
Class Properties for Security Review in an
Object-Capability Subset of Java (Short Paper)

Adrian Mettler David Wagner
Department of Electrical Engineering and Computer Science

University of California, Berkeley, USA
{amettler, daw}@cs.berkeley.edu

ABSTRACT
Joe-E is a subset of the Java language, with additional restrictions
enforced by a static source-code verifier. We explore several se-
mantic properties of classes relating to immutability and object
identity that can be declared by the programmer and are checked
by the Joe-E verifier. We present the simple, modular analyses we
use to verify these properties and describe how they are useful in
performing security reviews of applications.

1. INTRODUCTION
In designing code for security review, it is helpful to make it easy

to characterize the properties of objects in a program. A sufficiently
rich type system can help with this goal: programmers can docu-
ment the properties of objects through annotations on their types,
and an appropriately constructed static code verifier can check that
these properties will hold for all instances of these types. Once a
desired property has been statically verified to hold for all instances
of a particular type, a code reviewer can use this property in rea-
soning about the structure or behavior of the associated type.

This static verification must take into account subtyping relation-
ships. If the reviewer sees a variable in the program and wants to
reason about the properties of objects stored in that variable, just
checking what verified annotations exist on the declared type of the
variable is insufficient, since the concrete type of the object stored
in the variable may not match the declared type of the variable; it
may be of a subtype instead. One approach to addressing this risk
would be to locate all subclasses of the annotated class and check
them when the annotated class is verified; but this approach fails if
the source code of some subtypes is not available, perhaps because
they have not yet been written.

The alternative is to run the verifier on all code, and to verify
properties of classes when any of their supertypes has an annota-
tion declaring that property. In other words, the annotation used to
declare and verify properties of a class must be inherited by sub-
classes. In Java, this can be accomplished by using interface types
as annotations. We define a marker interface for each semantic
property we want to verify. Then, a class may implement a marker
interface to declare that it satisfies the property associated with that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLAS ’10 Toronto, Canada
Copyright 2010 ACM 978-1-60558-827-8 ...$10.00.

interface, and the verifier checks that the associated properties hold
for every class that implements the marker interface.

In Joe-E, we use marker interfaces to verify a number of interest-
ing class-based properties, generally relating to immutability and
object identity. We have identified simple source code analyses
that can be used to verify these properties statically.

Immutability has a number of applications to supporting secu-
rity reasoning. It is safe to share immutable objects, without risk
that the recipient might be able to modify something we are rely-
ing upon. Immutability is also useful for defending against time-
of-check-to-time-of-use attacks, as the recipient of an immutable
object knows that it will not change. This application requires a
subtly stronger immutability guarantee than previous work on veri-
fying immutability for Java has enforced; we explain why and how
we enforce the stronger notion in Joe-E.

Due to Java’s == operator, which tests pointer equality, every
object has an unforgeable identity in addition to its contents. Iden-
tity tests mean that any object can be used as a token, serving as
an unforgeable proof of authorization to perform some action. For
example, an object can store a reference to a particular token in
a private variable and then only perform certain actions when the
same token is passed as a method argument. In programs that make
use of tokens, it would be helpful if the type system could help us
reason about how tokens can propagate in a program. Joe-E defines
a marker interface that ensures that an object is free of authority-
bearing tokens, and thus can be passed to untrusted code without
accidentally conveying any tokens.

Additionally, the presence of pervasive object identity in Java
means that no reference type can be a true value type. To address
this limitation, Joe-E restricts the use of == and !=, hiding the ob-
ject identity of some types. Joe-E’s support for value types prevents
errors where their object identity is accidentally used and strength-
ens the applicability of Joe-E’s determinism guarantees.

2. JOE-E AND MARKER INTERFACES
Joe-E [7] is a subset of Java, designed to make security review

of applications easier. We wish to make it feasible for reviewers
of an application to formulate application-specific security proper-
ties and convince themselves that a program satisfies these secu-
rity properties. We support a number of patterns of reasoning that
reviewers can use to soundly check that a program has a desired
security property. These patterns are based on capability-style rea-
soning about the propagation of references in a program, and thus
are only valid in an object-capability language. Joe-E imposes a
number of restrictions on Java language features so that the result-
ing smaller language is a deterministic object-capability language.

As a deterministic object-capability language, Joe-E provides
two linguistic security properties:

• Object-capability paradigm. In Joe-E, all authority is em-
bodied by object references, which serve as capabilities. Au-
thority refers to any effects that running code can have other
than to perform side-effect-free computations or to throw a
virtual machine error due to resource exhaustion. Authority
includes not only effects on external resources such as files
or network sockets, but also on mutable data structures that
are shared with other parts of the program.

As an object-capability language, Joe-E ensures that author-
ity is granted only via object references. It ensures that the
global scope, the state reachable from static fields in Java,
does not contain any authority and that static methods and
constructors do not grant authority to their callers.

• Determinism. Joe-E ensures that code’s behavior depends
deterministically on only its inputs, unless it is explicitly
given access to nondeterministic language features or exter-
nal resources.

The additional linguistic restrictions imposed upon Joe-E code
fall into two categories:

• Restrictions placed on only those classes that implement cer-
tain marker interfaces. These interfaces act as inheritable an-
notations indicating that a particular class should be verified
to have a specific property.

• Restrictions that apply to all Joe-E code. This includes limi-
tations on the use of various language features, such as native
methods and the finally keyword, and limitations on which
standard Java libraries can be used by Joe-E code.

This separation ensures that the restrictions can be enforced in a
modular analysis. Much like the Java compiler, to analyze a par-
ticular file, the Joe-E verifier needs the source code of only that
one file; it examines interface-level details of other classes but not
their code. This means that Joe-E verification scales well (roughly
linearly) to large code bases.

2.1 Marker Interfaces
As mentioned earlier, Joe-E uses marker interfaces to document

the security properties of code. Because interfaces are part of the
Java type system, one can declare fields, methods, and return val-
ues to have the marker interface’s type. This allows one to declare
that a field or argument can hold arbitrary objects that implement
the marker interface, or that a method only returns objects that im-
plement the interface.

Marker interfaces to indicate class-based properties need to sat-
isfy two properties for our analysis to be sound, in the face of the
fact that a Java object belongs to its runtime type as well as any
supertypes, which may implement fewer marker interfaces.

• Implementing a marker interface must only add, and may not
remove, restrictions on the structure and behavior of a class.
This ensures that all classes that implement a marker inter-
face can be relied upon to have the associated guarantees,
even if a subclass implements additional marker interfaces.

• Implementing a marker interface must only add, and may
not remove, ways that such a class may be validly used. This
ensures that one cannot circumvent restrictions on how an
object can be used by upcasting it to a supertype.

For Joe-E, the base type system is defined by the Java language;
it defines certain subtyping relationships. Because standard library
classes are not defined to implement our interfaces, and we did not

want to replace the standard library, Joe-E provides a way to de-
clare a Java library class to honorarily implement a marker inter-
face. These additional implementation relationships, added to the
base subtype relations in the Java type system, define an augmented
overlay subtype relation used by the Joe-E verifier.

All type checking performed as part of the standard Java com-
pilation process and JVM runtime enforcement uses the base sub-
typing relation, as required to preserve Java semantics. However,
Joe-E’s additional restrictions are defined in terms of the overlay
subtype relation. The verifier thus includes the additional, hon-
orary implementation relationships when checking Joe-E language
restrictions, including properties of code that implements marker
interfaces. Classes that honorarily implement the marker interfaces
are generally not Joe-E code, and so are not subject to the same
checks. Instead, we manually review these classes and ensure that
their exposed functionality is consistent with the marker interfaces
we have them honorarily implement. We refer to this process as
“deeming” the classes to satisfy the interface’s restrictions.

The overlay subtype relation is made visible to user code at run-
time by means of library methods that query its runtime represen-
tation. We provide analogues to the instanceof keyword and the
Class.isAssignableFrom() method that reflect the same sub-
typing relation used by the verifier.

3. IMMUTABILITY
Joe-E provides support for verification of class immutability: all

instances an immutable class are guaranteed to be immutable. By
immutable, we mean that no state reachable from an immutable ob-
ject can be observed to change. Any two reads of a field transitively
reachable from such an object will return the same value. Our im-
mutability requirement is stricter than those previously studied in
that we do not exempt a partially-constructed object that escapes
its constructor from the need to satisfy observational immutability.
A client of such an object may be unaware that it is only partially
constructed, and thus will observe a change of its fields if they are
later initialized to a non-null, non-zero value.

Immutability is helpful for reasoning about the correctness and
robustness of code, for a number of well-known reasons. One par-
ticular reason motivates our strong immutability requirement: if
an object is immutable, code that makes use of it does not need to
defend against modifications to that object by other code in the sys-
tem. For instance, this eliminates the possibility of time-of-check-
to-time-of-use attacks on those values. Also, immutability facili-
tates verification of functional purity (determinism and side-effect
freeness) of methods [5].

In contrast with other type systems for immutability such as Im-
mutability Generic Java [14], in which references to read-only or
immutable objects are subjected to additional type checks, in Joe-E
we only support class immutability, i.e., classes with no mutable
state. This is less expressive, but we have found it to be sufficient
for new code. Class types that implement the Immutable marker
interface are verified to be immutable, and those that do not are not.

Joe-E’s static verifier checks that each class that implements the
Immutable interface is indeed immutable by verifying that the
class C meets all of the following requirements:

1. Every instance field of C must be both declared final and
of a primitive or immutable type. No such field may be de-
clared transient. (“Every instance field of C” includes
fields of all superclasses, whether accessible to C or not; this
includes, for instance, all private fields of all superclasses.)

2. If C or any of its superclasses is a non-static inner class, ev-
ery enclosing class must be immutable.

3. If C is a local class (an inner class defined within a method),
all local variables defined outside C that are observable by
C must be immutable.

Any violation of these requirements is a verification-time error.
The third requirement is necessary because local classes in Java

can make use of final local variables in the scope in which they
are defined. The Java compiler analyzes the code of each local
class L to see which local variables are used by L. When looking
for uses of local variables, it also scans any related inner classes
that L constructs, or that transitively are constructible via a chain
of such class constructions. Any local variable used by L, or by
any related class it could construct, is implicitly included as a field
of L.

Our verifier duplicates the calculation made by the compiler to
determine which local variables will implicitly be included in each
inner class, and uses them when verifying that such a class is im-
mutable.

Note that immutability of a class C does not place any restric-
tions on any local variables of its methods, or imply that classes
defined within C must themselves be immutable. It also says noth-
ing about the mutability of the arguments passed to C’s methods.
The checks performed on C serve only to ensure the immutability
of all objects reachable from all of C’s fields, including implicit
fields inserted by the compiler.

3.1 Ensuring Final Means Final
In Java, the final keyword does not guarantee that a field’s

value will never change. If a reference to an object escapes before it
has been fully initialized, code might observe one of its fields once
at its default value, before the field is initialized, and later observe
the field at a different value, after initialization. This would allow
an otherwise-immutable object to appear to change its value.

To address this problem and ensure that Immutable objects are
truly immutable, Joe-E prevents Joe-E code from reading a field be-
fore it has been initialized. We ensure this by preventing the this
pointer from escaping from any constructor1, enforced as follows:

1. Instance initialization must not call any instance methods on
the object being constructed (including supermethod invoca-
tions like super.m()).

2. Initialization of a class C must not call the constructor of any
non-static inner class of C, i.e., any anonymous class or non-
static member class that is defined within C or any of C’s
superclasses. (Non-static inner class instances have a refer-
ence to their containing object and thus its fields; this restric-
tion ensures that no code from such an inner class executes
during construction.)

3. Initialization must not reference the this pointer correspond-
ing to the object being constructed, except as a way to name
fields (e.g., a use or definition of the field f using the ex-
pression this.f is permitted). This restriction ensures that
this cannot become aliased. For inner classes, references to
enclosing objects’ this pointers are unrestricted.

For legacy Java code, these restrictions would be too restrictive: a
non-trivial amount of existing code might violate these rules. How-
ever, for new code written in Joe-E, we have found these restric-
tions to be tolerable.
1At present we do this for all classes, not just those that are im-
mutable, as they may have an immutable subclass. This is the sim-
plest approach, but is stricter than necessary, as some classes may
inherently preclude an immutable subclass, e.g., by being final or
declaring non-immutable fields.

public final class LockedBox<T> {
private final Token key;
private final T content;

public LockedBox(Token key, T content) {
this.key = key;
this.content = content;

}

public T getContent(Token key) {
if (key == this.key) {

return content;
} else {

throw new IllegalArgumentException();
}

}
}

Figure 1: A locked box class. Once the content is stored in the
box, it can only be retrieved again given the key object.

Java has a similar weakness with static final fields: if there is a
circular dependency in classes’ static initializer logic, it is possi-
ble for code executing during static initialization of these classes
to see uninitialized values for their fields. Joe-E does not currently
address this problem, which does not technically violate our object
immutability guarantees, as it only affects static fields. However,
if an immutable object reads a value from a static field when an
instance method is invoked, it may return different results on dif-
ferent invocations, which appears the same as a change in state, so
we would still like to close this loophole.

4. IDENTITY-BASED AUTHORITY
One basic pattern of object-capability based reasoning is to con-

sider the evolution of the object graph as a program executes. This
graph has a node for each active stack frame and in-memory object
and directed edges connecting each reference-typed local variable
and field to the object it points to. Given any snapshot of this graph,
the set of objects reachable from each node bounds the authority
available to the corresponding object. It is also possible to bound
the possible future propagation of references between objects in the
graph.

The coarsest bound on this propagation is bidirectional reacha-
bility on the object graph. A reference can potentially propagate
from any node that has a reference to it to any adjacent node. This
simple bound is too imprecise; all live objects will fall into the same
component and thus we would be able to conclude nothing.

We can reason more precisely if we verify and rely on certain
behaviors of shared objects in the reference graph. Consider the
locked box class presented in Figure 1. (This is an adaptation of a
construction [9, §6] that dates back to 1973.) The box’s constructor
accepts an object to store in the box and a key object. The key must
be presented to extract the object from the box. The class Token is
an empty class used here solely for pointer comparison.

If a locked box is passed to another entity, the recipient cannot
retrieve the box’s contents unless it also obtains access to the key
used when the box was constructed. The content object can only
be extracted from the box if some object has a reference to both the
box and the key at the same time. The key acts as an authentication
token to permit a holder of the box to retrieve its contents. In Java,
every object is more than its contents; it also has an identity in
that it can be distinguished from other objects of identical type and
contents by the use of the == or != operators. LockedBox uses
this identity as an unforgeable credential, as Joe-E’s memory-safety

ensures that there is no way to create an alias of an existing object
from scratch.

Despite having no state and no methods, a token object used as a
key conveys authority to objects that have a reference to it. Without
the token, an object with a reference to a locked box cannot open it;
with the token, it can. This pattern of programmatically presenting
a credential to an object to enable additional functionality is known
as rights amplification.

There are a number of alternate patterns that can be used for
rights amplification. Instead of using an object reference as a token,
the box could store a password in a private field, and only divulge
its contents when a lexically-matching password is given as an ar-
gument. It could issue instances of a privately-constructable inner
class for use as credentials, using their unforgeable type to authen-
ticate instead of identity comparison. Using tokens, however, has
the advantage of being based on a simple, fundamental property
of object-capability languages (and of memory-safe languages like
Java), unforgeability of object references.

4.1 Power and Tokens
Joe-E specifically supports reasoning about rights amplification

using unforgeable token objects. In Joe-E, other ways of imple-
menting rights amplification may still be effective, but are not pro-
vided the same language support. We provide a Token class in the
Joe-E standard library for this purpose, and recommend that Joe-E
applications use this Token class in places where their security re-
lies upon unforgeable object identity. In this way, the Token class
explicitly documents which objects are used for rights amplifica-
tion on the basis of their identity. If this idiom is followed, the only
objects that will convey authority solely by their object identity are
instances of Token and its subtypes (collectively called tokens).

As another example, consider the currency system depicted in
Figure 2. Each Currency object corresponds to a different cur-
rency, and is used to ensure that money is not accidentally trans-
muted from one currency to another. Additionally, it gives its holder
the ability to mint virtual coins in that currency, even though the
class itself has no fields or methods. A Purse object is used by a
client, such as an object representing a player of an online game,
to hold a number of units of a particular currency. If a client wants
to transfer some money to another object, he first constructs a new,
empty purse of the same currency using the unary constructor, then
transfers some money into this new purse from his primary purse
using the takeFrom method. The new purse can then be passed
to the recipient, who can add the balance from it to her own main
purse also using takeFrom. The Purse class can be reviewed to
verify that currency cannot be created without the use of the Cur-

rency token; this reduces the portion of the program that would
have to be reviewed to ensure that there are no bugs that might al-
low money to be created from nothing.

Clearly, it would be a problem if the Currency object is passed
around indiscriminately; despite its lack of fields, it is important
to audit everywhere in the program that it might be used. The fact
that all tokens extend the same base class makes it easier to identify
every place in the program where these objects might be used.

If developers write their code such that Tokens are the only ob-
jects that represent privilege by their object identity, then objects
that contain no Tokens cannot convey privileges in this way. This
makes it easier to reason about places that may perform rights am-
plification and supports the following pattern of security reasoning:

• Conservatively assume that any authority made available by
the object identity of non-tokens is available everywhere in
the program.

public final class Currency extends Token { }

public final class Purse {
private final Currency currency;
private long balance;

/** Create a new purse with newly minted money,
given the Currency capability. */

public Purse(Currency currency, long balance) {
this.currency = currency;
this.balance = balance;

}

/** Create an empty purse with the same currency
as an existing purse. */

public Purse(Purse p) {
currency = p.currency; balance = 0;

}

/** Transfer money into this purse from another. */
public void takeFrom(Purse src, long amount) {

if (currency != src.currency
|| amount < 0 || amount > src.balance
|| amount + balance < 0) {
throw new IllegalArgumentException();

}
src.balance -= amount;
balance += amount;

}

public long getBalance() {
return balance;

}
}

Figure 2: A secure abstraction that supports flexible use of cur-
rencies.

• Conservatively assume that all secret data can be guessed or
leaked, and are available everywhere in the program.

• Check that the code never relies upon the unforgeability of
object identity of non-tokens, or the unguessability of data,
for authentication or security.

• Perform local checks of all uses of tokens to ensure rights
amplification is implemented properly.

Without this refinement of basic object-capability reasoning, we
might conclude that a Currency object yields no authority and that
a Purse object might potentially provide the authority to mint new
money; the first conclusion is wrong, and the second is too conser-
vative.

To encourage using tokens solely for their object identity, and
not as containers for other capabilities, the class Token is declared
to implement Immutable. Thus, tokens (including subtypes of
Token) cannot contain mutable objects. Token also implements
Equatable so tokens can be compared for identity (see Section 5).

4.2 Powerless
Joe-E introduces the notion of a powerless type. Objects belong-

ing to such types are immutable and do not contain any tokens,
i.e., no tokens are transitively reachable by following a powerless
object’s field pointers.

A powerless object conveys no inherent or identity-based au-
thority and thus can be excluded from the object reference graph
entirely without loss of soundness. Due to its immutability, it can-
not serve as a channel for propagating references, and because it is

both immutable and token-free, it cannot contain any capabilities
of concern for the reachability analysis.

Any authority granted to the holder of a powerless object is solely
a product of the data it contains; this authority could be “forged” by
anyone with knowledge of this data and thus does not reflect a type
of capability that can be guarded by our system. (Note that crypto-
graphic keys fall into this category; our system is not able to reason
about cryptography, because Joe-E does not provide any provision
for reasoning about knowledge or the flow of information—it sup-
ports reasoning only about the flow of references.) Any authority
vested in the object identity of a non-Token object is not modeled
in our view of authority and is conservatively assumed to be avail-
able to everyone.

An immutable object conveys no authority except for the un-
forgeable identity of any tokens it may contain. This potential
form of authority distinguishes a powerless object from one that
is merely immutable. (By definition, all powerless objects are also
immutable.) In practice, most immutable objects are likely to also
be powerless.

If a class C implements Powerless in the overlay type system,
the Joe-E static verifier checks that C satisfies all of the following
restrictions:

1. Every instance field of C must be both declared final and of
a primitive or powerless type. No such field may be declared
transient.

2. If C or any of its superclasses is a non-static inner class, ev-
ery enclosing class must be powerless.

3. If C is a local class, all local variables defined outside C that
are observable by C must be powerless.

4. C must not be a subclass of Token.

Any violation of these requirements is a verification-time error.
In Joe-E, in order to achieve the principle of least authority, we

restrict global (static) fields to only contain Powerless objects.
In addition to ensuring that the global scope does not contain any
mutable state, this ensures authority-bearing tokens are not made
globally available. A bigger concern is accidental escalation or ma-
licious transmission of privileges due to an exception being thrown
and caught. As exceptions are often hard to predict and reason
about when performing a code review, in Joe-E we require all sub-
types of java.lang.Throwable to be powerless in order to en-
sure that they cannot be used to transmit authority in unexpected
ways [7, § 4.3]. This allows us to limit our examination to the
more explicit mechanisms for reference propagation when reason-
ing about how objects can communicate with the rest of a program.

5. SELFLESS AND EQUATABLE
Java contains a number of library classes that, intuitively, are in-

tended to act as value types: types where equality is determined by
the the object’s contents and whose object identity should be irrel-
evant. For instance, two different Strings with the same contents
compare equal, using the equals() method, and intuitively should
be essentially interchangeable. However, Java exposes the object
identity of Strings: a client can distinguish two Strings with the
same contents using == or !=. Exposing the object identity of value
types is usually undesirable.

Consider, for instance, Figure 3, where a buggy method com-
pares two strings using == instead of equals(). This breaks the
abstraction that strings should be value types. Java has no way to
enforce that code treats String as a value type; in contrast, Joe-
E hides the object identity of Strings and similar library classes

public class Buggy {
public static boolean isYes(String answer) {

return answer == "yes" || answer == "Yes"
|| answer == "y" || answer == "Y";

}
}

Figure 3: A method that violates the intuitive expectation that
String is a value type. This code is probably a bug (and would
not be allowed in Joe-E).

public class Tester {
public static void test() {

if (!Buggy.isYes("yes"))
fail();

}
}
public class Client {

void processInput(StreamTokenizer st) {
// read a parameter using the stream tokenizer
st.nextToken();
if (Buggy.isYes(st.sval))

doSomething();
}

}

Figure 4: The bug in Figure 3 might not be detected by testing
(due to automatic interning of string literals), but might trigger
in practice.

from Joe-E code, making these library classes true value types.
Such abstraction-violating bugs can sometimes be tricky to detect.
For example, in Figure 4, testing code that makes use of literal
(and thus automatically-interned) strings will fail to replicate the
incorrect behavior of the isYes() method when called with non-
interned strings from user input that have the same contents.

Joe-E also enables programmers to define additional value types,
with assurance that their object identity will be hidden from other
Joe-E code. The programmer is responsible for writing correct
equals() and hashCode() methods for each class that is intended
to be a value type. Joe-E ensures that clients possessing references
to instances of these classes cannot observe object identity, by pro-
hibiting use of the == and != operators on these classes. In addi-
tion, Joe-E helps the programmer of these classes avoid inadver-
tently revealing object identity (e.g., by calling super.equals()

or super.hashCode() and leaking their return value to clients).
To achieve these goals, we introduce the notion of equatable,

selfless, and deep selfless types. In Joe-E, the == and != operators
can only be used on equatable types. It is a verification error for
any type to be simultaneously equatable and selfless; thus, the ==

and != operators cannot be applied to selfless types. Furthermore,
Joe-E ensures that selfless types do not reveal object identity in
other ways. A type T is deep selfless if every object (transitively)
reachable from an instance of T (by following fields) is selfless.
These notions mean that object identity is optional for each type in
Joe-E, unlike in Java where all reference types have object identity.

A class may be marked as being equatable by implementing the
Equatable marker interface. Joe-E code is allowed to compare
two references using == and != if at least one of the references’
declared types is equatable, or if either reference is null. Specifi-
cally, we ensure that, for every use of the binary operators == and
!=, the type resolved for at least one of the two operands must be
either the null type, a primitive type, or a reference type that imple-

ments Equatable in the overlay type relation.2 All other uses of
== and != are prohibited.

For instance, the buggy code in Figure 3 would not be allowed
in Joe-E, because String is not an equatable type, and thus the use
of == found there would result in a verification-time error.

A class C is selfless if and only if it implements the Selfless in-
terface in the overlay type system. The Joe-E static verifier checks
that each such class C obeys the following restrictions:

1. All instance fields of C must be final and may not be
transient.

2. C must not be equatable.

3. The object identity of instances of the class must not be visi-
ble. This can be satisfied by one of:

(a) C’s superclass is a selfless type, or
(b) C’s superclass is java.lang.Object, C overrides

equals() and hashCode(), and C doesn’t call
super.equals(). (No Joe-E class is allowed to call
Object’s version of hashCode(), even on itself, due
to its exposure of nondeterminism.)

Joe-E provides several guarantees about selfless objects:

• The identity of selfless objects is not exposed, even indi-
rectly. Selfless types must override Object’s default imple-
mentation of equals(), which is equivalent to ==. Neither a
selfless type’s version of equals(), nor any other method it
defines, can use == or != on itself or call Object’s identity-
exposing versions of equals() or hashCode() on itself.

• The hash returned by a selfless object’s hashCode() method
will be a deterministic function of its contents. This follows
because a selfless object must provide its own implementa-
tion of hashCode(), and the object’s contents are the only
objects observable by this code; the object’s own identity is
not visible, not even to its code. As a result, we can store ar-
bitrary selfless objects in a hash table, without fear that their
hashCode() method will expose nondeterminism.

Selfless classes are useful for constructing serialization code. To
serialize a selfless object, we only need to serialize its contents (and
possibly their identity); we do not need to record its own identity.
This makes it easier to ensure that the result of serializing and de-
serializing an object is indistinguishable from the original. For in-
stance, the Waterken server [7, § 7.1] uses Joe-E’s Selfless inter-
face to ensure the correctness of a performance optimization: when
serializing a non-selfless type, we must maintain a unique serialized
version per instance, whereas for selfless types, it is safe to make
multiple copies of a single instance if that improves performance.

A deep selfless class C must satisfy the requirements for a self-
less class. Also, all instance fields, all local variables of enclosing
scopes observable by C, and all enclosing classes (if C or any su-
perclass is a non-static inner class) must be deep selfless. Joe-E
does not yet implement deep selfless, but it would be a straight-
forward addition. A deep selfless class is also powerless (but not
necessarily vice versa).

One feature of Joe-E is that it makes it easy to verify when meth-
ods are definitely deterministic [5]. By deterministic, we mean
2Two objects of distinct runtime types are never identical. Joe-E
allows programs to determine and compare the concrete type of
objects, and thus does not hide this fact. The result of == only re-
veals additional information if its operands are of the same concrete
type; therefore it suffices to check that either operand is equatable.

that two successful invocations of the method with equivalent ar-
guments will always yield equivalent results. The notion of “equiv-
alence” depends upon the type of the object. If any arguments are
not deep selfless, equivalence must take into account object iden-
tity: for instance, two immutable objects are equivalent if they have
equivalent contents as well as the same object identity (or more
generally, the same set of aliasing relationships to other objects
in the method’s scope, including other arguments and global vari-
ables). Put another way, if all we know about the method’s argu-
ments is that they are immutable, then we cannot rule out the pos-
sibility that the method’s behavior and return value might depend
upon the identity of its arguments. This notion of determinism is
often weaker than we might prefer.

Selfless types enable us to strengthen the notion of determinism
to exclude the possibility that the method might depend upon the
identity of its arguments. When dealing with selfless arguments, we
can refine the notion of equivalence: two selfless objects are equiv-
alent if they have equivalent contents (regardless of their identity).
When all arguments are deep selfless, then we can rule out the pos-
sibility that the method might depend upon their object identity.

For instance, if we have a method whose type signature is

public static boolean isYes(String s);

then (in Joe-E) we can conclude that this method’s behavior and re-
sult will depend deterministically only upon the value of the string
s, but not on s’s object identity.

Value types in Joe-E also make it possible to verify the correct-
ness of memoization. Suppose we have a method whose arguments
and return value are of value types: their types are deep selfless, and
moreover are known (somehow) to have a correct implementation
of equals(). Then this method can be transparently memoized.
We can maintain a hashtable that maps argument lists to results;
before invoking the method on some argument list, we look up the
argument list in the hashtable. If an entry is found, we return the
cached result without invoking the underlying method; otherwise,
we invoke the method and add its result to the hashtable. Thanks
to the property of deep selfless types, the memoized version will be
indistinguishable from the original.

We have only limited experience with selfless and deep selfless
types. We initially implemented Selfless types primarily to sup-
port Waterken’s serialization logic. In retrospect, deep selfless is
probably a more useful concept, but is not currently implemented
in Joe-E.

6. RELATED WORK
Our use of an augmented overlay type system follows E [8],

which also provides a mechanism for indicating that Java classes
“honorarily” satisfy similar object properties, though unlike our ap-
proach, in E these properties are not represented by types in the
Java type system. The work that most closely resembles our use
of marker interfaces is the Auditors framework for E, which uses
runtime introspection of an object’s AST to verify annotated prop-
erties such as immutability and selflessness [13]. In contrast to that
work, we verify similar semantic properties on a per-class basis in
a class-based language.

In this paper, marker interfaces’ semantic restrictions apply on
a per-type basis. For example, specific classes in the Java type
system are considered immutable; standard Java type safety and
final field enforcement ensures that objects of such classes are never
mutated after construction. An alternative, at least for immutability,
is to use an extended type system that treats some references or
instances as read-only while allowing others to be mutated. The
C++ const qualifier for pointers is the most well-known example

of this. It is a compilation error to assign the fields of, or invoke
a non-const method on, a const reference. Its use in preventing
side effects is limited because the restrictions are not transitive; it
is possible to modify an object contained in a field reached via a
const pointer. A transitive analogue of this was introduced by
the KeyKOS operating system [6] as a “sensory key”; such a key
prohibits writes and also causes all keys retrieved through it to be
sensory. This concept is also found in the type system of a few
programming languages to improve reasoning about immutability
and side effects. Such types allow for documentation and modular
checking of effect restrictions on a per-function basis.

The Javari [12] type system provides similar qualifiers for Java;
its readonly qualifier serves as a transitive, sound version of C++’s
const. Like C++, Javari provides a way for fields of a class to be
declared as exempt from the readonly restrictions. This is poten-
tially problematic where the immutability of an object of untrusted
type is necessary to guarantee a security property. In addition to a
sound, transitive version of const with no escape clauses for mu-
table fields, the D language [2] provides an instance-immutability
qualifier invariant that can be used to ensure that a specific in-
stance of an object will never be modified. This has the benefit of
allowing the same type to be used in immutable and non-immutable
forms. Immutability-Generic Java [14] supports both transitive-
const (ReadOnly) and instance-immutability (Immutable) anno-
tations, as an extension to the Java type system. Like Javari, they
provide a mechanism for a class to declare fields as exempt from
the read-only restrictions, which we would consider a soundness
hole. Also in contrast to our work, they do not consider the es-
cape of a ReadOnly reference to a partially-constructed object to
be a violation of their immutability property. Pluggable type sys-
tem frameworks like JavaCop [1] and the Checker Framework [10]
can also be used to define type checks that enforce semantic prop-
erties such as immutability.

Previous work has addressed the problem of partially-constructed
objects in the context of non-null types for instance fields in object-
oriented imperative languages such as Java and C#. A number
of papers have presented type systems to properly type partially-
constructed object instances. Raw types [3] indicate which levels
of the type hierarchy have not yet performed their share of an ob-
ject’s initialization. Delayed types [4] are associated with a lexical
scope in which the object is not fully initialized, but ensure that
all associated objects are fully initialized before the scope is ex-
ited. Masked types [11] explicitly specify which fields of an object
have not yet been initialized, and thus cannot yet be used. These
approaches would provide a more precise way to address the use
case of wanting to pass a reference to an object under construction
to other objects, allowing for more complex initialization patterns,
e.g., creation of circular verifiably-immutable data structures.

7. CONCLUSIONS
We have identified a number of useful semantic properties of

classes that support reasoning about applications. We provide sim-
ple type checking rules for ensuring these properties of programs
written in a subset of Java. These class properties are instrumental
to Joe-E’s support for the design and construction of software to
support security review.

8. ACKNOWLEDGEMENTS
We would like to thank our anonymous reviewers for their help-

ful feedback and our shepherds, Úlfar Erlingsson and Todd Mill-
stein, for guidance in refocusing and substantially improving this
paper.

This work was supported by the National Science Foundation
under grants CNS-0716715, CCF-0424422, and CCF-0430585 and
by a Siebel Scholarship. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National Sci-
ence Foundation.

9. REFERENCES
[1] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A

framework for implementing pluggable type systems. In
OOPSLA ’06: 21st ACM Conference on Object-Oriented
Programming Systems and Applications, pages 57–74,
Portland, Oregon, USA, 2006.

[2] W. Bright. D language 2.0.
http://www.digitalmars.com/d/2.0/.

[3] M. Fähndrich and K. R. M. Leino. Declaring and checking
non-null types in an object-oriented language. In OOPSLA
’03: 18th ACM Conference on Object-Oriented
Programming Systems and Applications, pages 302–312,
Anaheim, California, USA, 2003.

[4] M. Fähndrich and S. Xia. Establishing object invariants with
delayed types. In OOPSLA ’07: 22nd ACM Conference on
Object-Oriented Programming Systems and Applications,
pages 337–350, Montréal, Québec, Canada, 2007.

[5] M. Finifter, A. Mettler, and D. Wagner. Verifiable functional
purity in Java. In ACM Computer and Communications
Security (CCS 2008), pages 161–173, Arlington, VA, USA,
October 27–31 2008.

[6] N. Hardy. KeyKOS architecture. SIGOPS Oper. Syst. Rev.,
19(4):8–25, 1985.

[7] A. Mettler, D. Wagner, and T. Close. Joe-E: A
security-oriented subset of Java. In Network and Distributed
Systems Symposium (NDSS 2010), pages 357–374, San
Diego, CA, USA, February 28–March 3 2010.

[8] M. S. Miller. Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control. PhD
thesis, Johns Hopkins University, Baltimore, Maryland,
USA, May 2006.

[9] J. H. Morris, Jr. Protection in programming languages.
Communications of the ACM, 16(1):15–21, 1973.

[10] M. M. Papi, M. Ali, T. L. Correa, Jr., J. H. Perkins, and
M. D. Ernst. Practical pluggable types for java. In ISSTA ’08:
2008 International Symposium on Software Testing and
Analysis, pages 201–212, Seattle, WA, USA, 2008.

[11] X. Qi and A. C. Myers. Masked types for sound object
initialization. In OOPSLA ’09: 24th ACM Conference on
Object-oriented Programming Systems and Applications,
pages 53–65, Savannah, Georgia, USA, 2009.

[12] M. S. Tschantz and M. D. Ernst. Javari: Adding reference
immutability to Java. In OOPSLA ’05: 20th ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 211–230, San Diego,
CA, USA, October 18–20, 2005.

[13] K.-P. Yee and M. Miller. Auditors: An extensible, dynamic
code verification mechanism, 2003. http://www.erights.
org/elang/kernel/auditors/index.html.

[14] Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kieżun, and M. D.
Ernst. Object and reference immutability using Java
generics. In ESEC/FSE 2007: 11th European Software
Engineering Conference and 15th ACM Symposium on the
Foundations of Software Engineering, pages 75–84,
Dubrovnik, Croatia, September 5–7, 2007.

