Figure 7.10.. 42
A graphical example of multiple-piece movement using the individual-select-and-
move method with an OK box as confirmation of the completion of the move.

Figure 7.11.. 43
The Nine Men’s Morris board and the 24 slots.

Figure 7.12.. 45
The two ways of highlighting available slots for single-piece removal/placement.

Figure 7.13.. 45
Arrows to indicate single-piece movement.

Figure 7.14.. 46
Cursor-initiated highlighting to alleviate single-piece movement arrow clutter.

Figure 7.15.. 46
Multiple-piece removal/placement possible moves for 1×[1-5] Tac Tix boards.

Figure 8.1 .. 54
8-way symmetrically equivalent positions for Tic-Tac-Toe

Figure 8.2 .. 54
1, 4, and 8-way symmetrically equivalent Tic-Tac-Toe positions

Figure 8.3 .. 55
32 Component-equivalent 3×3 Tac Tix positions

Figure 8.4 .. 57
The average static evaluator. Vw is the lowest value of a winning position returned
from the static evaluator and Vl is the highest value for a losing position. Since Vw
is less than Vl, these regions overlap on the static evaluator number line, and the
two sets of games are not partitioned at all. The smaller the intersection region,
the better the static evaluator.

Figure 8.5 .. 57
A perfect static evaluator. Vw and Vl are defined as before, but in this ideal case,
Vl < Vw and two sets are partitioned perfectly.

Figure 10.1.. 67
The main GAMESMAN interface control window with the Tic-Tac-Toe module
loaded in. The play buttons are disabled because the user has not solved the game
by clicking on the “Start” button. The “Modify the starting position” button is also
disabled because this module does not yet allow for the starting position (in this
case, the familiar blank board) to be modified.

- viii -

Figure 10.2.. 67
The “Modify the rules for <module-name>“ window. This allows the user to change
the rules of the game. Here we allow the user to choose between the standard and
the misère game.

Figure 10.3.. 68
The User interface balloon help window. When this window is open, whatever
object the user’s cursor is over gets explained in this window. Here the cursor was
over the “Quit” button. This serves the purpose of providing an on-line interface
manual.

Figure 10.4.. 68
The GAMESMAN Tic-Tac-Toe control window. This window tells the user how to
move and win in this game, whose turn it is, its prediction of the outcome of the
game, and allows the user to augment the game board with a visual display of the
available moves, possibly color-coded by value. It also allows the user to restart
this game (the “New Game”) button and abort the game altogether.

Figure 10.5.. 69
The about-the-author window. This window is brought up when the user clicks on
the Krusty-the-clown icon in the lower left of the main GAMESMAN window
shown in figure 10.1. Here we advertise the GAMESMAN World Wide Web home
page where update information (and this document) can be found, list the author’s
name, email and status, show what he looks like, and explain the GAMESMAN
acronym.

Figure 10.6.. 70
The GAMESMAN front-end which can be used to bring up the various X-window
GAMESMAN programs. If more modules are written, this user-interface will
provide a simple and graphical way to run them.

Figure 10.7.. 70
The GAMESMAN Tic-Tac-Toe board window with no moves shown. It is X’s turn
to move. The blank slots are “alive” in the sense that they respond (by inverting to
black) when the cursor is over them. The other, filled slots do not react when the
cursor is over them. This provides valuable feedback to the user, who may be
unfamiliar with the game and how to make a move.

Figure 10.8.. 71
The GAMESMAN Tic-Tac-Toe board window with the available moves shown as
cyan-colored circles. This also helps the first-time user of the system.

Figure 10.9.. 72
The same GAMESMAN Tic-Tac-Toe board window with value moves shown. They
are color-coded as shown in figure 10.10 below. By reading the display we see that
X can win by moving on the left, tie by blocking O in the middle and lose by
moving on the right, allowing O the chance to win. This is the same position from
figure 2.4 we analyzed in section 2.5.

Figure 10.10.. 72

- ix -

The color-coded explanation of value moves. The color choice coincides with that of
a stoplight: green = go = win, yellow = caution = tie, dark red (red could not be
used since it is reserved for right) = stop = lose.

Figure 10.11.. 73
The GAMESMAN Dodgem board. The user clicks on the cyan arrows to make a
move

Figure 10.12.. 74
The same GAMESMAN Dodgem board as in figure 10.11 with value moves turned
on. Here it is clear that the only winning move for Left (the blue pieces) is to move
the upper piece to the right.

Figure 10.13.. 75
The GAMESMAN Tac Tix “Edit the initial position” window. Here the user clicks
on the slots to toggle them on and off. We have chosen this position because it
contains a single piece, and a horizontal or vertical line of pieces of lengths 2, 3
and 4. This is so we can illustrate the available moves as shown in figures 10.14
and 10.15.

Figure 10.14.. 76
The GAMESMAN Tac Tix board with the available moves shown. Any cyan line
removes the pieces it is overlapping. The cyan circles remove only the single pieces
under them. The color of the pieces (magenta = red + blue) was chosen because
this is an impartial game so the moves available to left (blue) are the same as
those available to right (red). Moving in this game consists of clicking on the cyan
move. Placing the cursor over a move highlights the pieces about to be removed so
the user has visual feedback what the pieces the move will affect.

Figure 10.15.. 77
The same GAMESMAN Tac Tix board as figure 10.14 with value moves turned on.
It is clear from this position that the person whose turn it is has only two winning
moves: removing two vertical pieces in the center or bottom. For readers familiar
with Nim sums, these are winning moves because they reduce the board to (* + * +
*2 + *2 = 0) and (* + *2 + *3 = 0) respectively.

Figure 10.16.. 78
The GAMESMAN “1,2,...10” boards with (no, valid, value) moves.

Figure B.1 ... 88
The games 1,2,...,4 and 1,2,...,10 played with a counter.

Figure B.2 ... 89
The beginning 4×4 board for Tac Tix.

Figure B.3 ... 89
The initial boards for Tic-Tac-Toe and Noughts & Crosses. In Tic-Tac-Toe the
pieces are usually and and they are placed on the intersection of the lattice
points, but in Noughts & Crosses the pieces are X and O and are placed in the
interior regions.

- x -

Figure B.4 ... 90
The initial Dodgem board with white () against black ()

Figure B.5 ... 90
The initial Checkers board with red () against black ()

Figure B.6 ... 91
A Connect-Four game in which white () has beaten black ()

Figure B.7 ... 92
The initial board for a game of Dots and Boxes played on a 4 × 4 lattice board.
Games are usually played on n × n boards (where n is even) so that the number of
available boxes will be odd and a tie will be impossible.

Figure B.8 ... 92
The initial board for Fox and Geese.

Figure B.9 ... 93
The initial board for Wolves-and-Sheep / Asalto (known as Fox and Geese in most
references, however).

Figure B.10 ... 94
A 19 × 19 Gomuku board

Figure B.11 ... 94
The conditions for a black capture of red’s pieces in Pente / Ninuki Renju

Figure B.12 ... 95
Hex: a win for black

Figure B.13 ... 95
The initial empty board for Hoppers. Pieces are placed in the centers of the corner
camp squares.

Figure B.14 ... 96
The initial board for the L game

Figure B.15 ... 96
The beginning position for the game of Mancala.

Figure B.16 ... 97
A nim game with piles of size 3, 4 and 5.

Figure B.17 ... 98
The starting board for Nine Men’s Morris.

Figure B.18 ... 98
The starting board for Othello / Reversi.

Figure B.19 ... 99
The starting board for Roundabouts.

- xi -

- xii -

1. Introduction

Traditionally, programmers write and tune finite, two-person, perfect-
information game-playing programs for one specific game. Their primary goal is
entertainment, and little thought is given to analysis, rule modification, or the
teaching of game theory concepts. They also do not provide perfect opponents as
they typically utilize heuristic look-ahead to chart their strategy.

Game toolkits do exist, but the interactions are either purely text-based or
they do not provide a library of user-interaction routines to make the creation of a
graphical user interface (GUI) front-end to the games easy. Also, none provide the
ability to modify the rules of the game on the fly or analyze a game in progress with
hints from an oracle (i.e., perfect player).

In this report we describe the design and implementation of GAMESMAN, a
game generator that takes as input the description of a game and produces game-
playing applications, to be used for enjoyment, analysis, or education. Once invoked,
the application solves the game1 by exhaustively searching every possible board
configuration, or position, and storing the values (win, lose, or tie) for every position
in a table. After the game is solved, the table is used by the computer to simulate a
“perfect” opponent who will never lose if given an initial winning position. It is the
application’s ability to play games perfectly that is so valuable to game analysts, as
they may test any strategic theories against it.

From an implementation point of view, programmers develop modules, which
are subroutines and data structures written in the C and Tcl/Tk programming
language. These modules describe a game’s rules and winning conditions, and
compile them with the main solving and interface code of GAMESMAN to produce
two applications: one X-based for X displays and one text-based for text-only
systems. The modules describe the game’s rules, user interactions, and graphic
display.

In this paper, we first clarify the lexicon for readers unfamiliar with game
theory, mention related work and discuss the constraints placed on the types of
games that modules can implement. We then highlight the mechanics of writing a
module, as well as provide the module specifications in Appendix A. The next
chapter on categorizing games contains a study of the user interactions most board
games involve, as well as giving some measure to gauge how large the position table
might be. We analyze user-interface issues that arise when creating a library of
user-interaction routines for common board games. We follow with a self-evaluation
in which we describe the benefits of GAMESMAN, its limitations due to the
exhaustive-search method, and suggest some optimizations. Finally, we discuss
future enhancements, describe the GAMESMAN interface, and summarize the
work.

1 This is only possible for small games, as we will discuss later.

 - 1 -

2. Definition of Terms

This chapter serves to clarify some of the terms related to game theory that
are used extensively throughout this paper. When appropriate, examples from the
games Tic-Tac-Toe and “1,2,...,4”2 will be used to illustrate the terms. Readers are
encouraged to refer to Appendix B for detailed descriptions of any games described
in the text with which they find themselves unfamiliar.

2.1 Position

This is the same as a board configuration – it is a snapshot of the board with
pieces on it and a turn designation3. It maps to a vertex in the game-tree. Every
game has positions, regardless of whether or not it is played on a physical board.
Abstract games as well as 1,2,3,...N-dimensional games all have positions, and all
can be implemented in GAMESMAN. Figure 2.1 shows a sample position for Tic-
Tac-Toe. Note that the outcome of the game would be quite different if it were O’s
turn. For the abstract game “1,2,...4”, any of the integers 1 through 4 are positions.

X's turn

Figure 2.1: A Tic-Tac-Toe position

2.2 Slot

A slot is a coordinate on a board, which in the 2-D case would be an (X, Y)
pair. A board, in the literal sense, is a 2-D collection of slots, but it also used to
describe the collection of slots for N-dimensional games as well. Keep in mind that
abstract games such as “1,2,...4” do not have clear definitions of slots. In the game
Tic-Tac-Toe, there are 9 slots, numbered in figure 2.2.

1 2 3
4 5 6
7 8 9

Figure 2.2: The 9 Tic-Tac-Toe slots

2.3 Piece

Pieces rest on slots and are rearranged, added and removed by players on
their turn. A single slot can only have one piece on it at one time. In Checkers, a
‘king’, which to the novice player is two pieces, is computationally a completely

2 A variation on the popular game, Nim, described in Appendix B.
3 E.g. the board looks like this and it is X’s turn.

 - 2 -

different piece with distinct moving abilities. Similar to slots, pieces do not have an
equivalent in abstract games. Figure 2.3 shows the two pieces for Tic-Tac-Toe.

Figure 2.3: The two Tic-Tac-Toe pieces

2.4 Move

“Move only if there is a clear advantage to be gained”

– Sun Tzu
The Art of War [Tzu83, p. 83]

Moves map to edges in the game-tree. It is the action a player performs on
his/her turn to change the board's configuration. In Tic-Tac-Toe, a move is the
action of placing an X or O on an empty slot. In Chess, a move consists of relocating4

a piece from its original slot to another slot and perhaps capturing an opponent’s
piece. Most games’ rules dictate that the available moves are a function of position;
in the game “1,2,...,4”, however, there are exactly two possible moves for every
position, 1 and 2.

Most games dictate that the players alternate turns every other move. This is
not a restriction of our system; players may make multiple moves if that is part of
the rules. Combinatorial game theory as described in [Berlekamp82] does not place
a restriction on whether players alternate turns even if the rules state that they do,
since individual games are considered part of a larger sum of many games.
However, throughout this paper we make the assumption that our games are
independent entities, played alone.

2.5 Value, or Outcome

Much research [Conway76], [Berlekamp82] has been done to come up with a
proper number-theory foundation for game values. Games are either positive,
negative, zero or fuzzy, depending on whether the Left, Right, first or second player
can always win. Some examples for values of games are *5, {2 | 1 || -1}, ±6 or ↑*,
which are not easily interpreted without prior training in combinatorial game
theory. It was our hope that GAMESMAN have appeal and be understood by to the
novice game theorist.

To that end, we have simplified the meaning of the value of a game. Every
position has a value, which we will consider to be one of { Win, Lose or Tie } for the
player whose turn it is to move. This can also be thought as the outcome of the game
if played by perfect opponents. Combinatorial game theorists may recognize these

4 Sometimes the verb “relocate” is used interchangeably with the verb “move” in this context.
This can lead to possible confusion due to the overuse of the word “move”. In this paper, move will
strictly refer to the action a user applies to a position on his/her turn, and the verb “relocate” will
refer to the reassignment of a piece to another slot.

 - 3 -

as fuzzy, zero or tieing5. This means that if the game was played between perfect
opponents, the player whose turn it was would always either win, lose or tie. Any
move that leads to a winning position for the other player is a losing move, and
consequently any move that leads to a losing position for the other player is a
winning move. A tie move is one that leads to a tie position for the other player. If
the first, or initial position in a game has value V, then the game is said to have
value V. For example, if Tic-Tac-Toe began with position A in figure 2.4 rather than
a blank board, then Tic-Tac-Toe would be a winning game, since A is a winning
position.

Figure 2.4 contains a very detailed Tic-Tac-Toe game tree to help us
understand these terms. Note that under every position is a string that represents
the position letter, whose turn it is and what the value of that position is. For
example, the root position contains “A - X - Win”, which means that it is position A,
X’s turn and a win for X. The arrows have a number and a letter beside them that
represent which slot was chosen and what the value of that move was. For example,
the upper-left-most arrow contains “7 - Win”, which means that player X chose slot
7, and it was a winning move for player X.

A - X - Win

1 2 3
4 5 6
7 8 9

C - O - Tie D - O - WinB - O - Lose

F - X - TieE - X - Win G - X - Tie H - X - Lose

J - O - TieI - O - Lose

7 - Win 8 - Tie 9 - Lose

9 - Lose 7 - Tie 7 - Tie 8 - Win

7 - Win 8 - Tie

X's Turn

O's Turn

X's Turn

O's Turn

Slot Reference

9 - Tie

Figure 2.4: A branch in a Tic-Tac-Toe game-tree

5 Although pure game theorists usually do not consider games which can end in ties, since a
tie does not have a meaningful game value.

 - 4 -

2.5.1. Win

“For nothing can seem foul to those that win.”

– Shakespeare
Henry IV, Part I, Act V, Scene 1

In some references this is referred to as an “N” position, which means the
Next player can win. This value is recursively defined by the following rule: A
winning position is one in which there exists a losing child. This is best illustrated
by position A above, which has a winning (D), losing (B), and tieing (C) child, and is
considered a winning position due to the existence of B. The move that leads to the
losing child, slot 7, is the winning move. The following positions are all winning in
the above game-tree: A, D and E.

Just because a player has a winning position doesn’t necessarily mean the
player will win, simply that the player can win. In position A above, a winning
position, if X chooses the lone losing move to slot 9, X can lose. Sometimes a win is
inevitable, since all the children are losing positions, and in these rare cases a
winning position indicates that the player will win. Position E has one lone slot for
X to choose which forces the win. X has no option but to choose slot 7 and win the
game. It is important to remember that a winning position in general means that
the potential for winning against a perfect opponent exists.

2.5.2. Lose

“Dr. Pulaski: To feel the thrill of victory, there has to be the possibility of failure. Where's the victory
in winning a battle you can't possibly lose?

Data: Are you suggesting there's some value in losing?
Dr. Pulaski: Yes, yes, that's the great teacher. We humans learn more often from a failure or a

mistake than from an easy success.”

– Dr. Pulaski and Lieutenant Commander Data
in Star Trek : The Next Generation’s Elementary, My Dear Data

Similar to a winning position, a losing position is often called “P”, which
means the Previous player can win. Said another way, it means that the player
whose turn it is will lose against a perfect opponent. This value is also recursively
defined, but by a different rule: A losing position is one in which there does NOT
exist a losing or tieing child. This means that the children of losing positions are
either all winning or it is primitive (and has no children). The losing positions from
figure 2.4 (B, I and N) fulfill the latter case and are all primitive losing positions.
We describe primitive positions below in section 2.5.4.

If a player has a losing position and is playing against a perfect opponent, the
player has already lost the game and might as well concede6. This is because a

6 This brings up the interesting point that no game need ever be played between two perfect
opponents since the outcome is decided before the game begins. The first player will achieve the
outcome which is exactly the same as the value of the game. I.e. if the game is a win game, the first
player will always win and the second will always lose.

 - 5 -

perfect opponent will continue to make winning moves until either it has reached a
primitive winning position or the other player is left with a primitive losing
position. However, if the opponent is imperfect, then a non-primitive losing position
does not guarantee a loss, just the potential for losing.

2.5.3. Tie

“I wish it could have been a tie”

– Amanda Bonner (Katherine Hepburn),
after defeating her husband in Adam’s Rib.

A tie position is recursively defined as: A tying position is one in which there
does not exist a losing child, but there does exist a tie child. Whether or not there are
any winning children is irrelevant, as it does not affect the value. Position C in
figure 2.4 above is a perfect example of a tying position, since it has no losing child
but does have a tie child, which is position F. A player with a tie position can either
tie7 or lose against a perfect opponent. Against an imperfect opponent, it is possible
to either tie, lose or win. Positions C, F, G and J are tie positions, yet only J is a
primitive tie. As mentioned before, a tie move is one which leads to a tie position. If
there are no tying terminating criteria (see below), there can never be a primitive
tie position, and by induction, no non-primitive tie positions.

2.5.4. Primitive positions and terminating criteria

Primitive positions are the leaves in the game tree and are the positions that
fulfill the terminating criteria for the game. These criteria are what prevent the
game from being infinite, as they force the game to end at some point. In Tic-Tac-
Toe, there are two terminating criteria. The first is that the other player has just
achieved three-in-a-row of his/her piece, which means that the position is a losing
primitive position. The second is that a position has all 9 slots filled, in which case it
is a tying primitive position. Note that for most games the order that these are
checked is crucial, as position I fulfills both, and would be incorrectly labeled a tying
position if the rules were reversed. Positions that are not primitive are either called
non-primitive or recursively-defined, due to the definitions highlighted above. In
figure 2.4, the primitive positions are B, I, J and H.

2.5.5. Value-equivalent moves.

Value-equivalent moves are moves that lead to children of equal value. All
five moves available to X (slots 2, 4, 5, 7 and 8 in figure 2.5) are winning since all
five lead to losing positions. These moves are value-equivalent and any may be
chosen without risk to the outcome. This is true even if though 2 leads to an
immediate primitive losing position (for O) and 4, 5, 7 and 8 lead to non-primitive
losing positions (for O).

7 Since this is the best that can be hoped for, we suggest that players consider it a “win” to
tie a perfect opponent given a tie game, such as TicTacToe.

 - 6 -

X's turn

2
4 5
7 8

Figure 2.5: A winning Tic-Tac-Toe position with three value-equivalent winning moves

Is it true that moves 2, 4, 5, 7 and 8 are really equivalent? Clearly slot 2
forces an immediate win, 4, 5 and 7 force a two-way win, and slot 8 is only barely a
win if followed by slot 7. Therefore we could order these value-equivalent winning
moves by some criteria, such as the minimum moves until a forced win. By
definition a non-primitive losing position contains nothing but winning children,
and consequently nothing but value-equivalent losing moves. It is often useful to
order these by maximum-time-until-a-forced-win so that an imperfect opponent will
have the most opportunities to choose the wrong move. This is referred to as the
Enough Rope Principle in [Berlekamp82]. Another strategy is to force an opponent
into positions with the most available moves, in hopes that the myriad options will
somehow increase the chances for a bad move. Thus, even though for perfect
opponents one value-equivalent is no better than another, it may be useful to sort
value-equivalent moves by various criteria against imperfect opponents.

2.6 Perfect opponents

“He wins his battles by making no mistakes. Making no mistakes is what establishes the certainty of
victory, for it means conquering an enemy that is already defeated.”

– Sun Tzu
The Art of War [Tzu83, p. 20]

Perfect opponents are opponents who always choose winning moves given
winning positions and always choose tying moves given tying positions. It doesn’t
matter what perfect opponents choose given losing positions, since if they are
primitive there are no moves available and the game is over and if they are non-
primitive all moves are value-equivalent losing ones. It is tempting to define perfect
opponents as computers and imperfect opponents as humans, but that would
incorrectly label bad programs and very knowledgeable humans.

A simple qualification for a perfect opponent is the ability to recognize a
losing and tying position perfectly. The following algorithm describes how to play
perfectly given the aforementioned ability. For every turn, if the position is losing,
any move may be chosen. If it is tying, all children (moves) are scanned, the losing
ones are thrown out, and any remaining moves are chosen, since they will all be
tying. If the position is winning, all children are scanned, the losing and tying
positions are thrown out, and any remaining move is chosen. GAMESMAN creates a
perfect opponent by exhaustively searching games that are small enough to be
solved, then builds a table of possible moves. Then when it is the computer’s turn, it
follows the algorithm listed above when choosing its move, since it knows the value
of every single possible position.

2.7 Partisan vs. Impartial games

 - 7 -

The definition is best stated from [Berlekamp82, p. 17]: “Any game s.t.
exactly the same moves are available to either player are called impartial. Games in
which the two players may have different options we shall call partizan[sic]”.
Othello, Chess, Checkers, Go, Dodgem and Tic-Tac-Toe8 are all partial games, and
Tac Tix, Nim and “1,2,...,4” are impartial.

Since a position is both a board configuration and a player whose turn it is to
play on that board, both types of games can be considered winning, losing or tying.
In these cases a winning position for the first player is by definition a losing position
for the second player, and vice versa. However, if we consider a position to include
simply the board configuration and not the players turn, partisan games differ from
impartial games in that they create two more categories: those that are positive or
negative. A positive game means that it wouldn’t matter whether X (Left) went first
or last, since it would have a winning position either way. If our definition of a
position is both a board and whose turn it is, then figure 2.6 with X going first is a
winning position and with O going first is a losing position, as expected. However, if
our definition of a position is only the board configuration, then figure 2.6 is positive
– it doesn’t matter who goes first, X will have a winning position on its turn either
way.

Figure 2.6: A game with a positive value if a position is only the board configuration, and not the
board position and whose turn it is.

2.8 The misère game vs. the standard game

Every game has terminating criteria that constitute the rules of the game.
These are called, for convenience, the standard rules, and must include winning or
losing conditions. Every single game has a misère game, which is the game with the
words “losing” and “winning” swapped into the terminating criteria for the standard
game. For example, whereas the standard game in Tic-Tac-Toe is be explained as:
“A player wins if he/she achieves three-in-a-row first”, the misère game is explained
as: “A player loses if he/she achieves three-in-a-row first”. Many people confuse the
swapping of “win” and “lose” with the logical negation of the rules, but they can be
very different. If the rule is: “First person to get one piece to the other side wins”,
the misère game is NOT “First person not to get all pieces to the other side wins”,
it’s “First person to get one piece to the other side loses”. Tying terminating criteria
do not change in the misère game.

Interestingly enough, sometimes perfect strategies for the standard game and
the misère game differ by only the primitive positions and perhaps a few others. For
these games, unless the position in question is very near a leaf in the game-tree, it
is played the same as it was in the standard game. Some games have completely

8 Even though both X and O would have the same slots available to them, they would not
have the same moves available to them because the same slot could be a win for one player and a tie
for another.

 - 8 -

different strategies for the two games. GAMESMAN provides the ability to play
either the standard or misère game, and can be used as an analysis tool to
determine the differences and similarities of the strategies.

2.9 Solving games

“...you've got them all memorized. The first time anyone opens their mouth, you've got it solved, so
there's really no mystery. No mystery, no game. No game, no fun.”

– Lieutenant Commander Geordi La Forge
in Star Trek The Next Generation’s Elementary, my Dear Data

If a game is small enough so that its positions may be stored in memory and
its game tree searched in a reasonable amount of time9, then it can be solved. This
process involves performing an exhaustive search of the game-tree and recording
every position’s value in a table. This table is then used to guide the computer
opponent to play the game perfectly. This process is done once at the beginning of
the game, and the table is used for many instances of the same game.

There are shortcomings to solving a game. First, there is a (sometimes
substantial) delay as the system does the brute-force search. Second, if the user
wants to toggle a parameter of the game, e.g., toggling the rules from the standard
to the misère, then the current table must be thrown out and the search must begin
again. These tables can be stored and recalled10, but if disk space is small this may
not be possible. The advantage of solving games rather than writing static
evaluators is that the computer comes up with its own optimal strategy without any
programmer intervention. This can then be used to guide the creation of a static
evaluator that is used by a MINIMAX routine to determine the computer’s moves.
Unfortunately, most games cannot be solved, and thus the user must either settle
for reasonably small games or for imperfect heuristic-driven opponents, as discussed
below.

2.10 Static-evaluation

“Cogley: How many games of chess did you win from the computer, Mr. Spock?
Spock: Five in all.

Cogley: May that be considered unusual?
Spock: Affirmative.

Cogley: Why?
Spock: I personally programmed the computer for chess months ago. I gave the machine an

understanding of the game equal to my own. The computer cannot make an error. And, assuming
that I do not either, the best that could normally be hoped for would be stalemate after stalemate,

and yet I beat the machine 5 times.”

– Lieutenant Commander Spock and Defense Attorney Samuel L. Cogley
in Star Trek’s Court Martial

9 See the “Limitations” section for more details about time and space constraints.
10 See the “Optimizations” section for further information.

 - 9 -

A static evaluator is a black box that takes as input a position and outputs a
“goodness” value. This number between 0 and 1 describes the degree to which one
player has an advantage. In another sense, it describes the probability that one
player will win given that position. As an example, let us consider the static
evaluator for Othello, as shown in figure 2.7 below. Static evaluators return a 1.0 for
a position that describes a win for the first, or maximizing player and a 0.0 for a
position that describes a win for the second, or minimizing player11. This only holds
true for Partisan games, or games in which different players have different moves
available to them. Impartial games differ in that 1 is a winning position and 0 is a
losing position always, regardless of whose turn it is. The higher the number, the
better it is to have that position on your turn.

Black's Turn

Static EvaluatorStatic Evaluator

Black's Turn

.56.712

Figure 2.7: The static evaluator for Othello

The final goodness value is often a function of other goodness values, based
on smaller sub-goals that more explicitly describe one player’s advantage. In order
to combine the goodness values, a rather complicated equation based on non-linear
weighting functions may have to be created. For Othello, we might construct several
evaluators that would only concentrate on certain parts of the game. One evaluator
might return the amount of control a player has of crucial board slots, which in
Othello’s case would be the corners. A second evaluator might return the piece count
advantage. Another may simply tally the number of possible areas to attack and
compare it to the other player. A final evaluator would grade the control of the inner
4×4 square. An example of these sub-goal evaluators for a sample Othello position is
shown in figure 2.8 below.

11 The concept of maximizing and minimizing is explained in the next section.

 - 10 -

Black's Turn

Control_Corners()

Piece_Count()

Attack_Points()

Inner_Square()

.52

.82

.67

.34

Control_Corners()

Piece_Count()

Attack_Points()

Inner_Square()

Black's Turn

.52

.82

.67

.34

Figure 2.8: Sub-goal static evaluators for Othello

Once the sub-goal evaluators have returned their values, it is the job of the
combining function to weigh these values and combine them in some way to arrive
at a final goodness value. The sample combining function for Othello is displayed in
figure 2.9. How these goodness values guide a computer’s choice of moves is
described in the MINIMAX section below.

.52

.82

.67

.34

Combining FunctionCombining Function
.712.712

.52

.82

.67

.34

Figure 2.9: The Combining function for Othello’s sub-goal evaluators

If a game can be solved, the programmer may wish to attempt to write a
static evaluator for it. If the static evaluator ever reaches a point where it can
partition the positions into two discrete sets, where every winning position has a
goodness value above some value V and every losing position has a goodness value
below some value V, then the evaluator is perfect. At this stage the programmer can
eliminate time-consuming exhaustive search and solely use the perfect static
evaluator with a MINIMAX search depth of 1. However, even for small games such
as Tic-Tac-Toe, it is often impossible to write a perfect evaluator.

2.11 MINIMAX Heuristic

The heuristic we are utilizing is the MINIMAX [Winston84, pp. 116-120]
strategy of look-ahead. Every position, or vertex in our game-tree is assigned a
goodness value between 0 and 1, and one player tries to maximize that value while
the other player tries to minimize it. Figure 2.10 illustrates the MINIMAX routine
graphically on a small example with two levels of look-ahead. The final arrow shows

 - 11 -

the optimal move chosen by the maximizing player. The number at the root shows
the goodness value of the root position for the maximizing player.

.2 .7 .1 .8 .2 .7 .1 .8

.2 .1

.2 .7 .1 .8

.2
Maximizing level

Minimizing level

Maximizing level

Figure 2.10: MINIMAX run on a small example with two levels of look-ahead.

One obvious parameter that can be changed is the number of plys for the
look-ahead. One ply is one move by one player. Figure 2.10 shows This may be set to
any integer number greater than or equal to 1, but the larger the look-ahead the
slower the system takes to choose a move. The trade-off of increasing the look-ahead
depth is that the computer makes better moves, as it is able to look farther into the
future and scan the possible positions. In GAMESMAN, the user may change the
look-ahead amount at any time.

 - 12 -

3. Prior Work

This chapter serves to discuss other existing game toolkits, highlights the
benefits and shortcomings of each and then concludes with the niche that
GAMESMAN fills.

3.1 David Wolfe’s games toolkit

David Wolfe created the games toolkit [Wolfe94] primarily to compute
combinatorial game-theoretical values. As of this writing, there are four games
written for it: Konane12, Wyt Queens, Domineering, and Toads & Frogs13, all
described in [Berlekamp82]14. The program has a text-only interface, although a
graphical front end was written for Domineering [Garcia94]. An example of the text-
based interface for Domineering is shown below in figure 3.1:

unix% games
Type 'help' and 'help help'
> domineering
Enter domineering position followed by extra <cr>
oo
oo

1|-1
> square = $
square = 1|-1
> domineering
Enter domineering position followed by extra <cr>
ooo
ooo

2|-1/2
> rectangle = $
rectangle = 2|-1/2
> rectangle ? square
>

Figure 3.1: The interface for the games toolkit. Here we ask for the game-theoretical value of the 2×2
square position and find out it is a 1|-1. Next we calculate the value of the 3×2 rectangle and find out

it is 2|-1/2. When we ask which is a better position for the left player, we find that rectangle is
better.

The program has the ability to calculate game-theoretic values of the games
in the toolkit, and is an invaluable tool when working with them. Its ability to
determine the relation between two values (e.g., what the relation between ↑* and *
is) is tremendously useful when doing analysis. It can also print out the result in
LaTeX form, which is essential when typesetting a paper.

What the toolkit lacks is a user interface. The games it does handle are input
via a text-only interface, which has the advantage that it is easily portable to other

12 Programmed by Michael Ernst (mernst@theory.lcs.mit.edu).
13 Programmed by Jeff Erickson (jeffe@cs.berkeley.edu).
14 Konane is described in glorious, full-color detail in [Bell83, pp. 132-133].

 - 13 -

systems, but the disadvantage that its lack of a graphical interface makes the entry
of positions tedious. The toolkit was also never meant to play the games it solved,
only to report their values. There is no facility to allow users to play against the
computer or other users, and it cannot handle games which end in ties. Also, even
though the toolkit can report that a game is a winning game for the first player, it
cannot highlight the best move to be chosen.

3.2 Anders Kierulf’s Smart Game Board

Anders Kierulf created the Smart Game Board [Kierulf90], a workbench for
game-playing programs that runs on the Macintosh™ personal computer. Its
purpose was to support via the computer many activities traditionally done on a
board and paper. It has an extensive game-tree editor, allowing the user to walk up
and down the game tree and investigate different children and their sub-trees. The
user can annotate the game tree as they wish, adding textual comments and graphic
markers to explain certain points. An example of the graphical interface is shown in
figure 3.2 below.

Figure 3.2 : The Smart Game Board Othello module user interface

Several very popular games have been written for it: Go, Othello, Chess, and
Nine Men’s Morris. The Smart Game Board supports playing algorithms, and
several very strong computer opponents have been written for Go and Othello using
the toolkit. A particular game need not have a computer opponent written for it; it

 - 14 -

functions as a referee for 2-player games if there is no computer opponent. It allows
players who wish to play a 2-player game to call another player over a modem and
play a remote game.

Probably the most important feature of the Smart Game Board is its ability
to record games, make annotations and store them in an archive. It is used in some
Go and Othello tournaments to record games and review openings, and used in Go
lectures to take notes. It can store all the games of a tournament in a single archive,
which can then be transferred to an associate or stored in a publicly readable site.

Overall, it is an excellent toolkit, and comes the closest to providing the
functionality that GAMESMAN achieves. However, there are a few missing pieces.
It is written in a Modula-2 environment, and writing a game for the toolkit is not a
task to be taken lightly. It is also only available on the Macintosh™ computer, and
there are no plans to port it to another system. It also does not provide the ability to
change the rules of the game at run-time, nor does it have any exhaustive-search
capabilities to solve small games. In addition, since a tremendous amount of
software engineering has gone into writing the game-playing programs for Go,
Othello, etc., they are not free, so the casual player will probably not invest the
money to buy the toolkit.

3.3 Rhys Hollow’s Gamemaster

Rhys Hollow created the Gamemaster system [Hollow91] to play games over
the network between Macintosh™ computers. There are many “rulebooks” written
for it: Tic-Tac-Toe, Chess, and Connect-4 among others. It has an excellent
graphical user interface, and allows users connected across a network to load and
play several different games at once with the same remote opponent. It does not
support a computer opponent or any computer intelligence, but it does act as a
referee, constraining moves and signaling when the game is over. It also supports
animation of the pieces or slots. An example of the user interface with the Othello
module is shown in figure 3.3.

The games are written in Pascal, and the programmer simply needs to define
the graphical user interaction, the rules and the ending conditions. These rulebooks
are not themselves applications – they are documents that are opened by the main
Gamemaster application. This means they are smaller than if they were a stand-
alone application, and can be easily stored on Macintosh™ archive sites.

The lack of a computer opponent is the biggest shortcoming of this system. It
doesn’t have a game-solving engine, so even if a game was small enough to
exhaustively search, it wouldn’t be able to solve it. It also doesn’t have any software
hooks to allow a user to change the rules of a particular game.

 - 15 -

Figure 3.3: The Gamemaster toolkit with the Othello rulebook. The available moves are shown in
black, and the pieces animate when being captured. The triangle at the right indicates whose turn it

is to play.

3.4 What does GAMESMAN provide?

These three game systems were written for three different groups of users.
The games toolkit was written for combinatorial game theoreticians, the Smart
Game Board for players very serious about playing one particular large game, and
Gamemaster for users on a Macintosh network who wish to play 2-player games
against each other. GAMESMAN is for players who want to have the ability to play
small, 2-player games in a graphical way like Gamemaster, but with a little of the
game-theoretic concepts of games, and a little of the game-tree exploration of the
Smart Game Board. GAMESMAN is the only toolkit that allows users to modify the
rules of a game, play against a perfect opponent, receive a hint for the best move by
a perfect oracle, easily prototype a new game, and quantify the value of various
playing strategies against a virtual oracle that knows the complete game tree.

 - 16 -

4. What games can be solved by GAMESMAN?

GAMESMAN can solve any small game that is finite, 2-person, and has
perfect, or complete information. These terms are discussed in greater detail below.

4.1 Finite

A finite game is one that must terminate after a finite number of turns by
each player. However, games in which it is possible to repeat a position are
allowable by GAMESMAN, as long as the repeat position is treated in one of three
ways. It could be disallowed completely, as the game Go does, considered a tie, or be
only reachable a finite number of times. Any of these strategies may be
implemented within a module to confront repeat positions.

A simple example of a game that GAMESMAN cannot handle is one in which
the goal is to raise a counter to the highest number, and a player may add -1, 0, or 1
to the counter on his turn, which begins at 0. A winning strategy would be to say 1
eternally, which if played by perfect opponents would result in a clearly infinite
game, each player taking turns counting the next highest integer. If, on the other
hand, an upper limit was set on the total, then the game would be finite, and
therefore able to be solved by GAMESMAN.

4.2 2-Person

Three (or more) player combinatorial games differ in their behavior from two-
person games, and have been studied by [Propp94], among others. Part of the
inherent problem with multi-player games is that a player with a losing position
can sometimes arbitrarily decide who wins. In a two-player game, any move from a
losing position resulted in a win by the other player. However, there is not such a
clear outcome with multi-player games.

A simple example of this is the game “1,2,...,4”, where players take turns
saying either the number 1 or 2 on their turn. This number gets added to the total,
which starts at zero. The first player to bring the total to 4 or above first wins. It is
clear that this game played by two can be perfectly solved. A perfect strategy is to
play first and say 1, then say the opposite of whatever the opponent says on the
next turn. However, if played by three perfect opponents, the second or third player
will always win, depending on what the first player says. The first player has
complete control of the outcome, but cannot force a win for himself. Thus, it is
arbitrary which number is chosen by the first player, and thus who the winner of
the game will be.

 - 17 -

Player 1
chooses 1

to win

0

2

11

2

2

3

4

1

2

1

2

Player 2
chooses 1

or 2

Player 1
chooses
the other

31

2

4

Player 2
has lost

1

2

5

Figure 4.1: A simple example of the game “1,2,...,4” played by two players, Player 1 and 2. The bold
arrows are the options played by perfect opponents. Dashed bold arrows are losing moves and solid

bold arrows are winning moves. Highlighted boxes are the winning positions.

Player 1
cannot
win, so

chooses 1
or 2

0

2

11

2

2

3

4

1

2

1

2

If at 2,
Player 2

chooses 2
to win,

else
doesn't

care

If the
game is
not over,
Player 3
chooses

the other
to win

31

2

4

Player 3
just won,

and Player
1 and 2
have lost

1

2

5

Figure 4.2: An example of why a 3-person game’s winner can be arbitrary. This is the same game
“1,2,...,4” played by three people, players 1, 2 and 3. The bold arrows are the options played by

perfect opponents. Dashed bold arrows are losing moves and solid bold arrows are winning moves.
Highlighted boxes are the winning positions. Player 1 has complete control over who wins with his

first move.

Only 2-player games are supported by GAMESMAN, in part due to the
difficulty described above of characterizing the value of games with multiple
players, and in part due to the added complexity that would have been involved.

4.3 Perfect Information

Perfect information games restrict two typical components: hidden knowledge
and chance. Without hidden knowledge, both players equally know as much as there

 - 18 -

is to know about the game at all times. Without chance, there can be no probability
or luck involved in the game or in the outcome when played between perfect
opponents. This is the most important component of the categories of games
GAMESMAN implements. By eliminating chance, we can guarantee that one player
can always win (or at least tie), regardless of luck of the opponent. This obviously
excludes any games involving dice or shuffled cards.

 - 19 -

5. What are the mechanics of generating a
game?

In this chapter, we discuss what a module designer, or programmer, would
need to do to generate a game for GAMESMAN. The programmer first writes a
module, edits the Makefile entry and then compiles it, which builds stand-alone
applications that can solve and play the game.

A module is C and Tcl/Tk code that is compiled along with the main solver
and interface code to create the custom game applications. The C code describes the
rules of the game (what a move is, what winning conditions are, what the internal
representation of a position and move are, etc.) and the Tcl code uses the Tk toolkit
to describe how a user will graphically interact with the game.

The easiest way to write a module is to look at the previous modules that
have been written and see which one is closest, in terms of number of positions and
user interactions, to the game in question. If a close match has been found, it may
be more efficient to modify a copy of the other game’s already completed module
than to write one from scratch.

Once the module has been completely written, the programmer adds an entry
to the makefile so that when the module is compiled it can be automatically
included with the others in the game database. This is not essential, as it is feasible
to compile the module by hand, but the make facility provides a reasonably simple
and accepted method of controlling the compilation.

After the makefile entry has been added, all that is needed to build the
applications is to compile the module. This is normally executed with a call to make
<module-name>, which compiles the sources and creates two applications: one
small and text-based and the other relatively large and X-window-based. These two
applications have roughly the same menus and control structure, just different
front-ends. The reason two programs are generated is that the X application will not
serve for users whose only interaction is through text-based display. Of course, if
there are any errors in the module, the programmer iterates the previous steps
until it is bug-free. Discussed below are the three tasks required when writing a
module.

5.1 Set global variables

These globals inform the main code (and the interface) about the specifics of
the game and the options the particular module supports. Currently, these are: the
name of the game, help strings, and whether the game supports symmetries,
graphics, a debugger menu, a game-specific menu, and tie games.

5.2 Choose a Representation for Positions and Moves

 - 20 -

A crucial component of the module design is deciding upon the
representations for the positions and moves of the game. These representations
should provide a compact way of uniquely describing every possible position or move
that could be encountered.

As mentioned previously, a position is a board, piece configuration and
encoding of whose turn it is. Most of the games discussed in this paper are two
dimensional board games, but the strategies discussed here can be extrapolated and
used for almost any game. If the game is to be solved, there are subtle issues that
must be taken into account that are discussed in the next section. Otherwise, the
representation of the position just needs to provide a unique mapping from physical
board position to the internal board representation.

A move is an edge in the game-tree, and is the action taken that transforms
one position to another. The simplest representation of moves is also integers, as we
discovered with positions. For a single-piece, a move usually consists of an integer
or pair of integers which map to the representations of the slots on the board. With
multiple-piece movements available, the move may be a linked list or an array of
integers representing the pieces to move and their destinations. Whatever the case,
it is not crucial that the representations be compact, as they are not stored
anywhere. They are only used internally to specify which position to consider next,
so virtually any representation with which the module developer feels comfortable is
acceptable.

5.3 Additional issues if the game is to be solved

If the programmer wishes the game to be solved, there needs to be a way to
store positions that have already been seen. The main solver routine uses an
exhaustive search method to walk down the game tree in which the vertices are
positions and edges are moves. An optimization strategy known as memoization is
employed to prevent searching previously computed paths multiple times. This
involves storing whether a position has been visited or not into a table. We also
need to store the value of every position in order to compute the final value of the
overall game. This leads to three constraints for our representation: it must be
compact, unique for every position, and there must exist some constant-time
mapping function (which the game programmer has to write) to access the table of
values. We discuss these below and give an example.

5.3.1. Compact

As we will see in the “Limitations” section, the number of games that
GAMESMAN can solve is limited by the exponential nature of game trees. Thus it is
critical that whatever representation we choose to utilize for the positions be as
compact as possible. For example, instead of using a 3×3 matrix of characters (9
bytes) for Tic-Tac-Toe, we could save space if we used a short integer (2 bytes) and
found an appropriate mapping function to map to integers.

5.3.2. Unique

 - 21 -

We need to store a value for every position, so the representation we use must
be unique. If it were not, symmetrically distinct positions might map to the same
representation, which would be incorrect if the positions had different values. A
thorough discussion of symmetrically equivalent positions is provided in the “Future
Enhancements” chapter. There does not need to be a valid position for every
representation, just the other way around. The mapping must be one-to-one, but not
necessarily invertible. Said another way, the mapping must be an injection, but
need not be a bijection.

5.3.3. Constant-Time Mapping Function

The mapping function is a constant-time function that maps a position to its
representation. It is used by the solver routine when checking if a position has been
visited when storing and retrieving a value. The optimal, most compact map is one-
to-one and produces a representation for every position, i.e., it is bijective. This way,
the valid positions are maximally “packed” into the array, so that every
representation could be a valid position.

5.3.4. Example: Tic-Tac-Toe

Let us use the example of the game Tic-Tac-Toe (described in Appendix B) to
illustrate some of these concepts. In the game, a position consists of a 3×3 board
with three different pieces that could be on any single slot at a time: X, O and the
blank. The rules of the game state that the players take turns adding their piece to
the board. No piece is ever removed. These constraints imply that the following
equation is maintained: X − O ≤ 1. This means that neither X nor O has more
than one more piece than the other on the board at any time. The representation we
choose is the positive integers, and our mapping function will map the board
positions to the integers. If we think of a position as a ternary number in which the
Blank is a 0, the O a 1 and the X is a 2, we come up with a mapping and
representation that satisfies our three requirements: compact, unique, and
constant-time. Let us analyze this further.

First, our representation is relatively compact, as each position only need
occupy 2 bytes, since the number of possible positions (39 = 19683) is smaller than
the positions that can be represented with 2 bytes (216=65536).

Second, there exists a unique integer for every position. It is not the case that
there is a unique, valid Tic-Tac-Toe position for every integer (consider 39-1, or all
X’s), so this mapping is not optimal. We will find that it becomes increasingly
important to find optimal mappings as the size of our games (and therefore the
number of positions) grows. For this small game, however, our sub-optimal map will
suffice. Third, our mapping function can be computed in constant time – the
conversion of an abstract board position to a ternary number takes only a handful of
multiplications and additions. Thus, our choice of representation and mapping
function is sufficient.

5.4 Write the Subroutines

 - 22 -

Once the representations and mapping functions have been decided, the next
task is to write the subroutines in C and Tcl/Tk that use and manipulate them.
These subroutines are summarized in Appendix A, and range from printing a
position to generating all the possible moves to determining whether a position has
a primitive value (e.g., three pieces in a row would be a primitive lose for Tic-Tac-
Toe). At least ninety percent of the effort that goes into writing a module is spent
creating these subroutines.

 - 23 -

6. Categorizing Games

Categories exist to assist programmers in determining which, if any, existing
modules are similar to their module. If a similar module already exists, it is often
easier to modify a copy of that module than it is to create a new one. Thus by
utilizing categorization, a programmer can reduce the time and effort it takes to
create a module. In this section we discuss categories based on two components of
games: the maximum number of positions a game will have and the types of user
interactions to expect. These categories are in no way expected to be empirical, as it
would be beyond the scope of this project to summarize every finite, two-person
perfect-information game ever invented. However, it is hoped that these categories
cover a broad spectrum.

6.1 Categorizing games by total number of positions

These categories are based on equations determining the maximum number
of positions that can ever be generated by a game, given a fixed starting position
and terminating criteria. This number is helpful when optimizing the mapping
function, the importance of which was described in the previous chapter. For
example, we concluded that a simplistic ternary number mapping function for Tic-
Tac-Toe was sub-optimal. It did not make use of the fact that the number of X’s and
the number of O’s differ by at most one for any position, since the players alternate
placing a single piece and there is no capture. It is important to note that an
optimal mapping function for one game in a category would be optimal for all games
in that category. Discussed below are the five major categories we have considered,
as well as one for hybrids – games that combine aspects of several categories.

The upper bound on the number of moves gives us a rough estimate of how
long a game might take. For example, we can be guaranteed that a Tic-Tac-Toe
game played on a 3×3 board will end in 9 moves, but a game of Go with slightly
modified rules15 played on a 19×19 board may last 3(19*19), or 1.74 × 10172 moves!

For each of the following categories, we calculate the upper-bound of the
number of moves and positions as a function of slots and provide examples for each
one. Throughout the calculations, it is assumed that there are only two types of
pieces, which we will call X and O. We have not taken multiple pieces into
consideration, but the equations would follow the same general form, albeit with a
bit more complexity.

6.1.1. Dart-Board without Capture

The games in this category are the simplest of all; a move consists of placing
a single piece onto the board. Rearranging or removing existing pieces is not
allowed, which is why the category is labeled “dart-board” – the moves are similar to

15 Our modified rule would allow every position, and hence every ternary number from 0 to
3(19*19) to be reached in the same game.

 - 24 -

throwing darts across the room at a board. The board itself could be the pattern on
the dart-board, and the darts thrown one at a time by alternating players would be
likened to the pieces. The starting board here is assumed to be empty16, and play
continues as each player places a piece until all slots on the board are occupied. The
game may end before the board is filled, but when calculating the upper bound we
assume that it is prolonged as long as possible.

6.1.1.1 Number of moves upper bound

The upper bound on the number of moves for this category is therefore easy
to compute. It occurs when all of the pieces have filled the slots on the board, one at
a time. Thus, the equation17 is simply:

 Moves(slots) = slots 6.1

6.1.1.2 Number of positions upper bound

The one important property maintained by all games in this category is
illustrated by equation 6.2 below, which states that the number of X’s minus the
number of O’s is always -1, 0 or 1.

 X − O ≤ 1 6.2

From equation 6.1 we know that at move i there are i pieces on the board.
Those pieces are either evenly distributed among X and O when i is even and favor
X by one when i is odd. These i pieces can be located in any of the slots regions of
the board. Thus, the total number of positions is: for every move, the product of the
number of ways to put i pieces in slots regions with the number of ways to rearrange
those i pieces among X and Os.

Equation 6.3 does not have the characteristic multiplying factor of two to
remember whose turn it is since we can assume the position determines this. For
example, if we declare that X always goes first, we can then conclude that if there is
an even number of pieces, then it must be X’s turn, otherwise it’s O’s turn.

Positions(slots) = even(i, slots)
i=0
i+=2

i≤slots

∑ = odd(i, slots)
i= 1
i+= 2

i≤ slots

∑ 6.3

Where odd(i, slots) and even(i, slots) are defined as:

16 However, any starting position with any number of X’s and O’s is a valid starting position.
As long as play continues with each player alternating placing one piece and not removing any, the
calculations here still hold.

17 Throughout this section, we will use C function prototype notation to describe these
functions. Therefore this should read: the procedure “Moves” takes the variable slots as an argument
and returns slots. So the upper-bound on the number of moves that a Dartboard game of 9 slots (like
TicTacToe) will have is 9 moves.

 - 25 -

odd (i, slots) =
slots

i

i

i − 1
2

 6.4

even(i, slots) =
slots

i

i

i
2

 6.5

and

n

k

 is defined as always as:

n

k

 =

n!

k!(n − k)!
6.6

The even() and odd() functions can be combined into one function even_or_odd() by
use of the floor(x) = x routine:

even_or_odd (i, slots) =
slots

i

i

i
2

 6.7

which simplifies 6.3 to:

Positions(slots) = even_or_odd (i, slots)
i= 0

i≤slots

∑ =
slots

i

i

i
2

i=0

i≤ slots

∑ 6.8

6.1.1.3 Examples

Examples of games of this type are Tic-Tac-Toe, Gomuku (five-in-a-row), and
Hex, to name a few. In these games, since capture is absent, winning usually
consists of a position-based goal being reached (such as n pieces in a row or
connecting a chain across the board) so the maximum number of moves is seldom
reached.

6.1.2. Dart-Board with Capture

Games in this category are similar to the previous category with the simple
exception that on any move, a player adds a piece in the standard dart board
manner, but at the same time may capture some number of opponent’s pieces and
either remove them from the board or convert them to his own. The beginning board
position usually either begins empty or with a small number of “pilot” pieces.

6.1.2.1 Number of moves upper bound

 - 26 -

These games do not benefit from the previous category’s constraint that
limited the difference of the number of X’s and the number of O’s on the board at
any one time. On a single move, one piece is added, but many pieces may be added
or flipped18. For this reason we are not able to come up with a tight upper bound on
the number of moves. The only hard upper-limit we can use is that no slot may ever
contain anything other than one of three pieces, an X, O or ‘blank’ piece. Thus the
longest game possible would be one that covered every single position. This gives us
the equation for the maximum number of moves as:

 Moves(slots) = Positions(slots) 6.9

6.1.2.2 Number of positions upper bound

In a similar light, it is difficult to determine a hard upper bound for the
number of positions. Some games whose moves involve multiple piece removals may
indeed push this upper bound, so this mapping may be near-optimal for them. For
others, it may be necessary to consider particulars of the game, and modify the
mapping function to achieve optimal results. For the general case, the equation is:

 Positions(slots) = 2*3 slots 6.10

To see how this was derived, consider that every ternary number using
|slots| digits may be generated by the mapping function. For every position, it
usually matters whose turn it is, so the number of positions doubles to compensate
for storing two copies of every physical board position, one if it is X’s turn next and
one if it’s O’s turn next.

6.1.2.3 Examples

Many popular games fall into this category, such as Go, Othello (also known
as Reversi), and Pente. Winning for these games usually involves capturing the
most pieces by the end of the game, however the “end of the game” is be defined.
Sometimes, as in the case of Pente, a win can either be due to a position-based
advantage (5 in a row) or by surpassing a certain number of captures (5 pairs in this
case).

6.1.3. Rearranger

As the name suggests, the objective in these games is to be the first to switch
places with the opponent, or manipulate the pieces into some winning configuration.
There are no pieces removed or added at any time to the game, which gives us good,
crisp upper bounds on the number of moves and positions.

6.1.3.1 Number of moves upper bound

18 That is, converted to be of the opponent’s piece type. This term derives from the game
Othello, which had playing pieces which were white on one side and black on the other. Pieces were
captured by being flipped over.

 - 27 -

The number of moves is purely a function of the number of positions for these
games. We have no constraints available to us to reduce this number, as we have
before with the dart-board category. Thus, as for dart-board with capture, the
maximum number of moves is the same as the number of positions, since in the
worst case every position could be reached in the game.

 Moves(Xpieces, Opieces, slots) = Positions(Xpieces, Opieces, slots) 6.11

In this equation, Xpieces is the number of pieces X has and Opieces is the
number of pieces O has.

6.1.3.2 Number of positions upper bound

The upper bound on positions is the product of the number of ways to place
the total pieces into the available slots and the number of ways to rearrange X’s
pieces with the total number of pieces. The result is multiplied by two to
compensate for the need to store whose turn is next for any given position.

Positions(Xpieces ,Opieces , slots) = 2
slots

Xpieces + Opieces

Xpieces + Opieces

Xpieces

 6.12

6.1.3.3 Examples

Some popular examples of rearranger games are Fox and Geese, Chinese
Checkers, the 'L' Game by Edward de Bono, Fox and Geese, and Hoppers. The goal
for most of these games is to either be the first player to swap places with the
opponent or to reach a certain configuration before the opponent. In most of these
games, the number of moves in a game is far, far less that the upper-bound of the
number of moves.

6.1.4. Impartial Removal

This is the only category we have considered so far that is impartial.
Impartial games satisfy the condition that “from any position exactly the same
moves are available to either player” [Berlekamp82]. This helps us in several ways.
First, we do not have to store twice the number of positions to remember whose turn
it is. Second, it simplifies our moves and positions calculations, as typically pieces
are only of one type. The games almost always begin with a full or empty board.
Impartial Addition games are exactly the same as Impartial removal games, but the
players add pieces to the board instead of removing pieces from the board. All
calculations for the number of moves and positions hold for these games as well.

6.1.4.1 Number of moves upper bound

A move consists of only removing (or only adding, they are equivalent) some
subset of the board’s pieces. In terms of the number of total moves, the worst case is
when each player removes only one piece at a time. As a result, the upper bound on
the moves is simply:

 - 28 -

 Moves(slots) = slots 6.13

6.1.4.2 Number of positions upper bound

Since there can be any combination of pieces on the board, but all of the
pieces are the same, this corresponds to the board representing any binary number
with the number of digits equal to the number of slots, since the board begins full.
Thus, the total positions are exactly as described in the following equation, which
also makes for an optimal mapping function.

 Positions(slots) = 2slots 6.14

6.1.4.3 Examples

Examples of impartial removal games are Dots and Boxes, Nim, Tac Tix,
Kayles, and other variations. The particular aspects of some of these games allow us
to give a lower upper-bound for the number of positions, so it may be useful to fine-
tune the mapping function for the specific game for this category.

6.1.5. Partisan Removal

For games of this type, the board begins with a full set of pieces. Each person
on his turn moves a piece or pieces around and may remove opponent's pieces. The
object is to either capture a special piece, reduce the opponent to a certain number
of pieces, or capture the most pieces before a certain stage in the game is reached.
In no game are pieces added to the board. This is the crucial difference between this
and the seemingly identical “dart-board with capture” category.

6.1.5.1 Number of moves upper bound

We do not have any natural constraint on the number of pieces nor on the
moves. It is feasible that a game could continue and cycle through all of the possible
positions, and for this reason, as we have seen before, the number of moves is

 Moves(Xmin, Xmax,Omin,Omax, slots) = Positions(Xmin, Xmax,Omin, Omax, slots)
6.15

In this equation, <X | O><min | max> is the minimum or maximum number
of pieces that either X or O can have at any point during the game. The variable
slots is, as always, the number of slots on the board.

6.1.5.2 Number of positions upper bound

The equation for this upper-bound is based on a result we derived earlier for
the rearranger category. If we freeze the number of pieces on the board, then the
number of positions is exactly the same as the number of positions for the
Rearranger category from equation 6.12. We will rename that result as the function
RearrangerPositions(). Thus, for our total positions, we simply sum over the number

 - 29 -

of pieces X and O could ever have on the board at one time and then call our other
position-calculating subroutine.

Positions(Xmin, Xmax,Omin,Omax, slots) = RearrangerPositions(i, j , slots)

j =O min

O max

∑
i = X min

X max

∑
6.16

6.1.5.3 Examples

Many popular games, such as Roundabouts and Mancala are members of this
category. Unfortunately, two very popular games, Chess and Checkers (a.k.a.
Draughts) are members of this category but cannot be described by these equations
since they involve more than one type of piece. This category probably contains
more games than any other, as it is the most general. As before, the number of
moves in an actual game is far, far less than the upper bound.

6.1.6. Hybrids

Games that do not fit into the previous 5 categories get clumped into this one,
the “none-of-the-above” category. These games fall into two partitions: those that
are in some way a union of the above categories, with different “phases”, and those
that are completely different from the games mentioned here. They may be different
because they are not played on a board, or because the pieces and moves are totally
unique. Nine Men’s Morris, as described in Appendix B, is an excellent example of a
hybrid.

If the hybrid game has several distinct phases, each of which can be broken
down into one of the above categories (as is the case with Nine Men’s Morris), then
its number of moves and positions is easily calculated. The number of moves and
positions is the sum of the individual categories’ number of moves and positions,
since the game can be thought of as two distinct games played one after another.

6.1.7. Comparisons

To gain an understanding of the relative number of positions for these
different categories as well as an understanding of where certain games fit on the
chart, we’ve graphed the number of positions compared to the number of slots in
Figure 6.1 below:

 - 30 -

Number of slots

N
u

m
b

e
r
 o

f
p

o
si

ti
o

n
s

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Dartboard

Dartboard
w/capture

Rearranger

Impartial
Removal

Partisan
Removal

Figure 6.1: The relation of number of positions and the number of slots for different categories. The
Rearranger values were calculated assuming the board was a third filled with X pieces, a third with
O pieces and a third empty. The Partisan Removal values were calculated assuming the number of X

and O pieces each varied between zero and a third of the board.

It is clear from this figure that the exponential nature of the games prevents
us from solving games with large slot sizes. The Impartial Removal category, as
expected, trailed the other values significantly since it only had one type of piece.
Note that the number of slots was only 20 (less than a 5×5 board) when the number
of positions for most of the categories was already past a billion. We will discuss this
issue in the Limitations chapter.

6.2 Categorizing games by type of interactions

Here we categorize games on the basis of how a user interacts with the board
during a move. This is useful so a game programmer can quickly see if there are
games of the similar category implemented already, and use the same interface
routines. Once again, these categories only address 2-D board games (the board may
be N-dimensional, however), but GAMESMAN has the flexibility to use game-
specific interface routines to handle games of a completely different type.

These categories describe a class of interactions that would be packaged as a
separate interactions library. These libraries would be accessed by the module when

 - 31 -

programmers wanted textual or graphical user input. This would eliminate the need
for them to write code that was common to many other games. The overall effect is
that a module is easier to write due to the reusable library of interface code
provided within GAMESMAN.

Described below are the four categories we have chosen. They are: (single-
and multiple-piece) (removal/placement and movement) interactions. The following
illustration demonstrates how these interactions build on each other.

Single-Piece
Placement/
Removal

Multiple-Piece
Placement/

Removal

Single-Piece
Movement

Multiple-piece
Movement

Figure 6.2: The interconnection of move-selection interactions.

For most games, a user’s turn consists of a single user’s move that would be
one of these four categories. Multiple turns occur either when one player is unable
to move, has lost a turn, or when certain circumstances arise, such as in Checkers
and Mancala. This does not constitute a separate category, since the individual
interactions are still the same, albeit executed multiple times. GAMESMAN has
facilities to handle multiple turns for any game. It does this by asking the game’s
rules “Whose turn is it now, at this position?”. Every game in GAMESMAN must
write the subroutine WhoseTurn that answers this question.

6.2.1. Single-piece removal/placement

These interactions are the simplest of all, and are implemented by all dart-
board games, as well as partisan removal games in which the piece to remove is
chosen by the user. They consist of a user choosing a single slot on the board to
either add (placement) or subtract (removal) a piece.

6.2.2. Single-piece movement

Single-piece movements are the most popular interactions with board games,
and are required for rearranger and partisan removal games. In this category, the
user chooses a single source, or FROM slot, and a single destination, or TO slot,
which completely describes the move. Notice that these could be built from a pair of
single-piece removals or placements, but we may not want to use same interactions
discussed above for the move as there may be a more intuitive approach. This is
discussed in detail in the following chapter. The FROM might include the special
constant OFF_THE_BOARD, if the game allows a user to remove his own pieces on
his move.

6.2.3. Multiple-piece removal/placement

 - 32 -

This category builds on the previous two, and is implemented by impartial
removal games. It may involve selecting pieces one at time as in the
removal/placement case, or a drag metaphor from single-piece movements. In this
interaction, there are several pieces to be selected, and the user may use several
methods available to choose the subset of pieces desired. If a game allows both
multiple and single-piece removal or placement, it falls into this category. That is,
single-piece selections are simply multiple-piece sets of cardinality one.

6.2.4. Multiple-piece movement

Multiple-piece movements are not very common, and are the most
complicated of interactions. In this interaction, the user wishes to choose a set of
pieces and move them to another spot, perhaps separating them and manipulating
them as well. The interaction library draws from subroutines used to select multiple
pieces, as discussed previously and also to select destinations, as in the single-piece
movement case. As before, the destinations may include OFF_THE_BOARD.

6.2.5. Hybrids

This category is reserved for all interactions that were either not described
above or which changed over the course of a game. Games in this hybrids category
force a module programmer to incorporate game-specific interactions, since they do
not fit into the interactions that already exist. Two examples of unique-interaction
games are the L-game by Edward de Bono and Nine Men’s Morris, both of which are
described in Appendix B. The L-game requires the user to rearrange an L-shaped
piece to another location, with twisting and flipping, then optionally rearrange an
existing square. Nine Men’s Morris contains two phases, a dart-board-with-removal
phase and a partisan removal phase.

6.3 Examples of the categories of popular games

This is a summary of the categories (number of positions and interactions) of
popular games, many of which were discussed in the previous sections. This is
meant to give the reader a better understanding of what the categories mean, by
seeing several examples.

Game Number of Position
category

Interactions category Comments

Tic-Tac-Toe
Gomuku

Hex
Connect 4

Dart-board Single-piece placement No pieces removed
from the board.
Tic-Tac-Toe is

implemented as a
module in

GAMESMAN.
Othello / Reversi Dart-board with

removal
Single-piece placement Captured pieces are

not removed, just
automatically

converted.
Go

Pente
Dart-board with

removal
Single-piece placement Captured pieces

automatically removed.

 - 33 -

Dodgem
Chinese Checkers

Fox and Geese
Hoppers

Rearranger Single-piece movement No pieces removed
from the board.

Dodgem’s “goal” areas
can be considered

another slot. Dodgem is
implemented as a

module in
GAMESMAN.

The L Game Rearranger Hybrid Two instances of
single-piece movement,
one for L piece and one

for square.
1,2,...,10 Rearranger Single-piece movement

or
Single-piece placement

Since there is only one
counter, the interaction

could also be Single-
piece placement (this is
how it is implemented

in GAMESMAN)
Tac Tix

Nim
Impartial removal Multiple-piece removal

or
Single-piece removal

Both of these games
can be implemented as
multiple-piece removal
or single-piece removal
(which is how Tac Tix

is implemented in
GAMESMAN)

Dots and Boxes Impartial removal Single-piece placement Counters need to be
added to keep track of
the boxes captured by

each player.
Roundabouts Partisan removal Single-piece movement Captured pieces

automatically removed.
Mancala (Awari) Partisan removal Single-piece movement Multiple turns

sometimes allowed.
Chess

Checkers / Draughts
Partisan removal Single-piece movement

(except in Chess when
user chooses pawn
promotion piece)

For these games, there
are more than one type
of piece per player, so

not true partisan
removal. Captured

pieces automatically
removed.

Nine Men’s Morris Hybrid
(Dart-board with

removal, then Partisan
removal, then
Rearranger)

Hybrid
(Single-piece

placement, then
partisan removal)

Captured pieces are
chosen by user in both

phases.

Figure 6.3: Examples of the categories of popular games.

 - 34 -

7. User Interface Issues

In this section we discuss issues and decisions made during the design of
GAMESMAN’s user interface and supporting libraries. We also describe issues a
game programmer should understand when writing a game library: how to allow
the user to interactively choose a move and how to display all possible moves.

7.1 Customization: giving users the options

We stress the importance of allowing the user to make all of the choices as to
which interaction methods and displays are to be used. Whenever we discuss
several options in the following section, attempts have been made to indicate which
we thought were the most intuitive choices, and these would be set to the default
values.

The user should be able to customize the interface via a preferences box, and
the settings should be remembered for future gaming sessions. The settings should
also be unique for different games. That is, even if two games are in the same
category, their particulars may lead the user to choose different modes of
interaction and display. In the case of human vs. human games where GAMESMAN
only served as referee and helper, each player would be able to uniquely select
his/her preferences.

The user-customization is not limited to the interface. Steps have been taken
to parametrize every component of GAMESMAN and its modules. This benefits the
user, as he is placed in a position of complete control. Any idiosyncrasy of the game
that the user finds bothersome may be disabled or switched for another. For
example, the user may not have any interest in the value of a game. In this case, all
references to the value may be suppressed.

The disadvantage of parametrization is that the code becomes permeated by
the conditional statements corresponding to the user’s configuration settings. This
is part of the cost associated with writing any good interface, and usually does not
generate a significant increase in the length or complexity of the code.

7.2 Interactively choosing a move

Selecting a move is common to all games, regardless of type. It is crucial that
the method for move selection be intuitive, because that is what the user will be
doing most of the time. However, the various interaction categories warrant the
need for separate (but hopefully relatively consistent) interaction models.

For every case below, if the selection was invalid, it is not chosen and a
message indicating either why the selection was incorrect or simply what options
can be selected is printed. It is important that the user be informed in some
intelligent manner, as there is nothing more frustrating to a user than a beep
indicating an invalid section with no indication what was being done wrong. Ideally

 - 35 -

the computer would literally tell the user in English (or whatever language was
chosen) what was wrong with a move.

One idea common to the Macintosh™ user interface is not to allow the user to
choose invalid moves at all! For example, the system could disable (visually shown
as graying-out) slots which cannot be chosen as determined by the constraints of the
game. Clicking on a disabled slot would have the same effect as choosing a disabled
menu – nothing would happen, save perhaps a message mentioning that the slot
could not be selected.

As selecting moves is an integral component of every game, it warrants extra
attention. Below are several interaction categories and corresponding suggestions
for choosing a move.

7.2.1. Single-piece removal/placement

This is the easiest interaction a user would need to have with a game; a
single click suffices to choose the single desired slot. In piece removal mode, the slot
would contain the piece to be removed, and in placement mode, the slot would be
empty. Whichever mode is being used, the interaction remains the same. If the user
clicks on a slot that is invalid, nothing happens, except for an optional helpful
message telling the use to click on an empty slot (or full slot if the game is single-
piece removal). Figure 7.1 illustrates the way a user would correctly interact with a
game of this type.

Initial
position

User moves to
specified slot...

clicks... and
releases

The resulting
position

Figure 7.1: A graphical example of single-piece placement.

To help guide a user to valid slots, we propose to highlight valid slots when
the cursor is placed over it. Figure 7.2 shows this technique.

Figure 7.2: Highlighting a valid slot when the cursor is over it. Note that the cursor is in an invalid
region in the image on the left, so the display does not highlight anything. In the image on the right,

the cursor is over a valid slot, which is highlighted.

7.2.2. Single-piece movement

 - 36 -

In this interaction category, the move consists of a pair of slots: a FROM, or
source slot, and a TO, or destination slot. The user clicks once on the FROM slot,
which “picks-up” the piece in question. Then, with the mouse button held down, the
user drags the piece over to its destination, the TO slot, and releases the mouse
button. The piece plops down in the TO slot19 and the move is immediately
confirmed. This follows quite closely with what a user does in a physical board
game, so it seems perfectly intuitive. Therefore, this option should be the default
whenever possible when implementing games involving single-piece movements.

Initial
position

User moves to
specified slot...

clicks and
holds while
dragging
mouse...

to desired
destination...

and
releases

The
resulting
position

Figure 7.3: A graphical example of the interface for single-piece movement.

7.2.2.1 Outline vs. Opaque drags

The user should be given a choice, on any drag-style movements, whether to
drag the outlines of the pieces or the opaque pieces themselves. In the real world,
game pieces are opaque, therefore opaque drags are preferred. However, outline
drags are the standard employed by the Macintosh™ finder, well-renowned as
having excellent user-interface standards. Outline drags are also are useful when
the machine on which GAMESMAN is running does not have a fast-enough
graphics engine.

The original position
after the user has

selected the piece by
clicking the mouse

Opaque drag.
The piece moves along with

the cursor as long as the
cursor is still held down.

Outline drag.
The outline of the piece moves
along with the cursor and the
original piece is highlighted.

Figure 7.4: Outline vs. Opaque drags of the cursor

7.2.2.2 Computer-assisted movements

19 When a piece is being dragging to its destination, the cursor may be anywhere in the
FROM slot (as opposed to being over the PIECE in that slot if the piece is to be captured) when the
mouse button is released and the selection will be accepted.

 - 37 -

An option which many users may appreciate is computer-assisted
movements. When selected, pre-defined constraints on a piece’s possible TO slots
allow the computer to ‘guess’ the destination of a selected piece. Consider a game in
which pieces may only move to adjacent empty slots. Once the user clicked the
mouse, the system would place the piece in the slot determined by the octant into
which the vector defined by the current cursor position and original click position
fell. This would mean that the cursor need only move one pixel in order to
determine a new slot, which is a bit faster way of specifying a move. It is very
important to also highlight the destination slot as described earlier to inform the
user what the system thinks the TO slot is.

The downfall of this method is that there is no clear undo for the user.
Without computer-assisted movement, if the user didn’t like the move in question,
they could always move the cursor back to the original slot, release, and the move
would be canceled. However, with computer-assisted movement, the cursor would
have to return to the original, exact pixel to cancel the move. This problem can be
allayed with the addition of a circular “safety-region” that, when the cursor
returned to, would effectively cancel the move. This safety region would be centered
on the position of the initial click. The figures below illustrate the octant definition
for 8-way moves and the quadrant definition for 4-way moves with the safety region
in the center.

N

NEN W

EW

S

SW SE

N

EW

S

Figure 7.5: Computer-Aided Movement octant and quadrant with the safety region in the center
which the cursor has to be outside of to register as a move.

7.2.3. Multiple-piece removal/placement

In this case, several slots are selected at once. As with the single-piece case,
the interaction is the same regardless which mode (removal or placement) is chosen.
So, without loss of generality, this discussion will focus on removal mode.

As the selections may be disjoint, the final selection may at times be a
sequence of smaller selections. In this case, it is important to include the ability to
correct a mistake without having to restart the selection process. For example, if the
user has 5 separate clusters selected and accidentally chooses too many while
attempting to select the 6th, he shouldn’t have to re-select all 6 clusters to correct it
– he should be able to somehow remove the unwanted pieces from his selected set.

 - 38 -

To modify a selection that has been chosen, we could use the Macintosh™
Finder operation of shift-clicking to add or subtract pieces to or from our set. The
shift key acts like a boolean NOT for set items – if the new selection was in our set
before the shift-click selection, it isn’t afterwards. If it was not in our set before, it is
afterwards.

7.2.3.1 Single toggle click

The user could click once on each of the pieces to be removed, which would
highlight that piece as ‘pending removal’. The user would then invoke a separate
click (e.g., the middle button on a three-button mouse or an “OK” button on the
screen or the delete key on the keyboard) to confirm the choices (effectively an “I am
done with my choices” button).

The advantages are that if a user is not familiar with click-dragging, this
method seems the most intuitive. It is the same metaphor used when selecting
which toppings are to be put on an ice cream – the “I’ll take this one, this one, this
one, and that’s all” metaphor.

The disadvantages are that if the desired selection is a large M×N rectangle,
M×N + 1 clicks are needed: one for every piece and one to confirm. If M and N are
large, this is a horribly inefficient method of interaction. For small games in which
the number of items to select at a time is small, the toggle-click may be a reasonable
mode of interaction.

clicks and
releases to
select first

piece. (which is
highlighted)

Initial
position

User moves
to specified

slot...

User then clicks
and releases on
the additional

piece(s)...

and hits the
delete key to
remove them.

The
resulting
position

Figure 7.6: A graphical example of multiple-piece removal using the single toggle-click approach.

7.2.3.2 Click-drag selection rectangle

With this option, the user click-drags over the desired pieces, as in the
Macintosh finder. A gray non-filled selection rectangle would be drawn with corners
at the current and previously clicked cursor locations. Everything within or
overlapped by the rectangle would then be selected. This is optimal for contiguous
rectangular selections. If there is little or no drag, the piece under the clicked point
is chosen. This means the system is a super-set of the previous single toggle click
method, and as we will see, also a super-set of the selection line method sans the
ability to make diagonal selections.

There are two times we could highlight the pieces selected: when the user
releases the mouse (i.e., finished selecting) or as soon as the selection rectangle

 - 39 -

drags over the pieces. The second option is preferable because the feedback for a
properly chosen set and an improperly chosen set should be provided while the item
is still being chosen.20

Initial
position

User moves
near specified

slot...

clicks and
holds...

and drags the
selection

rectangle over
the pieces, which
are highlighted.

Releasing the
button removes
the highlighted

pieces

The
resulting
position

Figure 7.7: A graphical example of multiple-piece selection using the click-drag selection rectangle.

For diagonal pieces, we must revert to the slow process of clicking once for
every piece in the diagonal. If we click-dragged from the upper to the lower item on
the diagonal, all of the pieces within the rectangle defined by the diagonal endpoints
would be selected, which is not what we want. The next section provides a method
tuned precisely for linear selections along rows, columns and diagonals.

7.2.3.3 Click-drag selection line

This method is very much the same as the previous, except instead of a
rectangle, a line is drawn with endpoints at the current and clicked cursor locations.
Any pieces the line intersects are selected. As in the previous case, a quick click
with little or no drag selects the piece directly under the cursor, and shift-clicking
selects or un-selects disjoint sets.

This method is useful if the only selections that can be made are contiguous
pieces in a single row, column or diagonal. It is the diagonal selection that separates
this from the selection rectangle method. If the input is contiguous, the interaction
is perfectly intuitive for selecting a line of pieces. However, if the selections are
rectangles, it takes several ‘sweeps’ of lines to complete the selection. In this case,
the previous selection rectangle is better.

Initial
position

User moves
near specified

slot...

clicks
and

holds...

and drags the
selection line over
the pieces, which
are highlighted.

Releasing the
button removes
the highlighted

pieces

The
resulting
position

Figure 7.8: A graphical example of multiple-piece selection using the click-drag selection line.

20 Apple’s Finder version 6.0.x chose the former for file selection, but the new System 7
implements the latter, presumably because they learned their lesson.

 - 40 -

7.2.4. Multiple-piece movement

There are two methods we can use to select and move several pieces at once.
We can either select the pieces as a group and then move the group or make several
single-piece movements and confirm that we’re done. In the following discussion,
any single-piece movement may be considered to be a multiple-piece movement of
just one piece.

7.2.4.1 Group select and move

The selection and movement process can be thought of as separate actions.
The multiple-piece selection process is covered in the previous “Multiple-piece
removal/placement” section. So, in the following discussion we will assume we have
successfully selected the pieces we desire to move, and they are somehow
highlighted. Fortunately, the Macintosh™ Finder and most drawing programs have
already tackled this question and have come up with a relatively good method that
we can borrow. Once a group is selected, a click-drag on any member in the selected
group moves the group as a whole.

One advantage of this option is fewer clicks are needed, which makes for
faster move selection. Another advantage is that the user can divide his move into
two tasks: choosing the pieces to move and then choosing the destination slots for
them. This method is optimal for moves that have the TO slots at exactly the same
orientation and spacing as the FROM slots, because the selected pieces can just be
dragged over to the TO slots and dropped.

The disadvantage of this option is that a move is constrained because the TO
slots must be the same spacing and orientation as the FROM slots. If a move
corresponded of sliding and rotating and perhaps separating a series of linked
pieces, this interaction method would not serve. In that case, the following
“individual select and move” method is best. As an example, consider the move in
chess when a king and a rook exchange places. If both king and rook were selected,
a separate button would be required to perform the switch. However, the move is
easily executed with individual select and move.

 - 41 -

User then
needs to

move them.

User moves to
either selected

piece...

clicks and holds
while dragging

mouse...

to desired
destination...

and
releases

The
resulting
position

Initial
position

User moves
near specified

slot...

clicks and
holds...

and drags the
selection

rectangle over
the pieces, which
are highlighted.

Releasing the
button officially

selects the
highlighted

pieces

Now both
are

highlighted.

Figure 7.9: A graphical example of multiple-piece movement using the group-select-and-move
method with the click-drag selection rectangle method to initially select the set of pieces to move.

7.2.4.2 Individual select and move

This consists of doing the same thing we did for single pieces as described in
the “Single-piece movement” section above, but for every piece in the group we wish
to move, with an additional click to confirm the completion of a move.

We now need to have a method to inform the system that we are done with
our turn, i.e., done moving single pieces. This can be solved easily by either using
one of the mouse buttons as a ‘confirm’ button or having a virtual button labeled
‘done’ or ‘OK’ that we would move our pointer to and click on to signal the
completion of a move. While the latter may be more intuitive, the former is quicker.
Once again, we can leave this option to the user.

Initial
position

User moves
to specified

slot...

clicks and holds
while dragging

mouse...

to desired
destination...

and
releases

The position
halfway through

the move

User moves
to the next

piece,

clicks and holds
while dragging

mouse...

to desired
destination...

and
releases.

User then clicks
the OK button to

confirm.

The
resulting
position

Figure 7.10: A graphical example of multiple-piece movement using the individual-select-and-move
method with an OK box as confirmation of the completion of the move.

 - 42 -

The advantage of this option is that it allows for the most generic
manipulation. It can handle for moves that consist of rotation, removal,
restructuring, flipping, and even separation of a series of selected pieces. The
importance of this flexibility must not be overlooked, for it is reason enough to
choose this option over others even against the myriad problems discussed below.

The disadvantages here are three-fold. The most obvious is the sheer number
of clicks and drags needed to move a large selection to a new location. This cannot
be overcome as it is inherently part of this option to require the user to choose every
piece to be moved, one by one. This is what gives this option its power.

A second problem with this option is that the TO slot for some selected pieces
may be the FROM slot for others. For example, imagine shifting a horizontal line of
pieces one space to the left. Using the individual selection method, there is only one
way to do this: move the left-most piece, then the one next to that, and so on. This
will inevitably lead to confusion for users who choose the wrong order for selection.

The third problem is that the user cannot divide the move into the two
discrete tasks of selection and moving. Since the user must operate in the mode of
choosing a piece, moving it, choosing another, etc., the board at the part-way stage
of a move may be confusing. If the user’s concentration is disturbed midway through
the move, he may forget which pieces were moved so far and which were to be
moved. His move would have been corrupted, and if he accidentally hit the confirm
button, would be incorrectly entered in as his option. Since a group-select-and-move
is clearly divided into two tasks, it does not suffer from the problem of requiring a
user to remember the midway-state of a move.

7.2.5. Hybrid example : Nine Men’s Morris

Hybrids pose a unique problem. Ideally their interactions are a union of the
previous methods of interaction, so it would be possible to use a combination of the
special purpose library routines. However, as mentioned earlier, it is a virtually
impossible task to attempt to categorize the interactions of all games, past, present
and future. Therefore, when a game’s interactions cannot be summarized as the
union of the above categories, it is perfectly feasible for the module to include game-
specific interactions.

Figure 7.11: The Nine Men’s Morris board and the 24 slots.

Nine Men’s Morris is an example of a game that falls into the category of
Hybrids. It has interactions that are a nice combination of the above categories. The

 - 43 -

game’s rules are described in greater detail in Appendix B, but a quick summary of
the interaction is that it can be categorized into three phases as described below.

7.2.5.1 Phase I : Single-piece placement

The first phase involves players taking turns placing a game piece onto an
empty slot. If the new piece becomes part of three pieces in a line (called a ‘mill’),
then the player who placed the piece may remove any opponent’s piece not part of a
mill. The interactions are single-piece placement at this phase, with perhaps an
additional click on an opponent’s piece to remove. For the removal click, all invalid
slots could be grayed-out, leaving only those pieces that are valid. Invalid slots
include any opponent’s piece in a mill, any of the removing players’ pieces, and any
empty slots.

7.2.5.2 Phase II : Single-piece movement

After 9 pieces have been placed by each player, the game switches to the
second phase, where each player moves a piece to an empty adjacent slot with the
hopes of creating a mill. When a mill is formed, as in phase one, that player may
remove any opponent’s piece, even if it is in a mill (n.b., in phase I this is illegal).

The interactions here are single-piece movements, so we can use any of the
interactions discussed above. If a mill if formed, removal is the same as in phase I.
Computer-aided movements would be of a great help here, as the only valid TO slots
are either north, south, east or west of the FROM slot.

7.2.5.3 Phase III : Rearranger

If a player has been reduced to three pieces, that player is given the extra
freedom of being able to move a piece to any free spot on the board on his turn. In
phase two, the TO slot had to be adjacent, whereas now the TO slot need only be
empty. The same interactions used in phase two can be utilized, but computer-aided
movements must be modified, since any empty slot on the board is a valid TO slot.

7.3 Displaying all possible moves

In this section we analyze the graphic that represents which moves are
available to the user on a turn. The desire here is to find a single, static display that
represents every option a user has for a certain position. Several displays are
suggested for each category of game interactions mentioned previously, as well as
options that could be chosen by the user to enhance the display.

7.3.1. Single-piece removals/placements

The possible moves are just the empty slots themselves, so it is quite easy to
create a satisfying display showing the valid slots. In this case we have to find a
method to indicate available slots. In order to highlight a particular slot, we could
show a small colored/patterned dot (or “bullet”) on the center of the slot, of have an
outline of the slot that is available.

 - 44 -

Original position Slot outlines used to indicate
the available moves

Slot bullets used to indicate
the available moves

Figure 7.12: The two ways of highlighting available slots for single-piece removal/placement.

7.3.2. Single-Piece movements

In this category, a move consists of simply a pair of slots, the TO and FROM
slots, which indicates the source and destination of a piece. Discussed below are
three options that take three distinct approaches to the problem.

7.3.2.1 Arrows

In this option we draw arrows from the FROM slots to the TO slots. The only
shortcoming occurs when arrows cross and overlap or are collinear. One solution to
this is to have a 3-D view of the board with the arrows ‘arcing’ over one another, and
the option to rotate the board around to view the separate moves. This would be
hard to do in real time on a system that didn’t have dedicated graphics hardware.
Another solution to the crossing-arrows problem is to have different patterns and/or
colors for different arrows. This may be useful for a few arrows, but the possibility
still exists that the display may be tremendously crowded with colored and
patterned arrows and may just confuse the user. In this case, it is probably best to
cycle the display, showing moves (or arrows) one at a time.

Figure 7.13: Arrows to indicate single-piece movement.

7.3.2.2 Cursor-initiated highlighting

An alternative to indicate single-piece movements is to display moves of a
certain piece when the cursor passed over it. Valid FROM slots would be
highlighted in some way (as suggested in single-piece removal/placements) and
when the cursor passed over a particular FROM slot, the valid TO slots would be
indicated, either by arrows that would branch from that slot terminating in valid
TO slots, or by highlighting the TO slots in some other way. For the arrow case, this

 - 45 -

would solve the problem of them overlapping, but not the problem of collinearity. A
small horizontal offset and color difference given to the arrows terminating along
the same ray would solve that problem.

The cursor over an
invalid slot; no

arrows are shown.

The cursor passes into the
lower-right slot and its

FROM slots are highlighted.

The cursor passes into the
upper-right slot and its

FROM slots are highlighted.

Figure 7.14: Cursor-initiated highlighting to alleviate single-piece movement arrow clutter.

7.3.3. Multiple-piece removal/placement

This category of game involves selecting slots on a board and either removing
pieces from them or adding piece to them. It is very common for games of this type
to have the constraint that pieces or slots, when chosen, be contiguous. A good
example of a game in this category is Tac Tix, as described in Appendix B. In this
game, a move consists of removing contiguous pieces in any row or column. Any
orthogonal21 board shape can be a Tac Tix starting position, but the standard game
is played on a filled N×N board. The simplest method is to represent a move with a
line for every valid subset of pieces that may be removed. This becomes confusing
when there are overlapping lines, so the desire is to find a system that does not
allow the lines to overlap.

The following diagrams below show how the lines could be drawn for 1×N
boards, for values of N between 1 and 5. A small circle indicates that only that piece
is to be removed. For the general N×N case, the 1×N board is simply replicated for
the other N-1 rows and N columns. They should be replicated using an inward
spiral, winding toward the inside so that rotational symmetry is maintained by the
display for all rows and columns.

Figure 7.15: Multiple-piece removal/placement possible moves for 1×[1-5] Tac Tix boards.

21 Although we restrict the game to be orthogonal in this case, the interface suggestions also
hold for 2-D nim games of other topologies, e.g. triangluar or hexagonal.

 - 46 -

Figure 7.16: Multiple-piece removal/placement possible moves for the 4×4 board.

7.3.4. Multiple-piece movements

Multiple-piece movements are, as always, more complicated than single-piece
movements. An attempt to find a static display that shows all the possible moves
may be an impossible task. The image may be indecipherably covered with arrows
or colors, indicating a multitude of possible moves.

Arrows would seem to be the most logical method of move displays. However,
since the board will probably be packed with lines and arrowheads, it is probably
best to make the cyclic display mode (displaying the moves, one by one, as described
in the next section) the default for this category, and switch to using a static display
only when the number of pieces or moves is small.

7.3.5. Improving the possible moves display

The preferences discussed here serve to enhance a static display. The first
allows the user to reduce the moves that need to be shown at once, which eases the
clutter and confusion that plague some display options. The second would be
worthwhile when a single static display is too confusing or clustered.

7.3.5.1 Displaying value-equivalent moves

As previously discussed, moves can have several values (win, lose, tie) as
determined by the value of the position to which they lead. All possible subsets (i.e.,
{ {}, {W}, {L}, {T}, {W,L}, {W,T}, {L,T}, {W,L,T} }) of these moves should be able to be
viewed. There could be three virtual toggle buttons labeled winning, losing and
tieing. Whenever any one of these was toggled on, the moves of that particular set
would be visible in appropriate colors.

The color scheme could be taken from traffic signals. Winning moves could be
green (for “go”, the directive, not the game), tieing moves could be yellow (for
“caution”), and losing moves could be red (for “stop”). However, red is also the color
of the right player’s pieces, so perhaps a dark red would work here. For example, if
a user wanted to see only winning moves, he would toggle the tieing and losing
buttons to the OFF position, winning moves to the ON position, and only winning
moves would appear. A ‘hint’ is the same as a winning move, so viewing all possible

 - 47 -

hints is analogous to viewing all winning moves. In the case of a losing position
(there are no winning moves) a hint would just display any move.

7.3.5.2 Cycle the available moves one at a time

When there are multiple moves, we could display one at a time and cycle to
the next with a mouse-click or after a user-definable time-out. Hopefully, the static
display that displays all the possible moves simultaneously is enough, but for the
cases when the static display is too dense, this should be offered as an option. The
user can choose among the following three display modes: static, cyclic, and a static
one that cycles through all the individual moves and returns back to the static one
once again.

 - 48 -

8. Self-Evaluation

In this chapter we discuss the benefits of GAMESMAN as well as outline the
limitations of solving a game exhaustively. Finally, we provide several
optimizations to combat the limiting factors.

8.1 Benefits

The approach to game generation GAMESMAN takes offers many benefits to
game designers, analyzers and players. Several of these are highlighted below.

8.1.1. Analysis tool

GAMESMAN allows the user to walk the position tree by playing a game
interactively against the computer, and determine the value-equivalent moves and
value for each position. This provides a tool for formulating what aspects of the
game are crucial for winning and what are trivial and can be ignored. For example,
someone playing chess might determine that every position in which he had lost his
queen but his opponent had not was a losing position for him. A conclusion could be
reached that the queen was of significant importance.

8.1.2. Consistent interface

Every application generated by GAMESMAN has exactly the same top-level
interface. The only thing that varies is the specifics of playing the game, such as
how to choose a move, how to display the possible moves, etc., which themselves are
consistent among games in the same interface category, as mentioned in the
“Categorizing games” chapter.

8.1.3. Facility to design, prototype and test a new game

Since writing a module can be accomplished so easily, it is possible to invent
a new game and have a completed application up and running in order to analyze
the properties of the game in about six hours. This is much faster than it would
have taken to create a dedicated application from scratch.

8.1.4. Database to introduce and teach new games

New modules (and therefore applications that play new games) can be
written easily. Hence, large database of unique, exotic games can be created. These
games can be as old as chess or as new as something created last night by an
inventive game designer. In any case, this database allows the non-initiated to be
introduced to many different games, as well as understanding the basics of game
theory. The “value moves” feature allows the user to see what the good (winning)
moves are at any position and can help guide the user to formulate what a good
strategy might be.

8.1.5. Hooks to incorporate game parametrization

 - 49 -

As described earlier, there are software hooks in place that allow a game
designer to parametrize the games. This means that when a user runs the game
application, there are options that can be set to modify the game’s rules. This
‘breathes new life’ into games that perhaps have been completely analyzed, solved
and understood.

For example, Tic-Tac-Toe is considered trivial and is usually mastered by 10-
year-old children. However, the strategy required for the Misère game is not
immediately obvious. Even better, it is completely different from the strategy for the
standard version. The misère game can be considered a completely different game,
whose analysis can provide hours of enjoyment and insight for a Tic-Tac-Toe
master.

It is suggested that module designers parametrize as much as possible of the
game. This allows a user to examine and twiddle particular subtleties of the game.
One particularly interesting component that can be parametrized is dimension. It is
quite possible that a game’s rules would not change drastically if played on a three-
dimensional cube instead of the standard two-dimensional board. Several games
map very nicely to three-dimensions, among these are Othello, Hoppers, and Nim to
name a few.

8.1.6. Perfect opponent

In the process of performing an exhaustive search on the entire game tree,
the computer builds a table containing the values for every position. The computer
provides a ‘perfect’ opponent in the sense that it will never make an improper move,
always referring to the tables when choosing a move, and forcing the opponent to
take the worst possible position.

This ‘perfect opponent’ benefits both the analyzer who wishes to derive
conclusions regarding the strategies of the game and also the enthusiast who wishes
to hone his abilities.

8.1.7. Strategies can be evaluated for small games

Small games that can be solved can also have strategies written for them in
the form of the evaluation functions. The quality of these strategies can be verified
by the perfect opponent that can report what percentage of the positions the
strategy reports a correct answer for (i.e., whether it is a winning and losing
position) and what percentage it gets incorrect. Then the programmer can manually
tune the strategy to improve the accuracy.

8.1.8. Fun

Most of the motivation for this project was a love of playing and analyzing
games. Every component of GAMESMAN is fun – designing a new game,
implementing its module, testing it, playing it to analyze the subtleties and deduce
strategies, and watching someone else enjoy and learn from the application.

 - 50 -

8.2 Limitations

In this section we discuss what inherent constraints limit the size and types
of games GAMESMAN can solve. When solving a game using exhaustive-search, the
computer builds a table of all of the positions ever encountered in a process called
memoization. This not only saves repeat calculations, but is necessary to prevent
infinite loops when move-trees are cyclic. Move-trees (and their corresponding
position tables) are inherently exponential in nature, and thus severely limit the
sizes of games we may consider. The constraints that limit us are space and time,
and are discussed in detail below, with Tac Tix as an example.

8.2.1. Space

In the context of GAMESMAN, space refers to a computer’s memory, or
storage. The aforementioned position table needs to be stored in primary (or silicon)
memory since it is frequently referenced and since secondary (or disk) memory is
prohibitively slow. Therefore, one constraint that limits the size of games is the
computer’s primary memory. Virtual memory is a common method to boost the
amount of primary memory a user appears to have; however, this space increase
comes at the price of a very costly time increase.

8.2.2. Time

Let’s assume memory isn’t the constraining factor. A game’s size may be
limited by the time it takes to build the position table rather than the space it takes
to store it. It seems that a good upper-bound on how long we can run a
GAMESMAN program to solve a game for a dedicated machine may be a couple of
months, and may be limited to a couple of days for non-dedicated machines. Since
the exponential nature at which a game grows can usually be calculated with small
examples, it may be possible to estimate how long it may take a particular game to
be solved.

The first step is to figure out to which category the game belongs22 and
deduce how many positions that game will require, which is a function of board size.
The second step is to determine how fast a small example is solved. These can be
used to extrapolate and determine how long it will take to solve a larger game. The
next section shows this calculation for Tac Tix.

Two games with the same number of positions may take astonishingly
different amounts of time to solve. To investigate this in detail, let us consider the
exhaustive search algorithm. The search algorithm is O(|V| + |E|), where V
represents the vertices, or possible positions, and E represents the edges, or possible
moves. It is clear to see that for two games with the same V can have very different
Es. The minimum E is a Minimum Spanning Tree, in which E is exactly |V| - 1,
and the maximum E is for a fully connected tree, in which E is exactly |V| * (|V| -
1), or approximately |V|2. Thus, a very restrictive game with few moves per

22 This may not be possible for abstract (i.e. non-board) games.

 - 51 -

position (i.e., a sparsely connected tree) can be approximately |V| times faster than
a less restrictive game with an equal number of overall positions.

8.2.3. An Example : Tac Tix on an Alpha workstation

Tac Tix is a classic Impartial Removal game. Although it may be played on
any M×N board, we shall restrict this discussion to N×N boards only. The test case
is a 4×4 board run on a dedicated single-user Alpha 21064 150Mhz workstation, and
the time to solve is approximately 15 seconds. Our goal is to find out how large a
board we can solve in 3 days (for typical workstations) and 3 months (for dedicated
workstations). We would like to find a relation telling us how many slots we can
solve given T time.

The number of positions is shown in equation 6.14 and is repeated below in
equation 8.1.

 Positions(slots) = 2slots 8.1

which we invert to calculate the maximum number of slots, MaxSlots, given a
fixed number of positions:

MaxSlots(positions) = lg2(positions) 8.2

Next we need a relation between positions and time. We know the speed of
the machine from our calculation of the 4×4 board. We can then calculate how
many positions per second the machine can compute:

Speed =

24*4 positions

15seconds
≈ 4370

positions

second
8.3

We can convert this to a function to compute for us the number of positions
possible given a certain time. This assumes the game tree scales linearly, which
from empirical evidence for this particular game is true. We can create a function
that we’ll call HowManyPositions() to return the number of positions reached given
T seconds:

HowManyPositions(T) = T seconds *Speed

positions

second
= 4370*T() positions 8.4

Now we have all the relations we need. We take the amount of time given to
us, T, pass it to the function HowManyPositions to find out how many positions that
will be and pass that information to MaxSlots to calculate the maximum number of
slots we could calculate given that many positions as follows:

The maximum number of slots in time T = MaxSlots(HowManyPositions(T))

= lg2(4370 * T) ≈ 12 + lg2(T) slots 8.5

Now, if we calculate the number of seconds in 3 days we get

 - 52 -

3days *24

hours

day
*60

minutes

hour
*60

seconds

minute
= 259,200seconds 8.6

which when plugged into 8.5 gives us

12 + lg2(259200) = 12 + 18 = 30 slots. 8.7

The number of seconds for 3 months is approx. 30 times that of 3 days, so
plugging that in we get

10 + lg2(7776000) = 12 + 22 = 34 slots. 8.8

Thirty slots corresponds to just a bit more than a 5×5 (= 25 slot) board. Thus,
with 3 days, we can only barely solve a 5×5 board, and with 3 months we cannot
even solve a 6×6 board. In fact, since the number of positions doubles with each
added slot and we can solve 34 slots in 3 months, it would take a dedicated
computer 236-34 = 4 3-month cycles, or an entire year to solve the 6×6 board! This is
why GAMESMAN can only solve small games and why alternate methods are
necessary for larger games.

8.3 Optimizations

This section mentions several techniques to attempt to reduce the large time
frames needed to solve even modest-sized games. Parallel and distributed
computers will benefit every game, as will maintaining a database of solved position
tables. However, the other optimizations are game-specific and may not be
applicable to games in general

8.3.1. Parallel and distributed computing

Dividing the task of searching a game tree among several processors will
certainly help defray the time expense, but doesn’t give us any space savings.
However, this optimization, as with most optimizations mentioned here, gives us
only a linear time gain at best. This gain is a function of the number of processors
assigned to the task and the amount of multiple writes and reads that are allowed
to the shared memory containing the position table. With distributed computing,
the maximum network transmission rate also enters into the speed equation, as a
slow network may erode the gains provided by multiple machines. Whatever the
final increase happens to be, it will certainly be faster than a single processor, and
thus is worth attempting if time becomes the constraining factor for a certain game.

8.3.2. Stored position table

We saw in equation 7.1 that the number of positions for Tac Tix is 2slots. For
a 25 slot game (a 5×5 board), Tac Tix has 225 total positions. An obvious idea is to
store the table once it had been created. Since 225 is only about 32 megabytes, it
could easily be stored on even the smallest hard drive. Then, when other users
wished to play a 5×5 Tac Tix, the table could be referenced from disk rather than
solved from scratch once again. This saves lots of time at a fairly large space cost.

 - 53 -

However, this only works for moderate-sized games, as there are limits to disk sizes.
For example, the innocent little 6×6 Tac Tix game requires a whopping 64 gigabytes
to store, which would overflow the average workstation’s disks many times over.

8.3.3. Symmetry

Symmetry is the idea that some positions, although they might look quite
different, are just simple rotations and reflections of each other. Depending on the
game, these may or may not be symmetrically equivalent. If they are, then the
move-trees rooted at the corresponding positions are themselves equivalent, and
need not all be computed. For example, the eight Tic-Tac-Toe positions from figure
8.1 are symmetrically equivalent, and thus do not all need to be solved. This saves
us both time and space equally, as we do not have to search these redundant
positions nor do we have to store them in our table.

0 90 180 270 0
Reflect

90
Reflect

180
Reflect

270
Reflect

Figure 8.1: 8-way symmetrically equivalent positions for Tic-Tac-Toe

A game’s rules determine the number of equivalencies, which remains
constant throughout the game. A generic 2-D board game has 8-way equivalency
shown above in figure 8.1: 0°, 90°, 180° and 270° rotations of the original board and
0°, 90°, 180° and 270° rotations of the reflection of the original board. Examples of
games with 8-way equivalency are Tic-Tac-Toe, Othello, Nine Men’s Morris and Tac
Tix. Some games have directionality, i.e., a sense of “your side” and “my side”. This
limits these games to simply 2-way equivalency, the 0° and 0° reflection
symmetries. Examples of popular games with 2-way equivalency are Chess and
Checkers.

Symmetries are a way to partition all of the positions into sets. Only one
canonical member of a symmetrical set of positions needs to be stored. Within the
same game, different positions may have a different number of equivalencies. This
is demonstrated with 1, 4 and 8-way symmetrically equivalent Tic-Tac-Toe positions
in figure 8.2.

1-way 4-way 8-way

Figure 8.2: 1, 4, and 8-way symmetrically equivalent Tic-Tac-Toe positions

Since not every position in a certain game has the maximum amount of
equivalent positions (8 in the case of Tic-Tac-Toe), the savings in time and space
may not always be maximal. However, as the game’s board size grows, so does the

 - 54 -

percentage of positions that do have maximal equivalencies, and thus our
improvement approaches the most we could get from our symmetry optimization.

8.3.4. Component-equivalent positions

This game-specific optimization is similar to symmetry in that different
positions are in fact equivalent, component-wise. This means separate pieces of the
board can be thought of as sub-components, and rearranging the orientation of
these components would not change the position. This is best shown with an
example, using Tac Tix. In the game, components that cannot be connected
orthogonally can be considered truly distinct, and can be rearranged without
affecting the position. Figure 8.3 demonstrates 3×3 Tac Tix component-equivalent
positions. Note that the single piece and the “L” piece are different components, so
they may be rearranged within the 3×3 board as long as they stay orthogonally
disjoint.

Figure 8.3: 32 Component-equivalent 3×3 Tac Tix positions

Much larger space and time gains can be achieved with component-
equivalent positions than with symmetry only, since symmetries are a subset of all
component-equivalent sets, as is witnessed in figure 8.5. However, unfortunately
very few games can be decomposed into position-independent components to take
advantage of this technique.

8.3.5. Delayed evaluation

Delayed evaluation is an alternative to exhaustive-search. The idea is that in
order to determine the value of a game, the entire tree need not be searched. We
exploit the definition of a winning position to accomplish this. Since a winning
position means there exists a losing child, as soon as we figure out that we have
found a losing child, we need not search our other children. We can return to our
parent that we are winning! The other children are left unevaluated, or undecided.
If during the course of a game we encounter an undecided position, we resume the
delayed-evaluation search from there. Chances are we’ll never encounter one, but if

 - 55 -

we do, restarting the search from there may result in a massive delay23. This is the
biggest shortcoming of this optimization – users may not want GAMESMAN solving
a large game tree in the middle of play.

The worst case is no improvement over exhaustive search because there may
be only one losing child for every winning position and we may always happen to
search it last. The best case may be tremendous time and space savings, with the
exact figure depending on how many losing children each winning position has and
how well we can find them in order to search them first. We would need to have
some notion of what a good position was in order to find losing positions with any
consistency. This would require the system know what it thought a winning and
losing position was, which up to now was not necessary. This requires adding
intelligence to GAMESMAN, and is the final optimization discussed below.

8.3.6. Intelligence and Heuristics

The advantage of keeping intelligence out of a module is obvious. The
programmer need not know anything about the strategies of the particular game,
yet after exhaustive searching the game tree the computer can play as a perfect
opponent. However, even with every single optimization mentioned above, the size
of the game tree (and corresponding position table) is still daunting, and forbids any
large game from being solved. How, then, do computers play chess? The
programmer adds intelligence to the system and discards the theoretical beauty of
exhaustive search and the resulting definitive solution.

Using heuristics and optimized versions of MINIMAX search, a computer
opponent is programmed to look ahead at possible moves, and determine which one
is the best given counter-moves and counter-counter-moves, etc. Fortunately, the
MINIMAX algorithm is well-known, straightforward and requires only that the
programmer write a static-evaluator. This is a black-box that takes a position and
determines its “goodness” value, typically a number between 0 and 1. A goodness
value of 0 means a win for the minimizing opponent, 1 means a win for the
minimizing opponent. The computer, on its turn, attempts to find a move that
maximizes the number, and the opponent is assumed to make the best move to
minimize the number, hence the name for the algorithm. In essence, all the
intelligence is encoded within the static evaluator.

This is the accepted method for writing a computer opponent for a board
game. The speed at which the opponent responds with a move depends on how
many plys ahead it is searching. The more moves available, the slower the machine
will be, as it has to search all of them. Optimizations to this algorithm have it vary
the depth of its search depending on how good or bad a future position may be.

When programmers add modules to GAMESMAN, they have several options
for the computer opponent. They may choose to forego adding intelligence to the
system and simply have the system exhaustively search the game tree in order to
come up with the definitive solution and perfect opponent. If the game is too large,

23 Reminscent of the typical coffee-break-length delay introduced by garbage collection.

 - 56 -

they may choose to provide a static evaluator and let the internal MINIMAX
algorithm choose the move based on the goodness values returned from the
evaluator. They also may opt to dismiss computer opponents altogether, and simply
program their module as a 2 player game, with the computer acting as referee. This
would be useful if the primary desire was to play inter-network games with users at
remote sites. The fourth and final option is only viable for small games that may be
exhaustively searched. In this option, the programmer first codes the module sans
intelligence and has the computer solve it. Then the programmer slowly creates a
static evaluator, all the time checking its correctness with the “answers” provided
by the solved position table. If all winning positions have a goodness value greater
than Vw and all losing positions have a goodness value less than Vl AND if Vw is
greater than Vl, then the programmer has written an evaluator to, in effect,
perfectly determine the value of a position without search. At this point (which is
seldom reached for obvious reasons) the programmer can feel confident that the
static evaluator provides a perfect opponent. This is represented graphically in
figure 8.4:

10

Winning and
Losing positions

V
l

Winning
positions

Losing
positions

wV

Figure 8.4: The average static evaluator. Vw is the lowest value of a winning position returned from
the static evaluator and Vl is the highest value for a losing position. Since Vw is less than Vl, these

regions overlap on the static evaluator number line, and the two sets of games are not partitioned at
all. The smaller the intersection region, the better the static evaluator.

10

wVV
l

Losing
positions

Winning
positions

Figure 8.5: A perfect static evaluator. Vw and Vl are defined as before, but in this ideal case, Vl <
Vw and two sets are partitioned perfectly.

It is very unlikely that a static evaluator, no matter how complete, will be
perfect. However, for games whose position table is too large to either fit in memory
or be solved within reasonable time bounds, it is the only recourse for the
programmer who wishes to have a computer opponent.

 - 57 -

9. Future Enhancements

This chapter contains ideas for future enhancements to GAMESMAN that
were beyond the scope of this Master’s project, but may someday be added as time
and energy permit.

9.1 Cross-network games

A user at a remote site could request a connection with another user, and
either user would choose “Connect with Remote Player” on their local version of the
GAMESMAN application. Once a connection was established, the two users could
play in two-player mode against each other across the network. Aside from the
slight transmission delays, the applications on each end would function the same as
a single application in two-player mode, i.e., alternately prompting the users for
their moves. These moves would then register on the opponent’s screen. Either
user would have the option of quitting the game and closing the connection at any
time.

If other users wished to watch a cross-network game, they could connect with
either opponent and request ‘onlooker-only’ access to the game. If granted by either
opponent, the game would boot at the onlooker’s site, but no input would be
accepted – this would be an output-only window to the game. This feature would be
useful if three users wished to participate in a GAMESMAN round-robin
tournament. The players could alternately choose which two were playing the game
at that time and which person would watch. This would allow the idle player to
glean strategies from the other two by simply watching how the game progresses.
This feature would be similar in function to what already exists at game servers,
like the Internet Go Server (IGS) which allows anyone to watch a game in progress
between two opponents.

9.2 Object-Oriented Graphical Programming

NeXT offers a graphical programming environment called NeXTStep, which
allows a programmer to create a user interface graphically and iconically, saving
many lines of code and reducing implementation time considerably. With this
feature, instead of writing Tcl code to define how the player would interact with the
system, the module programmer could graphically define it. For example, to create a
Tic-Tac-Toe module, the programmer could choose a 3×3 blank initial board with ‘X’
and ‘O’ pieces, dart-board-style piece placement, a terminating condition of three-in-
a-row, and a tie position of a filled board, all without typing a line of C code. As of
this writing, designers at Sun™ Microsystems are investigating a GUI builder in
Tcl.

9.3 Graphics & Animation

A popular game for the IBM-PCs is “Battle Chess”. It is a standard chess
game, except the pieces are animated figures (e.g., the queen is a woman, not a

 - 58 -

chess piece) and when a capture is made, the capturing piece is shown defeating the
captured piece in a short, animated battle scene on the chess-board. When pieces
are moved, they walk to the destination. In this spirit, moved pieces in
GAMESMAN should do more than just disappear from the FROM slot and reappear
in the TO slot. They could roll, spring, energize, slide, bounce, blob, dig, walk, run,
stagger, etc. If a capture is made, similar animations could be played.

9.4 Graphical Move History

This feature supports both multiple levels of UNDO and REDO, allowing the
user to walk up and down the move tree and take a branch that had been previously
skipped. This is a feature already found in the Smart Game Board system. For
example, if the user chose a safe move that proved to be a win, it would be possible
to back up the game tree and choose an unsafe move to see if it was still possible to
win from there. It would also be useful to save this move history for later analysis.

If the ability to load and save games was added, then the system could be
used to help solve endgame problems. For example, a problem involving only three
or four pieces on a very large board could be loaded in and solved. So even though
the complete game was far too large to solve, a small sub-tree could be broken off
and solved independently.

9.5 Different computer strategies

This feature allows the user to change how the computer chooses its value-
equivalently moves. The current setting is random that means the computer is free
to choose any move that would produce a value-equivalent result – if the position is
a winning position, any winning move is chosen. Other strategies are to force the
quickest win, or force the user into a position with the most options (the Enough
Rope Principle mentioned in [Berlekamp82]), or least options, etc.

9.6 Implement optimizations

Many of the optimizations mentioned in the last chapter are themselves
future modifications, and thus should be considered for inclusion here. These are
parallelization, symmetry, best-first value-equivalent directed search, and move-
equivalent positions.

9.7 Write more modules

Programmers benefit from a large database of modules because there are
more examples to reference. Users benefit from the wide variety of new, perhaps
exotic games that would be available to learn and analyze.

9.8 Port to different platforms & distribute

GAMESMAN can only benefit from wide circulation. It is free and completely
public domain and thus should be available on as many different platforms as

 - 59 -

possible. Currently it is available on any machine that runs X-windows, but it could
be ported to the Macintosh, NeXT, IBM Windows, and Silicon Graphics
environments as well. Its existence could be announced on the net, and a moderated
publicly-writeable area could be set up for modules to be added.

 - 60 -

10. The GAMESMAN User Interface

GAMESMAN has two different interfaces: a text-based interface used when
interacting with the system without X-window graphical capabilities and the X-
based user interface that is what most users will see. To demonstrate the textual
interface, we give a simple interaction with the system using the Tic-Tac-Toe
module. To demonstrate the graphical interface, we include screen shots of all of the
user interface components as well as the boards for each of the four modules.

10.1 The GAMESMAN textual user interface

Everything in bold is typed by the user. Comments are sprinkled throughout
the output below. Unfortunately, it is hard to determine where the dividing line
between the module and GAMESMAN lies; this would give an idea how much of the
interaction changes for different modules. For the most part, the only component of
the following interaction that is module-specific is the output of the help request,
and the input and output of the move and position for Tic-Tac-Toe.

ddgarcia% tictactoe

Welcome to GAMESMAN, version 1.0 (05-15-95), written by Dan Garcia.

 (G)ame-independent
 (A)utomatic
 (M)ove-tree
 (E)xhaustive
 (S)earch,
 (M)aniuplation
 (A)nd
 (N)avigation

This program will determine the value of Tic-Tac-Toe, and allow you to play
the computer or another human. Have fun!

 ----- Hit <return> to continue -----

 ----- GAMESMAN, version 1.0 (05-15-95) with Tic-Tac-Toe module -----

 s) (S)TART THE GAME

 Evaluation Options:

 o) (O)bjective toggle from STANDARD to REVERSE

 h) (H)elp.

 q) (Q)uit.

Select an option: h

Had the user chosen “o” above, the game would have internally set itself up
to prepare to solve the misère game of Tic-Tac-Toe.

 - 61 -

 ----- HELP for Tic-Tac-Toe module -----

 Tic-Tac-Toe Help:

 1) What do I do on MY TURN?
 2) How do tell the computer WHICH MOVE I want?
 3) What is the STANDARD OBJECTIVE of Tic-Tac-Toe?
 4) Is a TIE possible?
 5) What does the VALUE of this game mean?
 6) Show SAMPLE Tic-Tac-Toe game.

 GAMESMAN Help:

 7) What is a game VALUE?
 8) What is EVALUATION?

 Generic Options Help:

 9) What are PREDICTIONS?
 0) What are HINTS?

 b) (B)ack = Return to previous activity.

Select an option: 1

 ----- What do I do on MY TURN? -----

You place one of your pieces on one of the empty board positions.

 ----- Hit <return> to continue -----

 ----- HELP for Tic-Tac-Toe module -----

 Tic-Tac-Toe Help:

 1) What do I do on MY TURN?
 2) How do tell the computer WHICH MOVE I want?
 3) What is the STANDARD OBJECTIVE of Tic-Tac-Toe?
 4) Is a TIE possible?
 5) What does the VALUE of this game mean?
 6) Show SAMPLE Tic-Tac-Toe game.

 GAMESMAN Help:

 7) What is a game VALUE?
 8) What is EVALUATION?

 Generic Options Help:

 9) What are PREDICTIONS?
 0) What are HINTS?

 b) (B)ack = Return to previous activity.

Select an option: 2

 - 62 -

 ----- How do I tell the computer WHICH MOVE I want? -----

On your turn, use the LEGEND to determine which number to choose (between
1 and 9, with 1 at the upper left and 9 at the lower right) to correspond
to the empty board position you desire and hit return. If at any point
you have made a mistake, you can type u and hit return and the system will
revert back to your most recent position.

 ----- Hit <return> to continue -----

 ----- HELP for Tic-Tac-Toe module -----

 Tic-Tac-Toe Help:

 1) What do I do on MY TURN?
 2) How do tell the computer WHICH MOVE I want?
 3) What is the STANDARD OBJECTIVE of Tic-Tac-Toe?
 4) Is a TIE possible?
 5) What does the VALUE of this game mean?
 6) Show SAMPLE Tic-Tac-Toe game.

 GAMESMAN Help:

 7) What is a game VALUE?
 8) What is EVALUATION?

 Generic Options Help:

 9) What are PREDICTIONS?
 0) What are HINTS?

 b) (B)ack = Return to previous activity.

Select an option: b

 ----- GAMESMAN, version 1.0 (05-15-95) with Tic-Tac-Toe module -----

 s) (S)TART THE GAME

 Evaluation Options:

 o) (O)bjective toggle from STANDARD to REVERSE

 h) (H)elp.

 q) (Q)uit.

Select an option: s

Initializing insides of Tic-Tac-Toe...done in 0.023436 seconds!
Evaluating the value of Tic-Tac-Toe...done in 1.097714 seconds!

The Game Tic-Tac-Toe has value: Tie

 ----- Hit <return> to continue -----

 - 63 -

The system reports on the value of the game as well as the time it took (in
real seconds, not CPU seconds) to initialize and solve it. This is useful when
benchmarking systems and roughly determining how long it would take to solve a
larger game.

 ----- GAMESMAN version 1.0 (05-15-95) with Tic-Tac-Toe module -----

 Player Name Options:

 1) Change the name of player 1 (currently Dan)
 2) Change the name of player 2 (currently Computer)
 3) Swap player 1 (plays FIRST) with player 2 (plays SECOND)

 Generic Options:

 4) Toggle from PREDICTIONS to NO PREDICTIONS
 5) Toggle from NO HINTS to HINTS

 Playing Options:

 6) Toggle opponent from a COMPUTER to a HUMAN
 7) Toggle from going FIRST (can tie/lose) to SECOND (can tie/lose)
 e) (E)valuator toggle from EXHAUSTIVE SEARCH to HEURISTIC
 l) Change (L)ookahead used for Heuristic (currently 2)

 a) (A)nalyze the game

 p) (P)LAY GAME.

 h) (H)elp.

 q) (Q)uit.

Select an option: p

Ok, Dan and Computer, let us begin.

Type '?' if you need assistance...

 (1 2 3) : - - -
LEGEND: (4 5 6) TOTAL: : - - -
 (7 8 9) : - - - (Dan should Tie)

 Dan's move [(u)ndo/1-9] : ?

Text Input Commands:

? : Brings up this list of Text Input Commands available
s (or S) : The computer will list all (S)afe (Value-Equivalent) moves
u (or U) : (U)ndo last move (not possible at beginning position)
r (or R) : (R)eprint the position
h (or H) : (H)elp
a (or A) : (A)bort the game
q (or Q) : (Q)uit
Valid Moves : [1 2 3 4 5 6 7 8 9]

Choosing help would have brought up the same help window from earlier in
the session; help is available at any stage in the game for all modules.

 - 64 -

 Dan's move [(u)ndo/1-9] : 1

 (1 2 3) : X - -
LEGEND: (4 5 6) TOTAL: : - - -
 (7 8 9) : - - - (Computer should Tie)

Computer's move : 5

 (1 2 3) : X - -
LEGEND: (4 5 6) TOTAL: : - O -
 (7 8 9) : - - - (Dan should Tie)

 Dan's move [(u)ndo/1-9] : s

Here are some 'safe' moves : [9 8 7 6 4 3 2]

A “safe” move is one that is value-equivalent. Since this is a tie position, the
system prints out all tying moves at this point. It turns out they all are!

 Dan's move [(u)ndo/1-9] : 8

 (1 2 3) : X - -
LEGEND: (4 5 6) TOTAL: : - O -
 (7 8 9) : - X - (Computer should Tie)

Computer's move : 6

 (1 2 3) : X - -
LEGEND: (4 5 6) TOTAL: : - O O
 (7 8 9) : - X - (Dan should Tie)

 Dan's move [(u)ndo/1-9] : s

Here are some 'safe' moves : [4]

 Dan's move [(u)ndo/1-9] : 2

We are clearly living life on the edge. The only value-equivalent move was 4
and we chose 2. We are certain to lose now. Note the prediction changes from
“Computer should Tie” to “Computer will win”. It knows the end is near.

 (1 2 3) : X X -
LEGEND: (4 5 6) TOTAL: : - O O
 (7 8 9) : - X - (Computer will Win)

Computer's move : 3

Note the curious strategy the computer uses when faced with a winning
position. It does not go for the quick win at position 4, but instead is perfectly happy
waiting a move to win. It knew it had a sure win either way, so it didn’t matter to
the computer when it won. Careful study of the position below indicates that it can
afford to choose 3 to block, because in doing so forces a win in an additional two
directions. If its move did not force any additional win directions Dan (“O”) could
have chosen 4 to block and would have returned the game to a tie position.

 (1 2 3) : X X O
LEGEND: (4 5 6) TOTAL: : - O O
 (7 8 9) : - X - (Dan will Lose)

 - 65 -

 Dan's move [(u)ndo/1-9] : s

Here are some 'safe' moves : [4 7 9]

 Dan's move [(u)ndo/1-9] : 4

 (1 2 3) : X X O
LEGEND: (4 5 6) TOTAL: : X O O
 (7 8 9) : - X - (Computer will Win)

Computer's move : 7

 (1 2 3) : X X O
LEGEND: (4 5 6) TOTAL: : X O O
 (7 8 9) : O X - (Dan will Lose)

Computer wins. Nice try, Dan.

 ----- Hit <return> to continue -----

 ----- GAMESMAN, version 1.0 (05-15-95) with Tic-Tac-Toe module -----

 Player Name Options:

 1) Change the name of player 1 (currently Dan)
 2) Change the name of player 2 (currently Computer)
 3) Swap player 1 (plays FIRST) with player 2 (plays SECOND)

 Generic Options:

 4) Toggle from PREDICTIONS to NO PREDICTIONS
 5) Toggle from NO HINTS to HINTS

 Playing Options:

 6) Toggle opponent from a COMPUTER to a HUMAN
 7) Toggle from going FIRST (can tie/lose) to SECOND (can tie/lose)
 e) (E)valuator toggle from EXHAUSTIVE SEARCH to HEURISTIC
 l) Change (L)ookahead used for Heuristic (currently 2)

 a) (A)nalyze the game

 p) (P)LAY GAME.

 h) (H)elp.

 q) (Q)uit.

Select an option: q

Thanks for playing Tic-Tac-Toe!

 - 66 -

10.2 The GAMESMAN graphical user interface

This section contains pictures of the interface with all of the different
modules (“1,2,...,10”, “Tic-Tac-Toe”, “Tac Tix” and “Dodgem”) and explains how to
interact with the system. Great care was taken to insure that the graphic design
was visually pleasing and the interactions intuitive.

Figure 10.1: The main GAMESMAN interface control window with the Tic-Tac-Toe module loaded in.
The play buttons are disabled because the user has not solved the game by clicking on the “Start”
button. The “Modify the starting position” button is also disabled because this module does not yet

allow for the starting position (in this case, the familiar blank board) to be modified.

Figure 10.2: The “Modify the rules for <module-name>“ window. This allows the user to change the
rules of the game. Here we allow the user to choose between the standard and the misère game.

 - 67 -

Figure 10.3: The User interface balloon help window. When this window is open, whatever object the
user’s cursor is over gets explained in this window. Here the cursor was over the “Quit” button. This

serves the purpose of providing an on-line interface manual.

Figure 10.4: The GAMESMAN Tic-Tac-Toe control window. This window tells the user how to move
and win in this game, whose turn it is, its prediction of the outcome of the game, and allows the user

to augment the game board with a visual display of the available moves, possibly color-coded by
value. It also allows the user to restart this game (the “New Game”) button and abort the game

altogether.

 - 68 -

Figure 10.5: The about-the-author window. This window is brought up when the user clicks on the
Krusty-the-clown icon in the lower left of the main GAMESMAN window shown in figure 10.1. Here

we advertise the GAMESMAN World Wide Web home page where update information (and this
document) can be found, list the author’s name, email and status, show what he looks like, and

explain the GAMESMAN acronym.

 - 69 -

Figure 10.6: The GAMESMAN front-end which can be used to bring up the various X-window
GAMESMAN programs. If more modules are written, this user-interface will provide a simple and

graphical way to run them.

Figure 10.7: The GAMESMAN Tic-Tac-Toe board window with no moves shown. It is X’s turn to
move. The blank slots are “alive” in the sense that they respond (by inverting to black) when the

cursor is over them. The other, filled slots do not react when the cursor is over them. This provides
valuable feedback to the user, who may be unfamiliar with the game and how to make a move.

 - 70 -

Figure 10.8: The GAMESMAN Tic-Tac-Toe board window with the available moves shown as cyan-
colored circles. This also helps the first-time user of the system.

 - 71 -

Figure 10.9: The same GAMESMAN Tic-Tac-Toe board window with value moves shown. They are
color-coded as shown in figure 10.10 below. By reading the display we see that X can win by moving
on the left, tie by blocking O in the middle and lose by moving on the right, allowing O the chance to

win. This is the same position from figure 2.4 we analyzed in section 2.5

Figure 10.10: The color-coded explanation of value moves. The color choice coincides with that of a
stoplight: green = go = win, yellow = caution = tie, dark red (red could not be used since it is reserved

for right) = stop = lose.

 - 72 -

Figure 10.11: The GAMESMAN Dodgem board. The user clicks on the cyan arrows to make a move;
the pieces then animate and move to the next slot. When a piece moves into its own goal, an

animation plays which makes the piece shrink and disappear. The legend in the upper-right shows
the moves available to both players.

 - 73 -

Figure 10.12: The same GAMESMAN Dodgem board as in figure 10.11 with value moves turned on.
Here it is clear that the only winning move for Left (the blue pieces) is to move the upper piece to the

right.

 - 74 -

Figure 10.13: The GAMESMAN Tac Tix “Edit the initial position” window. Here the user clicks on
the slots to toggle them on and off. We have chosen this position because it contains a single piece,

and a horizontal or vertical line of pieces of lengths 2, 3 and 4. This is so we can illustrate the
available moves as shown in figures 10.14 and 10.15.

 - 75 -

Figure 10.14: The GAMESMAN Tac Tix board with the available moves shown. Any cyan line
removes the pieces it is overlapping. The cyan circles remove only the single pieces under them. The
color of the pieces (magenta = red + blue) was chosen because this is an impartial game so the moves
available to left (blue) are the same as those available to right (red). Moving in this game consists of
clicking on the cyan move. Placing the cursor over a move highlights the pieces about to be removed

so the user has visual feedback what the pieces the move will affect.

 - 76 -

Figure 10.15: The same GAMESMAN Tac Tix board as figure 10.14 with value moves turned on. It is
clear from this position that the person whose turn it is has only two winning moves: removing two

vertical pieces in the center or bottom. For readers familiar with Nim sums, these are winning moves
because they reduce the board to (* + * + *2 + *2 = 0) and (* + *2 + *3 = 0) respectively.

 - 77 -

Figure 10.16: The GAMESMAN “1,2,...10” boards with (no, valid, value) moves.

 - 78 -

11. Summary

GAMESMAN is a package that allows programmers to easily develop, test,
analyze and eventually play and share finite, two-person perfect-information games.
It saves the developer the onerous task of creating a game from scratch by only
requiring that an internal representation, subroutines and optional mapping
function be written in the form of C code. A library of interactions is provided which
eliminates the need to write user interface code from scratch. GAMESMAN also
provides hooks for user parametrization, which allows users to change the rules of a
particular game at runtime. Once a game has been written and compiled, it can be
added to a growing database of games to be learned from, shared, and enjoyed.

This report outlines the design of a complete game-generation system. There
exists a working implementation that does not contain everything from the full
design, but does have almost all of the essential functionality. This provides a stable
framework on which to begin adding modules. Programmers have several options
when deciding how the computer will choose its moves. If the game is small enough
to be solved, then a flag can be set which tells the system to exhaustively search the
move-tree and generate computer moves from the table of positions it creates. If the
game is too large to be solved, or if the programmer wishes to attempt to encode the
table, then a static evaluator can be written to drive a look-ahead MINIMAX
computer strategy. If the game is too big to solve and the developer does not wish to
write a static evaluator, then the game can be restricted to 2-player mode only, and
no computer opponent will be available. The computer in this case will act as a
referee, only allowing valid moves and signaling when the game is over.

GAMESMAN cannot even begin to solve large games, such as Chess,
Checkers, or Go. This is due to the massive number of possible board positions that
either cannot be stored, would take centuries to compute, or both. However, smaller
games, whose board positions can be stored and computed in reasonable time can be
solved. The advantage of this is the computer provides a perfect opponent without
the developer having to program any intelligence or strategies into the system. Also,
since the computer is truly a perfect opponent, strategies can be deduced from its
play. This provides a tool that allows game analysts to conclude and prove theories
about particular games. Even if a game cannot be solved, GAMESMAN provides a
relatively easy way to implement a game for static evaluation or simply 2-player
mode. In summary, GAMESMAN is a system to facilitate game design,
implementation, testing, parametrization, distribution, analysis and enjoyment.

 - 79 -

Acknowledgments

Sincere thanks go to my reviewers, Brian and Elwyn, who were open-minded
enough to support this project.

Special thanks go to Mark Bomi Moss for his insight and constructive
comments at the early stages of this project. Professor Carlo Sequin proposed the
crucial L-game move-selection strategy as well as discussed the symmetries of a
cube. Noam Tene volunteered optimization ideas and suggested blinking slots and
cursor-initiated highlighting, as did Armando Fox. Noam also suggested delayed
evaluation. Chris Borton mentioned the value of graying-out invalid moves. Barry
Gysbers listened with a keen ear and proposed several future enhancements. Dan
Wexler provided the needed impetus to investigate displaying all possible moves
graphically. Zijiang Yang provided a few meals down the stretch which were sorely
needed. David Wolfe provided great last-minute help. Extra thanks to Narguesse
Bakhsh who endured testing early versions of the implementation and provided
emotional support throughout.

My thanks to all these individuals, and thanks and apologies to anyone who
should have been credited and was not.

 - 80 -

Appendices

 - 81 -

Appendix A Module Specifications in C and Tcl/Tk

If a programmer decided to implement a new game, there are two
components to write: C code describing the internals of the game (what the internal
representation of a position and move is, what a primitive position is, etc.) and
Tcl/Tk code describing how the user should graphically interact with the board. In
this appendix we provide the prototypes for all of the routines that need to be filled
in to implement a module.

A.1 Module specifications in C

/**
**
** NAME: InitializeDatabases
**
** DESCRIPTION: Initialize the Global database table to store the values
** and the next move the computer should choose.
**
**/

InitializeDatabases()

/**
**
** NAME: InitializeGraphics
**
** DESCRIPTION: Initialize the graphics vars.
** Empty if kSupportsGraphics = FALSE
**
**/

InitializeGraphics()

/**
**
** NAME: DebugMenu
**
** DESCRIPTION: Menu used to debug internal problems. Does nothing if
** kDebugMenu == FALSE
**
**/

DebugMenu()

/**
**
** NAME: GameSpecificMenu
**
** DESCRIPTION: Menu used to change game-specific parameters, such as
** the side of the board in an nxn Nim board, etc. Does
** nothing if kGameSpecificMenu == FALSE. Not even called.
**
**/

GameSpecificMenu()

/**
**
** NAME: DoMove
**

 - 82 -

** DESCRIPTION: Apply the move to the position.
**
** INPUTS: POSITION thePosition : The old position
** MOVE theMove : The move to apply.
**
** OUTPUTS: (POSITION) : The new position that results after the move.
**
**/

POSITION DoMove(thePosition, theMove)

/**
**
** NAME: GetInitialPosition
**
** DESCRIPTION: Return the position that the user manually entered
**
** OUTPUTS: (POSITION) : The position that the user entered.
**
**/

POSITION GetInitialPosition()

/**
**
** NAME: StoreComputersMove
**
** DESCRIPTION: Store the next move of the position
** into the Global Database.
**
** INPUTS: POSITION thePosition : The position in question.
** MOVE nextMove : Where to go to from thePosition
**
**/

StoreComputersMove(thePosition, nextMove)

/**
**
** NAME: GetComputersMove
**
** DESCRIPTION: Get the next move for the computer from the Global Database
** GlassBox: It currently randomly picks a value-equivalent
** move - this is something that could be changed.
**
** INPUTS: POSITION thePosition : The position in question.
**
** OUTPUTS: (MOVE) : the next move that the computer will take
**
**/

MOVE GetComputersMove(thePosition)

/**
**
** NAME: GetRawValueFromDatabase
**
** DESCRIPTION: Get a pointer to the value of the position from Database.
**
** INPUTS: POSITION position : The position to return the value of.
**
** OUTPUTS: (VALUE *) a pointer to the actual value.
**
**/

 - 83 -

VALUE *GetRawValueFromDatabase(position)

/**
**
** NAME: PrintComputersMove
**
** DESCRIPTION: Nicely format the computers move.
**
** INPUTS: MOVE *computersMove : The computer's move.
** STRING computersName : The computer's name.
**
**/

PrintComputersMove(computersMove,computersName)

/**
**
** NAME: Primitive
**
** DESCRIPTION: Return the value of a position if it fulfills certain
** 'primitive' constraints. Some examples of this is having
** three-in-a-row with Tic-Tac-Toe. Tic-Tac-Toe has two
** primitives it can immediately check for, when the board
** is filled but nobody has one = primitive tie. Three in
** a row is a primitive lose, because the player who faces
** this board has just lost. I.e. the player before him
** created the board and won. Otherwise undecided.
**
** INPUTS: POSITION position : The position to inspect.
**
** OUTPUTS: (VALUE) an enum which is oneof: (win,lose,tie,undecided)
**
**/

VALUE Primitive(position)

/**
**
** NAME: PrintPosition
**
** DESCRIPTION: Print the position in a pretty format, including the
** prediction of the game's outcome.
**
** INPUTS: POSITION position : The position to pretty print.
** STRING playerName : The name of the player.
** BOOLEAN usersTurn : TRUE <==> it's a user's turn.
**
**/

PrintPosition(position,playerName,usersTurn)

/**
**
** NAME: GenerateMoves
**
** DESCRIPTION: Create a linked list of every move that can be reached
** from this position. Return a pointer to the head of the
** linked list.
**
** INPUTS: POSITION position : The parent position to branch off of.
**
** OUTPUTS: (MOVELIST *), a pointer that points to the first item
** in the linked list of moves that can be generated.

 - 84 -

**
**/

MOVELIST *GenerateMoves(position)

/**
**
** NAME: GetAndPrintPlayersMove
**
** DESCRIPTION: This finds out if the player wanted an undo or not.
** If so, fill *theMove with NIL.
** Otherwise get the new theMove and fill the pointer up.
**
** INPUTS: POSITION thePosition : The position the user is at.
** MOVE *theMove : The move to fill with user's move.
** STRING playerName : The name of the player whose
** turn it is
**
**/

GetAndPrintPlayersMove(thePosition, theMove, playerName)

/**
**
** NAME: PrintMove
**
** DESCRIPTION: Print the move in a nice format.
**
** INPUTS: MOVE *theMove : The move to print.
**
**/

PrintMove(theMove)

A.2 Module specifications in Tcl/Tk

###
##
GS_InitGameSpecific
##
This initializes the game-specific variables.
##
###

proc GS_InitGameSpecific {}

###
##
GS_EmbellishSlot
##
This is where we embellish a slot if its necessary
##
###

proc GS_EmbellishSlot { w slotX slotY slot }

###
##
GS_ConvertInteractionToMove
##
This converts the user's interaction to a move to be passed to the C code.
##
###

 - 85 -

proc GS_ConvertInteractionToMove { theMove }

###
##
GS_ConvertMoveToInteraction
##
This converts the C code encoding of a move to the Interaction’s encoding
##
###

proc GS_ConvertMoveToInteraction { theMove }

###
##
GS_PostProcessBoard
##
This allows us to post-process the board in case we need to add something
##
###

proc GS_PostProcessBoard { w }

###
##
GS_ConvertToAbsoluteMove
##
Sometimes the move handed back by our C code is a relative move. We need
to convert this to an absolute move to indicate on the board.
##
###

proc GS_ConvertToAbsoluteMove { theMove }

###
##
GS_HandleEnablesDisables
##
At this point a move has been registered and we have to handle the
enabling and disabling of slots
##
###

proc GS_HandleEnablesDisables { w theSlot theMove }

###
##
GS_EnableSlotEmbellishments
##
If there are any slot embellishments that need to be enabled, now is the
time to do it.
##
###

proc GS_EnableSlotEmbellishments { w theSlot }

###
##
GS_DisbleSlotEmbellishments
##
If there are any slot embellishments that need to be disabled, now is the
time to do it.
##
###

 - 86 -

proc GS_DisableSlotEmbellishments { w theSlot }

###
##
GS_NewGame
##
"New Game" has just been clicked. We need to reset the slots
##
###

proc GS_NewGame { w }

 - 87 -

Appendix B Description and Rules of Games

This section provides three important functions. First, it describes the rules,
winning conditions and references for further inspection for all of the games
described in the text. Second, it introduces many wonderful games, some of which
have existed for centuries. Lastly, it provides references to some truly wonderful
books that introduce and analyze literally thousands of games. We begin with the
four games implemented in GAMESMAN: “1,2,...,10”, Tac Tix, Tic-Tac-Toe and
Dodgem. The remaining games are listed alphabetically to make locating a
particular game easy.

There are a few reference books that are worth noting. The two-volume set of
[Berlekamp82] should be on every game enthusiast’s shelf for three reasons: it
presents more games than any other, it analyzes them, and explains the
combinatorial game theory upon which the analysis is based. Robbie Bell has done
an excellent job in [Bell79] and [Bell83] and presenting obscure games from
different countries as well as providing mathematical insight in [Bell88].
[Brandreth81], [Diagram92], [Pritchard82], [Grunfeld75] and [Pentagram90] also
wonderful resources for exploring the exotic games of the world.

B.1 1,2,...,4 / 1,2,...,10 / One Line Nim

1 2 3 4

1 2 3 4 5 6 7 8 9 10

Figure B.1: The games 1,2,...,4 and 1,2,...,10 played with a counter.

The game 1,2,...,4 is very simple. Players alternate saying either 1 or 2. The
total amount that has been said is kept in a counter, which starts at 0. The person
who first raises the counter’s total to 4 wins. It is a win game. The winning strategy
is to say 1, then say the opposite of whatever the opponent says. The game
“1,2,...,10” is the same game as “1,2,...,4” except the goal is to reach 10 instead of 4.
It is also a win game. The winning strategy is to say 1 first, then say the opposite of
whatever the opponent says. The game is called “1,2,..,4” by GAMESMAN because
the options available to both players are only 1 and 2 and the goal is to reach 4. This
can be generalized easily: the game “(xi, xi+1,..., xn), ... ,k” is such that each player
can choose (xi, xi+1,..., xn) on their turn with the goal of reaching k first.

The game can also be thought of in another way: imagine there is a counter
on a board and each player on his turn can move the counter 1 or 2 spaces to the
right. The player who moves the counter to the slot labeled 4 (or 10) wins.

Variants of the game are explained (as “1,2,3,...,n” and mislabeled as “Nim”)
in [Anderson89, pp. 80-82], (as “1,2,3,...,15” and called “One Line Nim”) in
[Brandreth81, pp. 216-217] and [Pentagram90, pp. 116,136], (as “1,2,3,4,5,...,37” and
called “The 37 Puzzle Game”) in [Dudeny67, pp. 186-187], (as “1,2,3,...,<odd>” and
called “The Pebble Game”) in [Dudeny70, p. 117] and [Kaplan68, p. 22], (as “1-
10,...,100” in both standard and misère form) in [Frochlichstein62, pp. 25-26], (as

 - 88 -

“1,2,3,...,11”, “1,2,3,...,30”, and “1-p,...,n”) in [Kordemsky72, p. 120] and analyzed in
[Beasley89, pp. 108-109].

B.2 Tac Tix / Nimbi

Figure B.2: The beginning 4×4 board for Tac Tix.

Invented by Piet Hein, this is a very simple game with an interesting nim-
based analysis. Each player takes as many pieces from any row or column as long as
the pieces are contiguous (i.e. there is no gap between them). The player who
removes the last piece is the winner. It is described in [Gardner59, pp. 157-161],
[Grunfeld75, p. 268], [Holt78, p. 67] and [Brandreth81, p. 218].

B.3 Tic-Tac-Toe / Noughts and Crosses

Figure B.3: The initial boards for Tic-Tac-Toe and Noughts & Crosses. In Tic-Tac-Toe the pieces are
usually and and they are placed on the intersection of the lattice points, but in Noughts &

Crosses the pieces are X and O and are placed in the interior regions.

This game is played on a 3×3 board. Players alternate placing X or O. First
player to reach 3-in-a-row (horizontally or diagonally) with their counters wins. If
nobody achieves this by the time the game is over, the game is a tie.

Historically, these are the rules for Noughts & Crosses. Tic-Tac-Toe is
different in that both players only have 3 pieces, and when all are played (if 3-in-a-
row has not yet been reached) the pieces are slid to adjacent slots until one player
achieves 3-in-a-row with his pieces [Bell83, p. 145].

The games are described in [Gardner59, pp. 37-38], [Abraham61, p. 174],
[Bell79, pp. 91-92], [Bell88, pp. 5-6], [Binmore92, pp. 27-28], [Diagram92, p. 286],
[Frochlichstein62, pp. 26-27], [Gardner77, pp. 210-211], [Gardner83, pp. 94-97],
[Gardner92, pp. 202-203], [Gilgallon88, pp. 66-67], [Holt78, pp. 73-74], [Horne70,
pp. 7-8], [Maguire90, pp. 96-99], [Mason63, pp. 139-140], [Mott-Smith54, pp. 126-
129], [Pappas91, p. 240], [Pentagram90, pp. 113,122], [Silverman71, pp. 69-70],
[Singleton74, p. 24] and [Dudeny67, p. 185]. The strategy is discussed in
[Anderson89, pp. 83-85], and solved in [Berlekamp82, pp. 667-672]. [Dewdney89]
contains an interesting application in which M.I.T. students built a Tinkertoy
computer to play the game perfectly.

B.4 Dodgem

 - 89 -

White off

Black
off

Figure B.4: The initial Dodgem board with white () against black ()

This simple game is described in [Gardner88, pp. 156-158] and solved in
[Berlekamp82, pp. 685-686]. The rules are taken from [Berlekamp82, p. 685]:

“Colin Vout invented this excellent little game with two black cars and two
white ones on a 3 × 3 board, starting as shown above. The players alternately move
one of their cars one square in one of the three permitted directions (E, N or S for
Black; N, E or W for White) and the first player to get both of his cars off the board
wins. Black’s cars may only leave the board across its right edge and White cars only
leave across the top edge. Only one car is permitted on a square, and you lose if you
prevent your opponent from moving.”

B.5 Checkers / Draughts

Figure B.5: The initial Checkers board with red () against black ()

Checkers is described with and without variants in [Bell83, pp. 26-29],
[Brandreth81, pp. 141-144], [Diagram92, pp. 34-46], [Morehead83, pp. 220-224],
[Pentagram90, p. 22], [Pritchard82, pp. 53-59], [Provenzo81, pp. 195-207],
[Schmittberger92, pp. 169-184], [Wiswell73] and [Cassidy91, pp. 6-7]. The following
rules are taken from [Cassidy91, p. 6]:

“The Play: The object of the game is to capture all of your opponent’s pieces,
or block them so they cannot be moved. Checkers are always moved diagonally, one
square at a time, towards the other player’s side of the board. You can capture an
enemy checker by hopping over it.

Capturing: Capturing, just like moving, is always done on the diagonal. You
have to jump from the square directly next to your target and land on the square just
beyond it (diagonally!). Your landing square has to be vacant. If you have a capture
available on a turn, you have to take it. If you have more than one, it’s your choice.

 - 90 -

Multiple Captures: It is legal, in fact required, to capture more than one
piece on a single move so long as the jumping checker has vacant landing spots
available to it that will also serve as legal take-off points for another jump(s).

Kings: If you can get a checker to the last row of the board, that checker
becomes a king. Turn it over. Now it can move, or capture, going in either direction –
forwards or back, but always on the diagonal.”

B.6 Chess

“Nat: You play chess?
Death: No, I don’t.

Nat: I once saw a picture of you playing chess.
Death: Couldn’t be me, because I don’t play chess. Gin rummy, maybe.”

– Woody Allen
Death Knocks from Getting Even

The rules have been omitted here as they are a bit lengthy and readily
available. It is described with and without variants in [Bell83, pp. 18-21],
[Brandreth81, pp. 154-164], [Grunfeld75, pp. 63-69], [Morehead83, pp. 213-219],
[Pritchard82, pp. 38-48], [Schmittberger92, pp. 19-20, 185-220] and [Costello91, p.
19-34]. An excellent introduction is provided in [Diagram92, pp. 48-63]. [Fischer66]
contains not only a wonderful introduction, but also provides a tremendous tutorial
in the form of “quizzes”. Endgame puzzles are described in [Brandreth85, pp. 48-49]
and [Kendall62, pp. 61-65].

B.7 Connect-Four

Figure B.6: A Connect-Four game in which white () has beaten black ()

It is described in [Pentagram90, p. 92], and has been solved by Victor Allis in
[Allis88] and found to be a win for white. The rules, below are taken from that
reference:

“Connect-Four is a game for two persons. Both players have 21 identical men.
In the standard form of the game, one set of men is yellow and the other set is red.
The game is played on a vertical, rectangular board consisting of 7 vertical columns
of 6 squares each. If a man is put in one of the columns, it will fall down to the lowest
unoccupied square in the column. As soon as a column contains 6 men, no other man
can be put in the column. Putting a man in one of the columns is called: a move.

The players make their moves in turn.” ... “White makes the first move. Both
players will try to get four connected men, either horizontally, vertically or
diagonally. The first player who achieves one such group of four connected men, wins
the game. If all 42 men are played and no player has achieved this goal, the game is
drawn.”

 - 91 -

B.8 Dots and Boxes

Figure B.7: The initial board for a game of Dots and Boxes played on a 4 × 4 lattice board. Games are
usually played on n × n boards (where n is even) so that the number of available boxes will be odd

and a tie will be impossible.

It is described in [Loyd59, pp. 88-89], [Diagram92, p. 288], [Holt78, p. 69],
[Maguire90, p. 35], [Mason63, pp. 140-141], [Pentagram90, p. 63], [Sole88, p. 119]
and [Gilgallon88, p. 68]. A version played on a triangular board is suggested in
[Pentagram90, p. 13] and [Schmittberger92, p. 134]. Here are the rules from
[Berlekamp82, pp. 507-550], where it is analyzed almost exhaustively:

“Two players start from a rectangular array of dots and take turns to join two
horizontal or vertically adjacent dots. If a player completes the fourth side of a unit
square (box), he initials that box and must then draw another line (so that
completing a box is a complimenting move). When all the boxes have been completed
the game ends and whoever has initialed more boxes is declared the winner. A person
who can complete a box is not obliged to do so if he has something else he prefers to
do.”

B.9 Fox and Geese / Wolves and Sheep / Asalto

Figure B.8: The initial board for Fox and Geese.

Fox and Geese is described in [Diagram92, pp. 46-47], [Pentagram90, p. 131],
[Kraitchik53, pp. 309-310], and [Silverman71, pp. 67-68]. [Berlekamp82, pp. 635-
646] has analyzed it exhaustively and provided the following rules:

“The game of Fox and Geese is played on an ordinary checkerboard between
the Fox, who has just one piece (above) and the Geese, who have four pieces (
above). The players use squares of only one color (as in Checkers), and the Geese are
initially placed in the squares marked above. The fox is usually placed as shown
above, but since the Geese seem to have the better chances, it is perhaps wiser to
allow the Fox to choose his own starting square (provided this has the correct color),
and then let the Geese have first move.

The Geese move diagonally one place forward – like ordinary checkers they
may not retreat. The fox also moves diagonally one place, but like a King in
Checkers, he may move in any one of the four diagonal directions. There is not taking
or jumping. The Geese aim to trap the Fox so that he has no legal move, while

 - 92 -

conversely the Fox tries to break through the barrier of Geese so that he can stay
alive indefinitely. We can therefore say simply that the first player unable to move is
the loser, the usual normal play convention.”

Figure B.9: The initial board for Wolves-and-Sheep / Asalto (known as Fox and Geese in most
references, however).

However, Fox and Geese sometimes refers to a different game, the one shown
in the figure above. [Berlekamp82, p. 631] renames this game “Wolves-and-Sheep”
to eliminate confusion. It is described in [Agostino85, p. 67], [Bolt85, p. 100],
[Brandreth81, pp. 127-129], [Costello91, pp. 10-13], [Grunfeld75, pp. 94-95],
[Pentagram90, p. 41], [Pentagram90, p. 153] and [Provenzo81, pp. 174-178].
[Cassidy91, pp. 10-11] calls it “Dalmatian Pirates and the Volga Bulgars” and
“Officers and Sepoys”. The following rules are taken from [Cassidy91, p. 10]:

“To Start: The Pirates (above) are 24 in number and the Bulgars (
above), an embattled 2. The Pirates locate their pieces in the 24 spaces outside the

fortress (shown by the square); the Bulgars locate their 2 on any of the 9 spaces
inside the fortress. The Pirates play first.

The Play: On a turn, players move one piece along a line to an adjacent
empty space. The Pirates can only move toward the fortress (or, should I say, they
can’t move away from the fortress, since it is legal to go from one point to another if
both points are equidistant from the fortress). Once the Pirate is on any of the 9
points, it can move in any direction it wants either in the Fortress, or elsewhere. The
Bulgars can always move in any direction, anywhere on the board.

Capturing: Capturing is done in any direction by hopping over the captured
piece. Only the Bulgars can capture, and only in the following way: the Pirate has to
be adjacent to the Bulgar, and the landing spot has to be open. As in checkers,
multiple jumps are possible, although not required, so long as the Pirate pieces are
all separated by open landing spots. If the Bulgar has the opportunity to jump, he or
she must take it. If more than one are available – their choice.

Winning: The Pirates can win in either of two ways: (1) Occupy all 9 spaces
inside the fortress. (2) Trap both bulgars so that they can’t move. The Bulgars win by
capturing enough Pirates to make their task impossible.”

B.10 Go

The rules have been omitted here as they are a bit lengthy and easily
available. The game is described in [Agostino85, p. 107], [Brandreth81, pp. 165-168],
[Cassidy91, pp. 16-19], [Freeman79, pp. 133-142], [Grunfeld75, pp. 42-51],
[Jackson75, pp. 176-185], [Pritchard82, pp. 73-82], [Schmittberger92, pp. 58-66] and

 - 93 -

briefly mentioned in [Costello91, p. 10] and [Kraitchik53, pp. 279-280]. It is also
covered with and without variants in [Bell83, pp. 124-126] and [Diagram92, pp. 158-
167]. [Berlekamp94] contains an application of combinatorial game theory to Go
endgames.

B.11 Gomuku / Go-Bang / Renju and Pente / Ninuki Renju

Figure B.10: A 19 × 19 Gomuku board

Gomuku is mentioned in [Berlekamp82, pp. 676] and described in [Bell83, pp.
127], [Brandreth81, p. 168], [Gardner83, pp. 97-102], [Gilgallon88, pp. 68],
[Horne70, p. 11], [Jackson75, pp. 164-165], [Koch92, pp. 33-34], [Pentagram90, p.
158], [Pritchard82, 140-144], [Provenzo81, pp. 148-152], [Schmittberger92, p. 52]
and [Diagram92, p. 166]. The following rules are taken from [Diagram92, p. 166]:

“This is a straightforward game played on a Go board. It originated in Japan
and is sometimes called Go-bang or Spoil five.” ... “Each player has a set of 100
stones; one set black and the other white.

Objective: Players aim to position five stones so that they form a straight
line (horizontally, vertically or diagonally).

Play: The board is empty at the start of the game, and black has the opening
move. The players take it in turns to place a stone on any point (line intersection).
Once a stone has been placed it may not be moved again until the end of the game. If
all the stones are used up before either player has succeeded in forming a ‘five’, the
game may either be declared drawn, or the players may take it in turns to move one
stone one point in a horizontal or vertical direction until a ‘five’ is formed.”

Figure B.11: The conditions for a black capture of red’s pieces in Pente / Ninuki Renju

Pente / Ninuki Renju differ from Gomuku only in that an additional winning
condition is the capture of 5 “pairs” of pieces. This is possible if there are two
adjacent opponent pieces flanked on one side by the capturing player’s piece and
free on the other. This is shown in the figure above, where black can capture red’s
two pieces (which are removed from the board) by placing a piece on the empty point
on the right.

B.12 Hex

 - 94 -

Black

Black

White

White

Figure B.12: Hex: a win for black

Hex is described in [Gardner59, pp. 73-83], [Beasley89, pp. 142-143],
[Berlekamp82, pp. 680], [Bolt90, pp. 12-13], [Brandreth81, pp. 125-126], [Cassidy91,
pp. 20-21], [Gardner88, pp. 158-159], [Holt78, pp. 86-87], [Pritchard82, pp. 86-89],
[Silverman71, pp. 79-80] and [Diagram92, pp. 172-173]. It is analyzed in
[Binmore92, pp. 37-41]. The rules below are from [Beasley89, pp. 142-143]:

“It is played on a board such as that shown in the figure above, the actual size
of the board being a matter for agreement between the players. Each player takes
opposite sides, and his move is to place a man in any unoccupied cell, his objective
being to form a continuous chain between his two sides. Thus Figure B.12 shows a
win for black.”

B.13 Hoppers / Halma / Chinese Checkers

Figure B.13: The initial empty board for Hoppers. Pieces are placed in the centers of the corner camp
squares.

Mentioned with and without variants in [Brandreth81, pp. 132-133],
[Pentagram90, p. 91], [Provenzo81, pp. 91-108] and [Cassidy91, pp. 24-25], from
which the following rules for Hoppers are taken:

“To Start: Each player places 15 pieces of his or her color in the spaces of one
of the corner camps.

The Play: On a turn, a player can either “step” or “hop”. A “step” is moving a
piece to an adjacent vacant square in any direction, including diagonally. A “hop” is
jumping over an adjacent piece, in any direction, including diagonally, into a vacant
space. If more hops are available for the moving piece the player can take them or not
– their choice. Hopping and stepping are done within the Corner camp exactly the
same as outside it. The pieces hopped over can be either friendly or enemy, and they
are not removed from the board.

 - 95 -

Winning: The first player to fully occupy the enemy’s Corner Camp is the
winner.

Note: To stop an obnoxious opponent from simply leaving a piece in their
corner camp forever so as to block the enemy from fully occupying it, the following
rules can be used: A Corner Camp is considered full, even if one or more of the pieces
in it belong to the player who started there.”

Chinese Checkers is mentioned in [Diagram92, pp. 64-65], [Schmittberger92,
p. 8] and [Freeman79, pp. 146-148] and is almost exactly the same as Hoppers, but
played on a triangular, star-shaped board.

B.14 L Game, The

Figure B.14: The initial board for the L game

The L game is mentioned in [Pritchard82, pp. 107-112]. The rules are simple.
Here they are, from [Berlekamp82, pp. 364-365 and pp. 388-389], where the game
is also described and heavily analyzed:

“It is played on a 4 × 4 board. Each player has his own L-shaped piece which
may be turned over, and there are 2 neutral 1 × 1 squares. A move has two parts:

You must lift up your own L-piece and put it back on the board in another
position. You may, if you wish, change the position of one of the two neutral pieces. If
you can’t move, because there’s only the one place for your L-piece, you lose.”

B.15 Mancala / Awari / Wari

White's side

Black's side

White's
Store

Black's
Store

Figure B.15: The beginning position for the game of Mancala.

Mancala is described with varying rules in [Bell79, pp. 113-114], [Bell88, pp.
22-29], [Brandreth81, pp. 140-141], [Costello91, pp. 6-9], [Freeman79, pp. 119-120],
[Holt78, pp. 80-81], [Jackson75, pp. 160-161], [Pappas91, pp. 196-198],
[Pentagram90, p. 46], [Pritchard82, pp. 113-117] and [Cassidy91, pp. 32-33]. The
following rules are taken from [Cassidy91, pp. 32-33]:

“To Start: Each player puts 3 pieces in each of the 6 spaces along his/her side
of the board. In Mancala, the color of the pieces doesn’t matter. Both players can use
the same color, or a mix of colors. It’s irrelevant.

 - 96 -

The Play: Let’s say it’s your turn. Pick up all the pieces (or piece, if it’s later
in the game and there’s only one) from any one of the six spaces on your side. Then,
moving to the right (counter-clockwise), put one piece in each space you come to (your
spaces, or your opponent’s spaces; use them both). If you hit your Store, put a single
piece in it. If you hit your opponent’s Store, skip it.

Free Turn: If your last piece ends up in your own Store, you get a free turn.

Capturing: If you last piece ends up in an empty space on your side of the
board, you have captured all the pieces in the space directly opposite. Collect them
and put them in your Store along with the single piece of yours that made the
capture. That ends your turn.

How the Game Ends: When all six of your spaces are empty, the round is
over. However, it is usually not in your best interest to be the player with the empty
spaces, because your opponent can then place all of the pieces left in his six spaces in
his Store.

Scoring: Count the number of pieces in your Store, that becomes your score.
If you’re playing a single round, whoever has the most pieces in their Store at the end
of the round wins.”

B.16 Nim

3 4 5

Figure B.16: A nim game with piles of size 3, 4 and 5.

Nim forms one of the foundations of combinatorial game theory. The Sprague-
Grundy theory [Guy89, p. 26] states that any impartial game is equivalent to a nim
heap with reversible moves24. References to Nim can be found in [Gardner77, pp.
212-213], [Bolt90, pp. 12-13], [Brandreth81, p. 216], [Grunfeld75, p. 268], [Holt78,
pp. 66-67], [Kraitchik53, pp. 86-88], [Pentagram90, p. 97], [Schmittberger92, p.
131], [Silverman71, pp. 131-132], [Singleton74, pp. 24-29] and [Costello91, pp. 10-
11]. It is analyzed a bit in [Northrop44, pp. 36-40], [Gardner59, pp. 151-157],
[Gardner61, p. 63], [O’Beirne65, pp. 151-167], [Agostino85, p. 147] and [Binmore89,
pp. 35-37]. Exhaustive analysis can be found in [Beasley89, pp. 99-108], [Guy89]
and [Berlekamp82]. The following rules are taken from [Beasley89, pp. 99]:

“Players divide a number of counters or other objects into piles, and each
player in his turn may remove any number of counters from any one pile. ... A
player’s objective is to take the last counter.”

B.17 Nine Men’s Morris

24 A reversible move is a move that does not change the outcome, only delays it.

 - 97 -

Figure B.17: The starting board for Nine Men’s Morris.

This was already introduced in section 7.2.5, but it is repeated here for
completeness. It was mentioned briefly in [Berlekamp82, p. 673], and described with
and without variants in [Bell83, pp. 142-145], [Brandreth81, pp. 122-123],
[Costello91, pp. 6-7], [Diagram92, pp. 210-213], [Dudeny70, pp. 58-59], [Grunfeld75,
pp. 59-61], [Holt78, p. 75], [Mott-Smith54, pp. 132-135], [Pentagram90, p. 83],
[Provenzo81, pp. 29-40] and [Cassidy91, pp. 34-35]. The following rules are taken
from [Cassidy91, p. 34]:

“To Start: Players start with 9 pieces each, and the board starts empty.

Setting Up: Taking turns, players put all their pieces, one at a time, on 18
vacant points on the board. Having accomplished that, players continue taking turns.
A turn consists of moving a piece along a line to an adjacent empty point.

Making a string: A string is a complete line-up of 3 pieces – same color –
filling all 3 points of a line. Any line counts. Players can make a string either during
the set-up phase or during play. Once a player has managed to build a string, he or
she is immediately allowed to grab any enemy piece. The only limitation: an enemy
piece from an enemy string may not be removed – unless no other piece is available.
It’s legal to break up one of your own strings by moving one of its pieces out and then
– if your opponent is napping and doesn’t block – putting it back in place on a later
move, thereby reforming the same string all over. If you succeed, you can claim
another enemy piece.

Winning: A player wins by getting his or her opponent down to 2 pieces. A
player also wins if the opponent is blocked so that no move can be made. A player
who has only 3 pieces remaining is allowed, on a turn, to move any one of his pieces
to any vacant space. This is known as “flying” and it’s designed to give the underdog
a fighting chance.”

B.18 Othello / Reversi

Figure B.18: The starting board for Othello / Reversi.

 - 98 -

This game, a variant of Tic-Tac-Toe, is mentioned in [Gardner66, 75-78],
[Brandreth81, pp. 152-153], [Freeman79, pp. 143-146], [Pentagram90, p. 109],
[Pritchard82, 145-150], [Provenzo81, pp. 214-218] and [Diagram92, pp. 302-303].
The following rules are taken from [Diagram92, pp. 302-303]:

“Objective: Play ends when there is a piece on every square; the winner is
the player who has the most pieces with his face up a the end of the game.

Turns alternate. In his turn each player attempts to place one piece on the
board with his color or symbol face up.” ...

“Taking: After the first four pieces are placed, each player attempts to make
one move in each turn. Only taking moves are permitted, and if a player is unable to
make a taking move he loses a turn. (Both players are, however, limited to a
maximum of 32 plays.) A taking move is made by positioning a piece so that: (a) it is
in a square next to a square containing an opposition piece; and (b) it traps at least
one opposition piece in a line in any direction between itself and another of the
taker’s pieces.” ...

“When a piece is taken it is turned over to show the other player’s symbol or
color. A piece may be turned over many times during a game as it passes from one
player to the other. Pieces are never removed from the board when they are taken.

Multiple takes By positioning a single piece a player may simultaneously
take several in more than one line .” ... “Note that pieces may not be taken if a line is
completed only when a piece is turned over.”

B.19 Roundabouts / Surakarta

Figure B.19: The starting board for Roundabouts.

It is described with and without variants in [Bell83, pp. 96-97] and
[Cassidy91, pp. 12-13]. The following rules are taken from [Cassidy91, pp. 12-13]:

“To Start: Let’s make you player number one. It so happens you like the
color black. So take 12 black pieces and put them on the black dots on your side of the
board. Your opponent puts 12 white pieces on the white dots on the other side of the
board.

The Play: On every turn, you either move, or capture.

 - 99 -

Moving: You can move to any unoccupied adjacent point, in any direction
(including diagonally). Remember, moving is done only to adjacent points. (A point is
the intersection of two lines).

Capturing: Capturing is a lot more exciting than moving because capturing
has to be done via a loop, or race-track. There are two racetracks on the board, the
inner one (red) and the outer track (yellow). Note that all the points on the board,
except the far corners, are on one track or the other, and you can launch yourself
from any of them. You can go as far as you like along a racetrack except that you
can’t pass over another’s piece, either your own or your opponent’s. To capture an
enemy piece, you have to land on its point, bumping it off and putting it in your
prisoner pile. However, to get there you have to travel via a loop or loops.” ...

“Winning: “Let’s say you’ve captured all the enemy pieces. Count the number
of your own pieces left on the board, and that becomes your score. Play 2 games
(alternate who goes first) and add up your scores to find the winner of the entire
match”.

 - 100 -

Bibliography

[Abraham61] R. M. Abraham. Easy-to-do Entertainments and Diversions
with Coins, Cards, String, Paper and Matches. Dover
Publications, Inc., 1961.

[Agostino85] Franco Agostino and Nicola Alberto DeCarlo. Intelligence
Games. Simon and Schuster, 1985.

[Allis88] Victor Allis. A Knowledge-based Approach of Connect-Four.
Master’s thesis, Vrije Universiteit, October 1988.

[Anderson89] Harry Anderson and Turk Pipkin. Games you Can’t Lose.
Simon and Schuster, 1989.

[Beasley89] John D. Beasley. The Mathematics of Games. Oxford
University Press, 1989.

[Bell79] R. C. Bell. Board and Table Games from Many Civilizations.
Oxford University Press, 1979.

[Bell83] R. C. Bell. The Boardgame Book. Exeter Books, 1983.

[Bell88] Robbie Bell and Michael Cornelius. Board Games Round the
World: A Resource Book for Mathematical Investigations.
Cambridge University Press, 1988.

[Berlekamp82] Elwyn Berlekamp, John H. Conway, and Richard K. Guy.
Winning Ways. Academic Press Inc., 1982.

[Berlekamp94] Elwyn Berlekamp and David Wolfe. Mathematical Go
Endgames : Nightmares for the Professional Go Player. Ishi
Press International, 1994.

[Binmore92] Ken Binmore. Fun and Games : A Text on Game Theory. D.
C. Heath and Company, 1992.

[Bolt85] Brian Bolt. More Mathematical Activities. Cambridge
University Press, 1985.

[Bolt90] Brain Bolt. The Amazing Mathematical Amusement Arcade.
Cambridge University Press, 1990.

[Brandreth81] Gyles Brandreth. The World’s Best Indoor Games. Pantheon
Books, 1981.

[Brandreth85] Gyles Brandreth. Classic Puzzles. Harper & Row Publishers,
1985.

 - 101 -

[Cassidy91] John Cassidy. The Book of Classic Board Games. Klutz Press,
1991.

[Conway76] J. H. Conway. On Numbers and Games. Academic Press,
London and New York, 1976.

[Costello91] Matthew J. Costello. The Greatest Games of All Time. John
Wiley & Sons, 1991.

[Dewdney89] A. K. Dewdney. Computer Recreations: A Tinkertoy computer
that plays tic-tac-toe. In Scientific American, pages 120-123,
October, 1989.

[Diagram92] Diagram Visual Information, Ltd. Family Fun & Games.
Sterling Publishing Company Inc., 1992.

[Dudeny67] Henry Ernest Dudeney. 536 Puzzles and Curious Problems.
Charles Scribner's Sons, 1967.

[Dudeny70] Henry Ernest Dudeney. Amusements in Mathematics. Dover
Publications, Inc., 1970.

[Fischer66] Bobby Fischer, Stuart Margulies, and Donn Mosenfelder.
Bobby Fischer Teaches Chess. Bantam Books, 1966.

[Freeman79] Jon Freeman. The Playboy Winner’s Guide to Board Games.
Playboy Press, 1979.

[Frochlichstein62] Jack Frochlichstein. Mathematical Fun, Games and Puzzles.
Dover Publications, Inc., 1962.

[Garcia94] Dan Garcia. Xdom : A Graphical, X-based Front-End for
Domineering. In Proceedings of the Workshop on
Combinatorial Games, July 1994. Program available at
http://http.cs.berkeley.edu/~ddgarcia/software/xdom/ or send
e-mail to ddgarcia@cs.Berkeley.EDU.

[Gardner59] Martin Gardner. The Scientific American book of
Mathematical Puzzles and Diversions. Simon and Schuster,
1959.

[Gardner61] Martin Gardner. Entertaining Mathematical Puzzles. Dover
Publications, Inc., 1961.

[Gardner66] Martin Gardner. New Mathematical Diversions from
Scientific American. The University of Chicago Press, 1966.

[Gardner77] Martin Gardner. Mathematical Carnival. Vintage Books,
1977.

 - 102 -

[Gardner83] Martin Gardner. Wheels, Life and Other Mathematical
Amusements. W. H. Freeman and Co., 1983.

[Gardner88] Martin Gardner. Time Travel and Other Mathematical
Bewilderments. W. H. Freeman and Co., 1988.

[Gardner92] Martin Gardner. Fractal Music, Hypercards and More... W.
H. Freeman and Co., 1992.

[Gilgallon88] Barbara Gilgallon and Sue Seddon. Travel Games. Ward
Lock Limited, 1988.

[Grunfeld75] Frederic V. Grunfeld, UNICEF. Games of the World. Plenary
Publications International, Inc., 1975.

[Guy89] Richard K. Guy. Fair Game. COMAP, Inc., 1989.

[Hollow91] Rhys Hollow. Gamemaster. Shareware software, 1991.
Program available at ftp://mac.archive.umich.edu/archive/ma
c/game/board/gamemaster1.0.cpt.hqx or send email to
gurhs@uniwa.uwa.oz.au

[Holt78] Michael Holt. Math Puzzles & Games, Volume 1. Dorset
Press, 1978.

[Horne70] Sylvia Horne. Patterns and Puzzles in Mathematics. Franklin
Publications, 1970.

[Jackson75] John Jackson. A Player’s Guide to Table Games. Stackpole
Books, 1975.

[Kaplan68] Philip Kaplan. Puzzle Me This. Warner Books, Inc., 1968.

[Kendall62] P. M. H. Kendall and G. M. Thomas. Mathematical Puzzles
for the Connoisseur. Charles Griffin & Co. Ltd., 1962.

[Kierulf90] Anders Kierulf. Smart Game Board: a Workbench for Game-
Playing Programs, with Go and Othello as Case Studies.
Ph.D. thesis, Swiss Federal Institute of Technology (ETH),
Zürich, 1990. Nr. 9135.

[Koch92] Karl-Heinz Koch. Pencil & Paper Games. Sterling Publishing
Co., Inc., 1992.

[Kordemsky72] Boris Kordemsky. The Moscow Puzzles. Dover Publications,
Inc. 1972.

[Kraitchik53] Maurice Kraitchik. Mathematical Recreations. Dover
Publications, Inc., 1953.

 - 103 -

[Loyd59] Sam Loyd. Mathematical Puzzles of Sam Loyd. Dover
Publications, Inc., 1959.

[Maguire90] Jack Maguire. Hopscotch, Hangman, Hot Potato, & Hahaha.
Fireside, 1990.

[Mason63] Bernard S. Mason and Elmer D. Mitchell. Party Games.
Harper and Row, Publishers., 1963.

[Morehead83] Albert H. Morehead and Geoffrey Mott-Smith. Play
According to Hoyle : Hoyle’s Rules of Games. Penguin Books,
1983.

[Mott-Smith54] Geoffrey Mott-Smith. Mathematical Puzzles for Beginners &
Enthusiasts. Dover Publications, Inc., 1954.

[Northrop44] Eugene P. Northrop. Riddles in Mathematics. D. Van
Nostrand Company, Inc., 1944.

[O’Beirne65] T. H. O’Beirne. Puzzles & Paradoxes. Oxford University
Press, 1965.

[Pappas91] Theoni Pappas. More Joy of Mathematics. Wide World
Publishing/Tetra, 1991.

[Pentagram90] Pentagram. Pentagames. Simon and Schuster, Inc., 1990.

[Pritchard82] David Pritchard. Brain Games. Penguin Books Ltd., 1982.

[Propp94] Jim Propp. Three-Person Impartial Games. In Theoretical
Computer Science, 1994.

[Provenzo81] Asterie Baker Provenzo and Eugene F. Provenzo, Jr. Favorite
Board Games You Can Make and Play. Dover Publications,
Inc., 1981.

[Schmittberger92] R. Wayne Schmittberger. New Rules for Classic Games. John
Wiley and Sons, Inc., 1992.

[Silverman71] David L. Silverman. Your Move : Logic, Math and Word
Puzzles for Enthusiasts. Dover Publications, 1971.

[Singleton74] Robert R. Singleton and William F. Tyndall. Games and
Programs: Mathematics for Modeling. W. H. Freeman and
Company, 1974.

[Sole88] Tim Sole. The Ticket to Heaven and other Superior Puzzles.
Penguin Books, 1988.

[Tzu83] Sun Tzu. The Art of War. Dell Publishing, 1983.

 - 104 -

[Winston84] Patrick Henry Winston. Artificial Intelligence. Addison-
Wesley Publishing Company, Inc., 1984.

[Wiswell73] Tom Wiswell. The Science of Checkers and Draughts. A. S.
Barnes and Co., Inc., 1973.

[Wolfe94] David Wolfe. The games toolkit. In Proceedings of the
Workshop on Combinatorial Games, July 1994. Program
available at http://http.cs.berkeley.edu/~wolfe/, or send e-mail
to wolfe@cs.Berkeley.EDU.

 - 105 -

