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ABSTRACT

CWhatUC (pronounced “see what you see”) is a computer software system which will predict a patient's visual
acuity using several techniques based on fundamentals of geometric optics. The scientific visualizations we propose can be
clustered into two classes: retinal representations and corneal representations; however, in this paper, we focus our discussion
on corneal representations. It is important to note that, for each method listed below, we can illustrate the visual acuity with
or without spectacle correction. Corneal representations are meant to reveal how well the cornea focuses parallel light onto the
fovea of the eye by providing a pseudo-colored display of various error metrics. These error metrics could be:

a) standard curvature representations, such as instantaneous or axial curvature, converted to refractive power maps by taking
Snell's law into account

b) the focusing distance  from each refracted ray’s average focus to the computed fovea
c) the retinal distance on the retinal plane from each refracted ray to the chief ray (lateral spherical aberration)

For each error metric, we show both real and simulated data, and illustrate how each representation contributes to the
simulation of visual acuity.
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1. BACKGROUND

The cornea is the transparent tissue covering the front of the eye. It performs 3/4 of the refraction, or bending, of
light in the eye, and focuses light towards the lens and the retina. Thus, subtle variations in the shape of the cornea can
significantly diminish visual performance. Recently, instruments to measure corneal topography have become commercially
available; they are known as videokeratographs (VKs).1,2,3,4,5 These corneal topography devices typically shine rings of
light onto the cornea and then capture the reflection pattern with a built-in video camera. Figure 1 shows the ring pattern from
a patient whose visual acuity we wish to simulate.

Figure 1: The reflection pattern from a patient with an irregularly-shaped cornea.
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Instead of allowing the instrument to process the pattern, we extract the data and construct a mathematical spline
surface representation from these reflection patterns6,7. This representation allows us to query, or “sample” the surface at
arbitrary points to determine information about surface position, normals and principal curvatures. CWhatUC is a software
system that uses this information to compute and display different metrics of visual acuity. A wireframe rendering of an
example surface with a very low sampling density is shown in Figure 2.

Figure 2: A wireframe rendering of a reconstructed mathematical spline surface.

2. THE FOUR METRICS

We propose four metrics to simulate the corneal contribution to visual acuity. Figure 3 illustrates how we compute
the values that we use in our calculations. Our corneal model is a very simple one since we ignore the contribution of the
lens and consider the entire cornea to be a uniform material with a constant index of refraction (n) of 1.3375. It is important
to note that the metrics we propose here are independent of our implementation. If we were to improve the quality of the
model, the metrics themselves would remain unchanged.
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Figure 3: A simple model of the cornea, eye, and the refraction of a ray of incoming light.



We begin the computation at the central axial point on the cornea. We refract incoming parallel light and calculate
where it converges to a focus using Coddington’s equations8,9. Fortunately, due to constraints in our representation, the
normal at the central point is parallel to the incoming parallel light; thus, according to Snell’s law, the refracted light will
also be in this same direction. If the central axial point has some astigmatism, or cylinder, then so will the refracted
wavefront and there will be two principal curvatures. We define the paraxial focal point (PFP) to be the focus as determined
by the average of these curvatures (also known as “mean sphere”). The VK axis, which is the z-axis, is the line from the
central axial point to the PFP. The retinal plane is the plane that passes through the PFP and is normal to the VK axis.

Then, for each corneal point of interest, we refract parallel incoming light according to Snell’s law and Coddington’s
equations and we calculate where that light focuses. Again, if there is any cylinder in the refracted wavefront, then there will
be two principal curvatures; in that case, we use their average to determine the focus. The retinal intersection is the location
where the refracted ray intersects the retinal plane. If the normal lies in the meridional plane*, then the axis intersection is the
intersection of the refracted ray with the VK axis; otherwise, the refracted ray will not intersect the VK axis. In that case, we
choose the axis intersection to be the point of closest approach to the central axis along the refracted ray. At the central axial
point there are infinitely many such intersections; thus, for that corneal point, we set the axis intersection to be the PFP.

2.1 Axial Refractive Power

We define axial refractive power at a corneal point to be the quotient of index of refraction of our model cornea
divided by the distance from the corneal point to the axis intersection. This map often has a characteristic “figure-8” or
“crescent” shape. Clinicians are familiar with this representation because it is similar to the standard axial curvature maps used
in most corneal topography instruments. The acute asymmetry of the maps often facilitates the identification and
measurement of the amount and orientation of astigmatism.

  
Axial refractive power =

n

Distance3D(Corneal_Point, Axis_Intersection)
(1)

where

  
Distance3D(P0 , P1)= P1x − P0x( )2

+ P1y − P0 y( )2
+ P1z − P0z( )2

(2)
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Figure 4: Axial refractive power is a function of the distance between the corneal point and the axis intersection.

This definition differs from the traditional axial curvature map10,11,12 in that this refractive power map takes into
account the refraction of an incoming parallel ray, whereas the standard map is purely a surface shape quantity. For example,
the standard axial curvature of a sphere is constant over its surface, whereas the axial refractive power increases as we move
away from the center. Figure 5 illustrates a direct comparison of these two quantities on a simulated cornea having with-the-
rule astigmatism. Note that even though there is a difference in the orientation of the figure-8 pattern, they are identical in the
central region near the VK axis.

* We define the meridional plane to be the plane containing the VK Axis and the corneal point.



Figure 5: A comparison between axial refractive power and axial curvature.

2.2 Instantaneous Refractive Power

We define instantaneous refractive power at a corneal point to be the quotient of index of refraction of our model
cornea divided by the focal distance of the cornea at that point, which is the distance from the corneal point to the focus. This
is the only one of our four metrics that is not a function of the central axis or of the PFP; rather, it is purely a measure of the
surface’s refracting power. The advantage of this definition over other traditional representations such as mean sphere13 ,
Gaussian power14,15, axial power, and instantaneous power is that this metric illustrates spherical aberration. Those other
metrics would be constant for a sphere, whereas instantaneous refractive power increases away from the center.

  
Instantaneous refractive power =

n

Distance3D(Corneal_Point, Focus)
(3)
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Figure 6: Instantaneous refractive power is a function of the distance between the corneal point and the focus.

2.3 Retinal Distance

We define the retinal distance, for each corneal point, to be the distance from the PFP to the retinal intersection, that
is, to the point of intersection of the refracted ray with the retinal plane. Since the retinal plane was defined to contain the
PFP, both the retinal intersection and the PFP lie in that plane; thus, the distance calculation is a two-dimensional planar
distance measure. For a perfect eye, parallel light would converge to a point focus at the PFP and thus, in this case, the
retinal distance at every corneal point would be zero. This metric provides an estimate of lateral spherical aberration.

Retinal distance = Distance2D(Retinal_Intersection, PFP) (4)



where

  
Distance2D(P0 , P1)= P1x − P0x( )2

+ P1y − P0y( )2
(5)
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Figure 7: Retinal distance is the distance between the retinal intersection and the PFP.

2.4 Focusing Distance

We define focusing distance, for each corneal point, to be the distance from the focal point of the refracted ray to the
PFP. For a perfect eye, the rays of incoming parallel light would converge to a point focus at the PFP and thus the focusing
distance for every corneal point would be zero in this case.

Focusing distance = Distance3D(Focus, PFP) (6)
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Figure 8: Focusing distance is the distance between the focus and the PFP.

3. REPRESENTATIONS

For each acuity metric, we determine the minimum and maximum values over all the points on the cornea, define a
colormap to span those values, and index into that colormap to pseudo-color the surface of the cornea. We have chosen a grey-
scale map here, but a user of CWhatUC is provided with a full-color map.**

** Note that the hardcopy halftoning has introduced some visible non-linearity to the grey-scale map. This is not an artifact of the
data, but of the printing process itself. This is most easily seen in Figure 10 of the simulated data; the actual instantaneous refractive
power and focusing distance maps are smooth and do not have a “ring” halfway out as the images would suggest.



4. RESULTS

We display our four metrics on two sets of data, a simulated cornea and a real cornea. The four metrics each
contribute some information to the clinician about the projected visual acuity, as we will see.

4.1 Simulated Data

We use a simple asymmetric ellipsoid to simulate a cornea that has with-the-rule astigmatism. The equation for the
ellipsoid is
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with A=9, B=8.7 and C=10. This is rendered in three dimensions below in Figure 9. The intensity of every point in this
image is a linear function of the z value of the data; the lighter data points are closer to the z=0 plane. We define the range of
the data to be x,y = [-3,3][-3,3].

Figure 9: A three-dimensional view of our simulated cornea, modeled as an ellipsoid with A=9, B=8.7 and C=10.

The most striking metric is axial refractive power. It highlights the inherent astigmatism associated with this
asymmetric model. We can easily measure that there are four diopters of cylinder and the model is exactly with-the-rule.
Retinal distance demonstrates that the left and right areas contribute to focus slightly better than the top and bottom regions,
with a good focus in the central circle. Instantaneous refractive power and focusing distance indicate little here other than the
focus is worse away from the center, and that the errors are close to rotationally symmetric.

4.2 Real Data

This data is from a patient with keratoconus16,17,18, a condition in which the cornea has a local region of high
curvature, which for this cornea is an oval region in the lower left of the image. This data was reconstructed from the ring
patterns shown in Figure 1. Of our metrics, instantaneous refractive power and focusing distance highlight the keratoconus
best. In fact, instantaneous refractive power gives similar values for the amount of curvature in the region as does
instantaneous power, Gaussian power, and mean sphere. The axial refractive power map has a crescent shape because the
keratoconus is eccentric and results in some astigmatism. Retinal distance, in conjunction with focusing distance, indicates
which rays contribute to good focus. In this case, only a small central area provides a good focus, as this is the only area
where both maps are near zero.



Figure 10: A view of our four acuity metrics for ellipsoidal simulated data.

Figure 11: A view of our four acuity metrics for the real data of a keratoconic cornea.



5. CONCLUSION

We have presented four metrics for simulating visual acuity based on geometric optics, and showed the results using
simulated and real data as implemented by CWhatUC. Axial refractive power is familiar to clinicians who often use a similar
measure for astigmatism. Instantaneous refractive power is useful for describing the corneal shape, but doesn't take the PFP
into account. Focusing distance and retinal distance taken together illustrate which regions contribute to a crisp focus onto the
PFP. In summary, the four metrics, when used to supplement one another, provide additional insight into the prediction of a
patient's visual acuity.
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