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Abstract

In this paper, we study the problem of solving integer range constraints that arise in many static
program analysis problems. In particular, we present the first polynomial time algorithm for a general
class of integer range constraints. In contrast with abstract interpretation techniques based on widen-
ings and narrowings, our algorithm computes, in polynomial time, theoptimal solutionof the arising
fixpoint equations. Our result implies that “precise” range analysis can be performed in polynomial
time without widening and narrowing operations.
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1. Introduction

Many programanalysis and verification algorithms and tools have the need to solve linear
integer constraints or its extensions, such as for checking array bounds to ensure memory
safety[17,41,18,38] and for detecting buffer overruns for security applications [39], and
for array dependency analysis for parallel compilers [33,34,31,35,7,6]. However, solving
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integer linear constraints is adifficult problem[24], andonly very special caseshaveefficient
algorithms [32,3].
In this paper, we study constraints overinteger ranges, e.g., the set{−1,0,1}, rep-

resented as[−1,1]. These constraints can be used to express many interesting program
analyses [39,11,10]. Furthermore, we show that these constraints can be solved for their
optimal solution efficiently. A key property that makes integer range constraints efficiently
solvable is its simple join operation in the lattice of ranges. The join of two ranges is defined
as[l, u] � [l′, u′] = [inf {l, l′}, sup{u, u′}] (where inf and sup compute the minimum and
maximum of two numbers) instead of the union of the two ranges. (This does not consider
⊥, the smallest range. See Section 2 for a complete definition of the join operator.) This
use of� is not as precise as the standard union. However, it is sufficient for many anal-
ysis problems [39,11] that need lower and upper bounds information on values of integer
variables.
For readers familiar with interval constraints for floating-point computation [20,21,4,30]

based oninterval arithmetic[27], integer range constraints are different. Such work deals
primarily with rounding errors in real numbers, and the goal is to get an approximate real in-
terval that includes all solutions to the original constraints. Range constraints deal with inte-
ger ranges, and the goal is to find the least solution, i.e., the smallest ranges that satisfy all the
constraints.
Our algorithm is based on a graph formulation similar to that used by Pratt [32] and

Shostak [36]. We use fixpoint computations to find the least solution. Our techniques are
closely related to those used in integer programming [22], especially those targeted at
program analysis and verification. We next survey some closely related work.
Tractable linear integer constraints: Pratt [32] considers the simple form of linear con-

straintsx�y +k, wherek is an integer, and gives a polynomial time algorithm based on de-
tecting negative cycles in weighted directed graphs. The graph representation we use in this
paper borrows from Pratt’s method. Shostak [36] considers a slightly more general problem
ax+by�k, wherea,b, andkare integer constants. Aworst case exponential time algorithm
is given for this kind of constraints by so-called “loop residues.” Nelson [28] considers the
same fragment and also gives an exponential time algorithm. Aspvall andShiloach [3] refine
Shostak’s “loop residue” method and give a polynomial time algorithm for the fragment
with two variables. Because constraints with three variables are NP-hard [24], this may be
the most general class one can hope for a polynomial time algorithm.
General linear integer constraints: General linear integer constraints are also considered

in the literature. Some provers use the Fourier–Motzkin variable elimination method [33],
the Sup–Inf method of Bledsoe [5], or Nelson’s method based on Simplex [29]. However,
all the algorithms considered for integer programming have either very high complexity or
treat only special cases. In contrast, because of the special structure of the range lattice and
properties of affine functions, we are able to design polynomial time algorithms for some
common and rather expressive class of range constraints.
Dataflow and fixpoint equations: Also related is work on dataflow equations in program

analysis [23,25], and lattice constraints in abstract interpretation [11–14], and fixpoint com-
putations in general [15,2,1]. There are some key differences. In this paper, the lattice we
consider is an infinite height lattice. For most work in dataflow analysis, the lattices used
are of finite height, in which case, termination with exact least solution is guaranteed. For
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abstract interpretation and general fixpoint computation, although infinite lattices are used
in many cases, termination is not guaranteed, and sometimes cannot be guaranteed. Tech-
niques such aswidening and narrowing are used to control the termination of the analysis. In
particular, there exist techniques to discover certain sufficient conditions to perform accel-
erations (or exact widenings) in the context of reachability analysis of finite linear systems
(a.k.a. Presburger Model Checking)[16,8].
In this work, we exploit an important property of ranges and affine functions to achieve

efficient termination. For example, Cousot and Cousot’s interval analysis [11] is quite ef-
ficient in practice but may lose precision due to its use of widenings (see the last part
of Section 2 for an example); in comparison, our algorithm efficiently finds theexact
least fixpoint by exploiting the structure of affine constraints, but only applies to a less
general class of transfer functions. In fact, the class of constraints we consider resem-
bles the fixpoint equations in [11]. In [39], the authors consider a simpler form of con-
straints than what is considered in this paper and give a worst case exponential time
algorithm.
We summarize here the contributions of the paper: (i) it describes a polynomial time algo-

rithm for solving a general class of affine range constraints (Section 3); (ii) it shows, for the
first time, that precise interval analysis can be performed in polynomial time; (iii) it presents
hardness and decidability results for satisfiability of some natural extensions of our con-
straint language (Section 4); and (iv) our techniques might be useful for solving constraints
in other lattices.

2. Preliminaries

LetZ denote the set of integers. The lattice of ranges is given by

L
def= {⊥} ∪ {[l, u] | l ∈ Z ∪ {−∞} ∧ u ∈ Z ∪ {+∞} ∧ l�u}

ordered by�, such that
• ⊥ � r for anyr ∈ L,
• [l1, u1] � [l2, u2] if l2� l1�u1�u2.
In the lattice,⊥ (the empty range) is the smallest range, and[−∞, +∞] is the largest range,
also denoted by�. The meet� and join� are defined as follows:
• ⊥ � r = ⊥ ∧ [l1, u1] � [l2, u2] = [l = sup{l1, l2}, u = inf {u1, u2}] (⊥ if l > u),
• ⊥ � r = r ∧ [l1, u1] � [l2, u2] = [inf {l1, l2}, sup{u1, u2}],
for any ranger ∈ L. We select the lower bound and upper bound of a non-empty range
r = [l, u] by lb(r) = l andub(r) = u.
The range expressions are given by

E ::= r | X | n × X | E + E,

wherer ∈ L denotes a range constant,X is a range variable,n × X denotes scalar mul-
tiplication byn ∈ Z, andE + E denotes range addition. Arange constrainthas the form
E � r � X. Whenr = �, we simply write the constraint asE � X. Notice that we require
the right-hand side of a range constraint to be a variable, which is related to “definite set
constraints”[19]. We give some examples using these constraints below. Readers interested
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inmore information on the connection between range constraints and programanalysismay
wish to consult, for example[11,10].
Let V denote the set of range variables. Avaluation� is a mapping fromV to L, the

lattice of ranges. We extend� on variables to work on range expressions inductively, such
that
• �([l, u]) = [l, u],
• �(n × X) = n × �(X),
• �(E1 + E2) = �(E1) + �(E2),
wheren × [l, u] = [inf {nl, nu}, sup{nl, nu}] and[l1, u1] + [l2, u2] = [l1 + l2, u1 + u2].
We say a valuation� satisfiesa constraintE � r � X if �(E) � r � �(X). A valuation

satisfies a set of constraints if it satisfies each one of the constraints. Such a valuation is
called asolutionof the constraints.

Proposition 1. Whenf (X) = aX + b denotes an affine function, we havef ([l, u] �
[l′, u′]) = f ([l, u]) � f ([l′, u′]) andf ([l, u] � [l′, u′]) = f ([l, u]) � f ([l′, u′]).

Definition 2 (Range saturation). Avaluation�saturatesagivenconstraintf (X) � [c, d] �
Y if [c, d] � �(f (X)). It partially saturatesthe constraint ifl = c oru = d, where[l, u] =
�(f (X)) � [c, d].

A set of constraints can have many solutions. For most static program analyses, we
are interested in theleast solution, if it exists, because such a solution gives us the most
information. For the range constraints we consider, every set of constraints is satisfiable and
has a least solution.

Proposition 3 (Existence of least solution). Any set of range constraints has a least solu-
tion.

Our goal is to compute such a least solution effectively. We denote byleastC the least
solution of the constraintsC. We useleast(X) for the least solution for a range variable
X if the underlying constraints are clear from the context. Next, we give some example
constraint systems, which may come from an interval analysis similar to[11] of some
small C program fragments. We give examples for both a flow-insensitive analysis and a
flow-sensitive analysis. Notice that the interval analysis in [11] is traditionally specified as
a flow-sensitive one. A constraint-based formulation sometimes can allow a more natural
integration of flow-sensitivity and flow-insensitivity.

Example 1. Consider the constraints{[0,0] � X, X + 1 � X} (with least solution
[0, +∞]) from the analysis of the following C program fragment:

int i = 0; /* yields the constraint [0,0] <= X */
while (i < 10) {

...
i = i+1; /* yields the constrain t X + 1 <= X */

}
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Notice that this is a flow-insensitive analysis. For comparison, the following constraints
may be used for a flow-sensitive analysis:

{[0,0] � X0, X0 � X1, X3 � X1, X1 � [−∞,9] � X2, X2 + 1� X3},

whereXi ’s denote the variable instances at different program points. See[11] for more
details.

Example 2. Consider the constraints{[10,10] � X, (−2)×X � X} (with least solution
[−∞, +∞]), which come from the analysis of the following fragment:

int i = 10; /* yields [10,10] <= X */
while (...) {

...
i = -2*i; /* yields (-2)*X <= X */

}

Let us go back to Example 1. Notice that although the program ensuresi �10 , the range
we get says its value can be unbounded. To address this imprecision, we can generate more
precise constraints to use non-trivial intersection constantsr, in E � r � X. This use is
motivated by the goal to provide more precise analysis of ranges by modeling conditionals
in while andif statements. In Example 1, we expect to say thatX has the range[0,10].
We can model the example more precisely with the constraints[0,0] � X and(X + 1) �
[−∞,10] � X. Notice that the least solution of these constraints is indeed[0,10] and is
what we expect.
Consider another program fragment:

int i = 0;
while (i < n) {

...
i = i+1;

}

We would want to express the constraints{[0,0] � X, (X + 1) � [−∞, ub(Y )] � X},
whereX andY are the range variables for the program variablesi andn, respectively, and
ub(Y ) denotes the upper bound ofY . The constraint(X + 1) � [−∞, ub(Y )] � X is
equivalent to{[−∞, ub(Y )] � Z, (X + 1) � Z � X}, whereZ is a fresh range variable.
In practice, we can restrict the meet operation to be with a range constant in most cases,
because the range variablesX andY usually do not belong to the same strongly connected
component and can be stratified (see Section3).
Alternatively, it is sufficient to consider conditions forwhile andif statements of the

formx�0 (orx > 0) after some semantics-preserving transformations on the original code.
As an example, consider the following program fragment:

if (x > y + 3) {
...

}
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Fig. 1. An example of how to analyze relationships between variables: (a) program after transformation;
(b) constraints.

We can transform it to the code fragment in Fig.1a, wherez is a temporary variable for
storing intermediate results. We give labels for the few program locations. The generated
constraints are given in Fig. 1b. In the constraints, we use program location labels on the
range variables to distinguish the instances, i.e., the underlying analysis is flow-sensitive.
Essentially,weuse rangeconstraints to “project” the relevant information from the condition
z �0 onto x andy . It is perhaps interesting to notice that ranges are extremely weak in
relating variables.
For illustration, we provide here two simple examples to show that the standard widening

and narrowing techniques [11] may not give the optimal solution even restricted to affine
functions.

Example 3. Consider the following program fragment:

int i = 0;
while (...) {

if (... ) { i = 1; }
}

We obtain the constraints{[0,0] � X, [1,1] � X}. The optimal solution forX is [0,1].
However, with widenings and narrowings at program back-edges, we get[0, +∞]. In gen-
eral, if we have a widening operation at the variablei and if i occurs in two loops of affine
constraints with different fixpoints, then widening and narrowing will give an imprecise
answer.

Example 4. Consider the constraints{[0,0] � X, (−X + 1) � X}. The optimal solution
for X is [0,1], however, with widenings and narrowings, we get[0, +∞].

3. An algorithm for solving range constraints

Our algorithm is based onchaotic iteration[12]. We start by assigning each variable⊥,
and then iterate through the constraints using the current valuation�. For each constraint
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Fig. 2. Graph representation of constraints: (a) example constraints; (b) graph representation.

E � r � X, if �(E) � r �/ �(X), we set�(X) := (�(E) � r) � �(X). This process repeats
until all the constraints are satisfied. Although this process always converges for any finite
height lattices, it may not converge for infinite height lattices, e.g., consider the constraints
X + 1 � X and[0,0] � X. Our approach is to extend chaotic iteration with strategies to
handle this kind of cyclic constraints.
We have a natural representation of constraints as graphs. Each vertex in the graph

represents a variable (or in some cases, a range constantr), and an edge fromX toY labeled
f (X) � r represents the constraintf (X) � r � Y . A constraint[l, u] � X is represented
as an edge from a node representing the range constant[l, u] to the nodeX. Some example
constraints and their graph representation are shown in Fig.2.
As mentioned above, our approach is to adapt chaotic iteration to propagate information

along edges of the graph until we reach a fixpoint. This fixpoint is the least one. If the graph
is acyclic, then we can simply propagate the constraints in its topologically sorted order.
In the rest of the section, we consider possibly cyclic graphs. We start with a simple loop
(Section 3.2), a multi-loop (Section 3.3), a strongly connected component (Section 3.4),
and finally a general graph (Section 3.5).

3.1. Constraint transformation

Although possible, it is complicated to solve directly constraints with negative coeffi-
cients. For a simpler presentation, we first describe a constraint transformation to make all
constraints have positive coefficients.

Lemma 4. Any systemof constraints can be effectively transformed to an equivalent system
where all constraints have positive coefficients.

Proof. For each variableX in the original system, create two variablesX+ andX−. The
variableX+ corresponds toX, andX− corresponds to−X. We then apply the following
transformations on the original constraints:
• Replace eachinitial constraint[l, u] � X with two constraints:

{[l, u] � X+, [−u, −l] � X−}.
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Fig. 3. An algorithm for solving a simple loop.

• Replace each constraint of the form(aX + b) � [l, u] � Y , wherea > 0, with two
constraints:

{(aX+ + b) � [l, u] � Y+, (aX− − b) � [−u, −l] � Y−}.
• Replace each constraint of the form(aX + b) � [l, u] � Y , wherea < 0, with two
constraints:

{(−aX− + b) � [l, u] � Y+, (−aX+ − b) � [−u, −l] � Y−}.
One can verify that the two systems of constraints have the same solutions on the corre-
spondingX andX+, and in particular, they have the same least solution. In addition, the
transformation is linear time and produces a new system of constraints linear in the size of
the original system. �

Notice that this transformation also applies to affine functions with more than one vari-
ables. Hence, in the rest of the paper, we consider only constraints defined over positive
affine functions.

3.2. A simple loop

Considera loopwith theconstraints[l, u] � X andf (X)�[c, d] = (aX+b)�[c, d] � X,
wherea > 0. We give an algorithm in Fig.3 to find its least solution. The algorithm is
similar to the widening operator defined on ranges [11].

Lemma 5. The algorithm in Fig.3 computes the least solution of a simple loop.

Proof. If [l′, u′] � [l, u], then clearly we have reached the least fixpoint, so we have
least(X) = [l, u]. Otherwise, we have three cases to consider. (1) Ifl′ < l andu′ > u,
sincef (X) = aX+b is a positive affine function,lb(f n([l, u])) forms a strictly decreasing
sequenceandub(f n([l, u])) formsa strictly increasing sequence.However, the lower bound
can reach as low ascand the upper bound can reach as high asd. Thus, we haveleast(X) =
[c, d]. The other two cases are similar.�
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Fig. 4. An algorithm for solving a multi-loop.

3.3. A multi-loop

Wecall constraintswithmore than one simple self loop amulti-loop. In particular, assume
we have the constraints[l, u] � X andfi(X) � [ci, di] � X, for 1� i�n. A multi-loop is
considered because the solution to it hints at the basic idea for solving themore complicated
cases. Basically, to solve a multi-loop, we start withX assigned the value[l, u]. Pick any
constraintfi(X) � [ci, di] not satisfied by this valuation. We find its least solution with
[l, u] � X as the initial constraint and update the current assignment to this least solution.
This process repeats until all constraints are satisfied. The algorithm is shown in Fig.4.

Lemma 6. The algorithm in Fig.4 computes the least solution to a multi-loop in quadratic
time.

Proof. It is obvious that the algorithm outputs the least solution when it terminates. Thus,
it remains to argue its time complexity. We show that step 2 is executed no more than 2n

times, i.e., the number of intersection boundsci anddi . Each activation of step 2 causes the
current valuation to partially saturate (cf. Definition 2) the particular constraint in question,
i.e., at least onelb or ub of the constraint (ci ’s or di ’s) is saturated. Because a bound cannot
be saturated twice, step 2 is activated at most 2n times. Thus, we have shown the algorithm
runs in quadratic time in the size of the input constraints.�

3.4. A strongly connected component

In this part, we show how to handle a strongly connected component, which forms the
core of our algorithm. The main observation is that one can view a strongly connected
component as a mutually recursive set of equations working on the set of range variables in
the component simultaneously. LetX1, . . . , Xn be the set of variables in a componentC.
We viewC as a set of equations working onX1, . . . , Xn simultaneously and use the same
basic idea for a multi-loop.

3.4.1. Multiple initial constraints
First, in dealing with a strongly connected component, we need to consider the case

where there are multiple initial constraints[l, u] � X because there may be more than
one incoming edges to a component, and each one corresponds to an initial constraint. To
simplify our presentation, we apply another graph transformation on a strongly connected
component to convert it to an equivalent one with a single initial constraint.



Z. Su, D. Wagner / Theoretical Computer Science 345 (2005) 122–138 131

Lemma 7. In a constraint graph, a strongly connected component with multiple initial
constraints can be effectively transformed to an equivalent strongly connected component
with a single initial constraint(in linear time and space).

Proof. LetC be the original component. The transformation works as follows:
• Add afreshrange variableX∗ with the initial constraint[1,1] � X∗.
• Replace each initial constraint[l, u] � X ∈ C, wherel, u ∈ Z, with two constraints

{lX∗ � X, uX∗ � X}.
• Replace each initial constraint[−∞, u] � X ∈ C, whereu ∈ Z with two constraints

{uX∗ � X, X − 1� X}.
• Replace each initial constraint[l, +∞] � X ∈ C, wherel ∈ Z with two constraints

{lX∗ � X, X + 1� X}.
• Replace each initial constraint[−∞, +∞] � X ∈ C with three constraints{X∗ �

X, X + 1� X, X − 1� X}.
• Finally, to make the new graph strongly connected, we add the following constraint from
any variable, sayY , toX∗:

Y � [1,1] � X∗.

One can verify that the new strongly connected component is equivalent to the original
component. The running time of the transformation is linear time, and it generates a new
constraint system of size linear in|C|. �

3.4.2. Non-distributivity of ranges
One additional issue is with the non-distributivity of ranges. One can easily verify that

� does not distribute over�, i.e., in general,(r1 � r2) � r3 �= (r1 � r3) � (r2 � r3). For
example,[2,2] = ([0,1] � [3,4]) � [2,2] �= ([0,1] � [2,2]) � ([3,4] � [2,2]) = ⊥. We
show, however, this can be remedied to have a slightly altered lemma of distribution of�
over�.

Lemma 8 (Distributivity lemma). If r1 � r3 �= ⊥ andr2 � r3 �= ⊥, then(r1 � r2) � r3 =
(r1 � r3) � (r2 � r3).

Proof. It suffices to show that(r1 � r2) � r3 � (r1 � r3) � (r2 � r3) because(r1 �
r3) � (r2 � r3) � (r1 � r2) � r3. Consider anya ∈ (r1 � r2) � r3. We havea ∈ (r1 � r2)

anda ∈ r3. If a ∈ r1 or a ∈ r2, thena ∈ (r1 � r3) or a ∈ (r2 � r3). Thus, it follows
thata ∈ (r1 � r3) � (r2 � r3). Now consider the case wherea /∈ r1 anda /∈ r2. Because
a ∈ (r1 � r2), we haver1 � r2 = ⊥, andamust lie in the gap ofr1 andr2. The conditions
r1 � r3 �= ⊥ andr2 � r3 �= ⊥ then guarantees thata ∈ (r1 � r3) � (r2 � r3). �

Lemma 9 (Saturation lemma). For any givenr1, r2,andr3 = [a, b],either(r1�r2) � r3 =
(r1 � r3) � (r2 � r3) or it holds thatl = a or u = b, where[l, u] = (r1 � r2) � r3.

Proof. If (r1�r2)�r3 = ⊥, then clearly(r1�r2)�r3 = (r1�r3)�(r2�r3). Otherwise, let
[l, u] = (r1 � r2) � r3) �= ⊥. Assume thatl �= a andu �= b. We must havea < l�u < b.
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Fig. 5. An example of graph unrolling: (a) original component; (b) after unrolling.

Then(r1� r2) = [l, u], which impliesr1 � [a, b] andr2 � [a, b]. Thus,(r1� r2)�[a, b] =
(r1 � r2) = (r1 � [a, b]) � (r2 � [a, b]). �

3.4.3. Graph unrolling and constraint paths
A strongly connected component can be viewed in the following sense as a set of func-

tions. We unroll the component starting fromX1 with, for example, a depth first search
algorithm. Each time a back-edge is encountered, we create a new instance of the target
(if it has not been created). For a variableXi in a strongly connected component, we use
Xi0 andXi1 to denote its first and second instances in its unrolling. We give an example in
Fig.5, where Fig. 5a shows the original component and Fig. 5b is the result after unrolling.
Essentially, we are building the depth-first tree (but we also consider the cross edges and
back edges). Notice that a depth-first tree with its cross edges is a directed acyclic graph,
i.e., a dag. Notice also in the unrolling for a strongly connected component with variables
X1, . . . , Xn, the set of back-edges are exactly those edges between the subgraph induced
byX10, . . . , Xn0 and the one induced byX11, . . . , Xn1.
To solve a strongly connected component, we want to summarize all paths fromXj 0 to

Xj 1 by Fj (Xj ) � Xj , where

Fj (r)
def= r � ⊔

Xj 0

f1→···fk→Xj 1

(fk ◦ . . . ◦ f1)(r).

Note that, even though there may be exponentially many terms in the definition ofFj ,
nonetheless the outputFj (r) can be computed efficiently for any inputr by propagating
information in topological sorted order along the edges of the unrolled graph (as done for
a dag).
For a strongly connected component, we need to consider a path of constraints.We define

formally its semantics.

Definition 10 (Path constraints). A path fromX0 toXn is a path in the constraint graph for
C. The function for a pathp is the affine function obtained by composing all the functions
along the edges on the path. More formally
• pf(X) = id � [−∞, +∞], whereid is the identity functionid(X) = X,

• pf(p
f �[c,d]−−−−→ X) = f (pf(p)) � [c, d].

Notice that for a pathp = X0 → · · · → Xn, pf(p) is of the formf (X0) � [c, d], where
f is an affine function and[c, d] is a constant range (by Proposition1).
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Fig. 6. An algorithm for solving a strongly connected component.

We apply the same basic idea as that for a multi-loop and Lemma9 in our algorithm for
solving a strongly connected component, which is shown in Fig. 6.

Lemma 11. Thealgorithm inFig.6solvesastrongly connectedcomponentof theconstraint
graph in cubic time in the size of the component.

Proof. Correctness is again easy to establish since all the constraints are satisfied and every
step clearly preserves the least solution. We need to argue the time complexity of the algo-
rithm. The proof technique is similar to that for the algorithm in Fig. 4. Again, we argue that
the body of the main loop (steps 1–5) executes at most 2n times, wheren is the number of
constraints. This holds becauseboth steps5aand5b saturate aboundand there are atmost 2n

suchbounds. It remains tobound thenumberof times that step5c is triggeredwithin the inner
loop (steps 3–5).We argue that step 5cwill be activated atmostmtimes before either step 5a
or step 5b is triggered, wheremdenotes the number of range variables. This holds because
if step 5a is not activated, then by Lemma 9, this forward constraint propagation distributes.
Thus, there must exist an unsatisfying path with more thanm range variables, and hence an
unsatisfying cycle exists. Putting everything together, the total running time is cubic in the
size of the component.�

3.5. A general graph

Now it is easy to put everything together to solve an arbitrary set of affine, single-variable
range constraints. The idea is to first compute the strongly connected component graph of
the original graph representation of the constraints, and then process each component in
their topological sorted order. The total running time is cubic.

Theorem 12. The least solution for a given system of range constraints can be computed
in cubic time.
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3.6. Affine functions with more than one variables

In this part, we consider affine functions with more than one variable. They are needed
for modeling program statements such asx = y + z +1 and for precise modeling of
loops and conditionals with statements of the above form.
We first consider constraints of the forma0 + a1X1 + · · · + anXn � X and then extend

the algorithm to the general case, where we allow intersections with constant ranges. First
notice it suffices to consider constraints of the formX + Y � Z along with constraints of
the base form, namely,f (X) � Y and [l, u] � X, wheref (X) = aX + b is an affine
function overX.
We modify our graph representation of constraints to account for this new type of con-

straint. The constraintX + Y � Z can be represented in a hyper-graph setting, with a
hyper-edge fromX to the node for+ and a hyper-edge fromY to+. We also have a normal
directed edge from+ toZ labeled with the identity function. Graphically we have

With this modified graph representation of constraints, we again use the same frame-
work for solving range constraints. The interesting case as before is how to handle a
strongly connected component of such a graph. The basic idea for the complete algo-
rithm is the same as before: we compute the strongly connected component graph (using
both→ and ---> edges) and process each component in a topological sorted order of the
variables nodes.
Here is how we deal with a strongly connected component. The idea is to reduce it to a

system of basic constraints (single variable affine functions). Then we apply our algorithm
for solving the basic system. We first describe how we reduce a constraintX + Y � Z to
a set of basic constraints. We assume thatX andY have non-empty initial ranges[lx, ux]
and[ly, uy]. The constraint is reduced to the following basic constraints:

X + [ly, uy] � Z, Y + [lx, ux] � Z,

[lx, ux] � X, [ly, uy] � Y.

For a strongly connected component in the original graph, we first need to get some initial
values for all the variables in the component. This can be easily done by propagating the
values in a breath-first fashion starting from the variables with initial ranges. Assume every
variable has a non-empty initial value. Otherwise these variables must be the empty range
and the constraints can be simplified and solved again. Then for each constraint of the
form X + Y � Z, we perform the transformation to basic constraints described above
with their current initial ranges. The constraint representation of the obtained constraints is
still strongly connected. We then solve for its least solution. We use that to obtain another
transformed constraint system. If the current least solution satisfies these new constraints,
then we have found the least solution for the original general constraints. If not, we solve
for the least solution of the transformed constraints. We repeat this process until the least
solution is found. The algorithm is shown in Fig.7.
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Fig. 7. An algorithm for solving a strongly connected component with general affine functions.

Theorem 13. Range constraints over multivariate affine functions are solvable for their
least solution in polynomial time.

Proof. Correctness is easy. For time complexity, we first consider constraints with no inter-
section bounds.We argue that the algorithm for a strongly connected component terminates
in quadratic time.We can simply argue that step 2 is repeated at most three times. Each time
step 2 is repeated, it means for one variable, there is an unsatisfied self-loop. At least one
bound (eitherlb or ub) reaches−∞ or+∞. With another application of step 2, we must
have either reached the least solution, or one variable reaches[−∞, +∞], thus the least
solution[−∞, +∞] for every variable. Because the transformation to basic constraints is
linear and produces a linear size system, the total running time of our algorithm for solving
constraints over multivariate affine functions is quadratic.�

Finally, we consider constraints with multivariate affine functions and intersections with
constant ranges. The constraints are of the general formf (X1, . . . , Xn) � [c, d] � X.
We essentially combine the algorithms for multivariate affine functions and intersection
constraints to obtain an algorithm for this class of constraints. The interesting case is, as
usual, that for a strongly connected component graph. The algorithm, in this case, is exactly
the same as the one shown in Fig.7, except the constraints are reduced to basic constraints
with intersections. The complexity analysis is based on the same idea as that for basic
intersection constraints: with a repeated invocation of step 2, onelb or ubmust be reached.
The new system resulting from transformation to basic constraints has a linear number of
intersection bounds. Thus we only repeat the loop a linear number of times. Because the
size of the new system is linear in the original system, we thus have, as the main result
of the paper, an algorithm with worst-case O(n4) running time for intersection constraints
over multivariate affine functions.

Theorem 14(Main). The system of constraintsfi(X1, . . . , Xm) � [ci, di] � Yi, for
1� i�n,can be solved for their least solution in polynomial time in the size of the constraint
system.

4. Decidability and hardness results

One might ask whether we can lift the restriction, made earlier, that the right-hand sides
be variables. We can thus consider constraints of the formE1 � E2, whereE1 andE2 are



136 Z. Su, D. Wagner / Theoretical Computer Science 345 (2005) 122–138

range expressions. The interesting question is to ask whether such a system of constraints
is satisfiable.
We can show that deciding satisfiability for linear range constraints is NP-hard. The proof

is via a reduction from integer linear programming, which is NP-hard[24].

Theorem 15. The satisfiability problem for general range constraints of the formE1 � E2
is NP-hard.

Proof. We reduce integer linear programming to the satisfiability of range constraints. We
simply need to express that a range has to be a singleton, i.e.,[n, n] for some integer constant
n. This can be easily expressed with the constraint−Yi + Yi = [0,0]. One can verify that
Yi is a singleton if and only if this constraint is satisfied.
LetXbe an integer linear programming instance. We havemrange variablesY1, . . . , Ym.

For each(x, b) ∈ X, we create a range constraintx1Y1 + · · · + xmYm � [b, +∞]. We
also add constraints of the form−Yi + Yi = [0,0] to ensure that eachYi is a singleton. It
is then straightforward to verify thatX has a solution if and only if the constructed range
constraints have a solution.�

Analogous to Presburger arithmetic, we can consider the first-order theory of range con-
straints, which we callPresburger range arithmetic. By adapting the automata-theoretic
proof of the decidability of Presburger arithmetic[40,9], we can easily demonstrate the
decidability of Presburger range arithmetic.

Theorem 16. Presburger range arithmetic is decidable.

If non-linear range constraints are allowed, the satisfiability problem becomes undecid-
able via a reduction from Hilbert’s 10th Problem[26].

Theorem 17. The satisfiability problem for non-linear range constraints is undecidable.

5. Conclusions and future work

We have presented the first polynomial time algorithm for finding the optimal solution
of constraints for a general class of integer range constraints with applications in program
analysis and verification. Thealgorithm is basedonagraph representation of the constraints.
Because of the special structure of the range lattice, we are able to guarantee termination
with the optimal solution in polynomial time. It is usually difficult to reason about the
efficiency and precision of abstract interpretation-based techniques in general because of
widenings and narrowings. Through a specialized algorithm, this work shows, for the first
time, that “precise” range analysis (w.r.t. the constraints) is achievable in polynomial time.
We suspect our techniques for treating non-distributive lattices to be of independent interest
and may be adapted to design efficient algorithms for other constraint problems. Future
work includes the handling of non-affine functions and floating point computations, and
the application of the algorithm to detect buffer overruns and runtime exceptions such as
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overflows and underflows. It may be also interesting to extend this work to allow symbolic
constants in the constraints. Finally, it is interesting to compare the efficiency and precision
of an implementation of our algorithm with those algorithms based on widenings and
narrowings.
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