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a b s t r a c t

Incremental hash functions have gained much attention due to their incremental property,

i.e. hashes of updated messages can be speedily computed from previous hashes without

having to re-hash the message as was the case in conventional hash functions. In this

paper, we first show how collisions can be obtained in such incremental hash functions

that are based on pair block chaining, highlighting that more caution should be taken into

its design process. We then identify some design and implementation criteria for such

incremental hash functions.

ª 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Incremental hash functions (Bellare et al., 1994) were intro-

duced in 1994, and are very much suited for situations

where if a previously hashed message, M is slightly updated

into a new message, M*, then it should be fairly quick to

compute the hash value of the updated message, M*. This

is done by computing the new hash, m*, from the old hash

value, m, in contrast to conventional hash functions that

have to recompute the new hash, m* from scratch, which

takes a longer time.

Applications of incremental hash functions include:

(a) Virus protection (Bellare et al., 1994, 1995a): viruses typi-

cally modify the host files that they infect, and so one

way of virus detection involves checking files for signs

of unauthorized modification. This can be done by using

hash functions to compute authentication tags from
0167-4048/$ – see front matter ª 2005 Elsevier Ltd. All rights reserve
doi:10.1016/j.cose.2005.12.006
each file. Unauthorized modifications to these tagged files

would trigger an alarm since the authentication tags

would no longer be valid. That being said, files within

a computer system are often updated by the computer

user and so it is desirable that their corresponding

authentication tags be easily recomputed to reflect the

updates.

Doing this with conventional hash functions is time-

consuming since one would have to recompute the hash

of the updated value from scratch, even though only

a minor update was done on the authenticated file. Incre-

mental hash functions solve this problem by easily

recomputing the new hash directly from the old hash

value. This is especially useful when using a processor

with limited processing power and storage capacity, as

is the case for smart cards. In such a case, one would

not want to have to recompute the authentication tags at-

tached to each file every time a file is updated.
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(b) Memory checkers (Fischlin, 1997): in a similar setting, one

also desires to verify the integrity of memory locations

used to store sensitive information such as financial

data and passwords in banks, etc. Therefore, there is

a need to be able to quickly check the integrity of memory

for any unauthorized modifications.

(c) Broadcast networks (Bellare et al., 1994): in a situation

where a similar message needs to be transmitted to differ-

ent users, an incremental hash function would allow one

to quickly recompute the hash of subsequent similar mes-

sages when the first message has already been hashed.

(d) Video surveillance broadcasting (Bellare et al., 1994): since

video surveillance cameras typically consist of successive

frames that differ only slightly from each other, and that

need to be integrity-protected, the hashes of these frames

can be quickly computed from the hashes of the other

similar frames.

Incremental hash functions are therefore very useful in the

practical sense to ensure fast integrity checks.

Some recent designs of incremental hash functions have

been based on the concept of pair block chaining (Bellare

et al., 1995a), e.g. the incremental XOR scheme (Bellare et al.,

1995a) and PCIHF variants (Goi et al., 2001, 2003b), which in-

volves taking two subsequent blocks (a pair) of a message,

M, at a time, and feeding them into a pseudo-random func-

tion, R, before chaining all the outputs of R into the final

hash, m.

The purpose of this paper is to show that more caution

should be taken when designing such incremental hash func-

tions in order that they be collision-resistant. We demonstrate

this fact by first showing three cases of how collisions can be

obtained in incremental hash functions based on pair block

chaining. Based on this, we highlight security considerations

for constructing incremental hash functions, especially those

based on pair block chaining. When necessary, we will cite

examples of ways that specific schemes (Bellare et al., 1995a;

Goi et al., 2001, 2003b) fail in order to illustrate and justify

our points.

In Section 2, we briefly review incremental hash functions,

the common paradigm used to construct them, the pair block

chaining construction and specific schemes based on this. In

Section 3, we discuss three cases that collisions will occur in

incremental hash functions based on pair block chaining.

We then give in Section 4 a summarized discussion of the

security considerations for hash functions, starting with gen-

eral ones, and then move onto those specific for incremental

hash functions. We conclude in Section 5.

2. Incremental hash functions based on pair
block chaining

Incremental hash functions typically follow the randomize-

then-combine paradigm (Bellare et al., 1997) where a message

to be hashed is first divided into blocks and each block is

then in turn put through a randomizing function, R, before

the output blocks are all combined to form the final hash

output, m.
The pair block chaining (Bellare et al., 1995a; Goi et al., 2001)

is a type of randomizing function on a sequence of n blocks of

a message, M. The idea is to pair up two subsequent message

blocks prior to inputting each pair to a pseudo-random func-

tion, R, and then combining all the outputs for a resultant

hash value, m. Supposing that a message, M can be broken

up into n blocks, then the hash, m, is computed as follows:

m ¼ 4
n�1

i¼1
RðM½i�kM½iþ 1�Þ (1)

Note here that k denotes concatenation, and in this case, the

combining function is an exclusive-OR (XOR) sum of all

randomized blocks.

This idea of pair block chaining was first applied in the

incremental XOR scheme (Bellare et al., 1995a) in 1995 for

use to compute the signatures1 (characteristics) of files to

check for their integrity.

Some other combining operations besides XOR can be used,

for example the PCIHF incremental hash function designed in

2001 (Goi et al., 2001) uses a similar pair block chaining con-

struction, but is designed to be a fast and more secure alterna-

tive to the basic XOR scheme (Bellare et al., 1995a) by replacing

the XOR combining sum with a modular addition sum.

Another PCIHF variant with a much larger modulus (e.g.

moving from modulus 2160 to modulus 21600) was later pro-

posed (Goi et al., 2003b) in 2003 to counter an attack by Wagner

(2002) on the initially proposed version (Goi et al., 2001). Three

methods were further given on how to implement this, which

generally just combines every 10 consecutive 160-bit output

blocks from the randomizing function, R (assuming SHA-1 is

used as R) to form 1600-bit intermediate values for the final

modulo 21600 combining.

However, as we will demonstrate in the next section, more

caution needs to be exercised when constructing incremental

hash functions based on this pair block chaining technique,

regardless of the combining function or the size of the modu-

lus used.

3. Three cases of collisions

One major security criteria for hash functions is that they

should be collision-resistant, which means that given two dis-

tinct messages, M and M0, the probability that the correspond-

ing hashes, m and m0 are not equal is negligible. In this section,

we demonstrate that for incremental hash functions based on

pair block chaining, collisions would occur in three cases,

namely messages with non-distinct blocks, when messages

require padding and when cyclic chaining is used.

3.1. Messages with non-distinct blocks

We first consider the case of the incremental XOR scheme in

Bellare et al. (1995a). For this, if some message blocks repeat

(non-distinct), for instance, palindromic-like messages of the

form A k B kA, where A, B represent any two message blocks,

then there exists another message of the form B kA k B such

1 The term ‘‘signature’’ in this context does not refer to a digital
signature, but corresponds more to the virus setting where it
means the characteristic of a file, in this case, the hash of it.
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that the two messages hash to the same value, m, hence a col-

lision occurs. Note that such collisions exist for palindromic

messages of any block length that is not necessarily three as

in the example given above. Also, non-palindromic messages

equally fall to this attack, for example two messages of the

form A k B k C k B kA and B k C k B kA k B also cause collisions.

Basically, any two messages with the same block at both

ends, and where all consecutively paired blocks follow the

same order, would cause collisions. Finally, messages with re-

petitive blocks also fail. For example, two messages

A k B k B k B k B k B k C and A k B k B k B k C would hash to the

same value. This applies regardless of whether the repetitive

blocks repeat an odd or even number of times, as long as

they are either both odd or both even. The incremental XOR

scheme (Bellare et al., 1995a) is therefore not collision-

resistant.

Meanwhile, for PCIHF, this may also be a potential problem

if not implemented carefully. Although the specification of

PCIHF (Goi et al., 2001) rightly warns of certain inherent

limitations such as this ‘‘strong assumption’’ that any two

message blocks should be distinct, implementers and users

are unlikely to see those warnings if they are not made explicit

enough. Further, since this is a very strict and often impracti-

cal requirement, it should have been more clearly emphasized

and highlighted as part of the implementation criteria. This

raises the issue of the degree of explicitness that should be

made by hash function designers in their proposals. Borrow-

ing from the design criteria of authentication protocols

(Lowe, 1996), we quote:

‘‘.nothing in the description prohibits such an implementation.

If the designer believes that certain implementation consider-

ations are necessary, then these should be made explicit.’’

Explicitness in hash function design is clearly a practical

concern. We have to bear in mind that most hash function

implementers are not themselves the hash function de-

signers, hence they would only follow whatever is stated in

the hash function descriptions. Assumptions that hash func-

tion designers feel are obvious and trivial, might not be known

by the implementers and hence would not be taken into con-

sideration when these hash functions are implemented. In

fact, this split in design and implementation is true for any

area of security.

3.2. Messages with padding

When one designs incremental hash functions based on pair

block chaining, checking that no two blocks are identical pre-

vents collisions, as discussed previously in Section 3.1. Never-

theless, we show here that collisions would still occur when

padding is required for messages that are not an integral

length of the block size.

For instance, the PCIHF specification (Goi et al., 2001) sug-

gests to pad such messages with a ‘1’ followed by all ‘0’s. For

the sake of illustration, let the message block size, b¼ 32

bits. Let a message block A¼ 12030 which denotes two ‘1’s, fol-

lowed by a string of 30 ‘0’s. Let B¼ 0111030 which denotes a ‘0’,

a ‘1’, followed by a string of 30 ‘0’s. Then a 65-bit message of

the form A k B k 1 would be padded to form A k B kA, while
a 65-bit message of the form B kA k 0 would be padded to

form B kA k B. This causes two such padded messages to

hash to the same value, and a collision occurs. Note that

this phenomenon would occur for arbitrary block sizes and

for any two messages as long as the result of padding the

two causes them to be of the palindromic form A k B kA and

B kA k B. Again, other non-palindromic forms such as

A k B k C k B kA and B k C k B kA k B also cause collisions. There-

fore, it is clear that extreme care has to be taken when padding

messages. A check that any two messages be distinct should

be done even after padding.

Note further that the need for padding is especially so for

hashing shorter messages with the PCIHF variant in Goi

et al. (2003b) that uses a large modulus, thus our concern

here must be addressed with caution.

3.3. Cyclic chaining

The first designer of PCIHF (Goi et al., 2001, 2003a,b) personally

remarked that cyclic chaining might strengthen the PCIHF

construction. In particular, cyclic chaining also pairs up the

last message block with the first block, i.e. R(M[n] kM[1]).

This is good since it seems that such a chaining prevents

post-pend and pre-pend attacks so that the attacker cannot

attack by using messages of arbitrary lengths because an extra

constraint is put on the chaining, namely that the head and

tail of the message chains have been fixed to M[1]. As an extra

security measure, it is further suggested that for such cyclic

chaining, the message length should be included as a parame-

ter as well. However, the following observation applies even in

such a case since all messages considered are of equal length.

Consider then a variant of the incremental hash function

based on pair block chaining (e.g. Bellare et al., 1995a;

Goi et al., 2001, 2003b) that cyclically chains the message

blocks such that given a message A k B k C, the chaining is of

the form:

hashðAkBkCÞ ¼ RðAkBÞ þ RðBkCÞ þ RðCkAÞ; (2)

whereþ denotes the combining sum operator (XOR for Bellare

et al. (1995a) and modulo addition for Goi et al. (2001, 2003a,b)).

Then, there is another message B k C kA such that

hashðBkCkAÞ ¼ RðBkCÞ þ RðCkAÞ þ RðAkBÞ (3)

and we get the same hash output value. Also, we observe that

there is yet another message C kA k B such that

hashðCkAkBÞ ¼ RðCkAÞ þ RðAkBÞ þ RðBkCÞ (4)

and once again the hash output is the same.

Essentially we can think of these three messages as being

‘slid’ versions of each other (see Fig. 1), and since the com-

bining function used for such schemes (whether XOR or

modular addition) is commutative, they all hash to the

same value. This sliding of the messages is possible since

there is no block dependence in the cyclic chaining. In gen-

eral, for an n-block cyclically chained message, there are n

such messages that produce the same hash output when

such cyclic chaining is used.

As a side remark, we note that the double-length hash

function recently proposed in Nandi et al. (2005) also cyclically

chains its input blocks prior to being input to a randomizing
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function, R($) and the outputs are then combined via XOR.

However, this is not susceptible to our ‘sliding’ collisions since

it uses a different randomizing function for every pairwise-

chained block.

4. Security considerations

In this section, we first review the standard security criteria

for hash functions, and then discuss the security consider-

ations for incremental hash functions in general and also

those constructed via pair block chaining. This list (though

not entirely exhaustive), includes all considerations high-

lighted in previous work done on incremental hash functions

in Bellare et al. (1994, 1995a,b, 1997), Fischlin (1997), Goi et al.

(2001, 2003a,b), Wagner (2002). The three general security

criteria for any hash function are:

Preimage resistance (one-wayness): for a given output y, it is

computationally infeasible to find an input x such that

y¼ h(x).

Second-preimage resistance (weak collision resistance): for

a given input x, it is computationally infeasible to find

another input x0 s x such that h(x)¼ h(x0).

(Strong) collision resistance: it is computationally infeasible

to find a pair of inputs x and x0 s x such that h(x)¼ h(x0).

Additionally, for the case of incremental hash functions,

specifically for the randomize-then-combine paradigm, we have

the following which are essentially consequences of the fail-

ure to provide the above-defined collision resistance

properties:

(1) To prevent collisions of hash outputs due to input mes-

sages with the same but permuted blocks (of the kind

we considered in Section 3), then:

(a) Include some block dependence (the block counter, i)

into the randomizing or the combining function

(Bellare et al., 1997, 1995b), even if pair block chaining

(Bellare et al., 1995a) is used,2 for instance by concate-

nating i to the message blocks before they enter the

pseudo-random function, R:

RðM½i�kiÞ: (5)

or

(b) All message blocks should be distinct, even after

padding.

A B B C C A

C A A BB C

C A A B B C

+ +

+ +

+ +

Fig. 1 – Sliding cyclically chained pair blocks.

2 Because our results in Section 3 have shown that pair block
chaining alone is insufficient to prevent collisions.
(2) To prevent collisions found via solving linear equations

as shown in Bellare et al. (1997), do not use XOR as a com-

bining function.

With regards to consideration (1a), we note that although it

has been suggested in the past (Bellare et al., 1997) to include

some block dependence to a message block before it is passed

to the randomizing function, R, such a consideration has not

been applied to incremental hash functions based on pair block

chaining such as the incremental XOR scheme (Bellare et al.,

1995a) and the PCIHF (Goi et al., 2001, 2003a,b). It was always

either block dependence or pair block chaining to be used, not

both at the same time. We therefore stress here that this consid-

eration is an important one and should equally apply to such

incremental hash functions. Adding the block counter only

slightly increases the input length of R($) but otherwise does

not degrade the performance. As a further remark on pair block

chaining, note that instead of directly combining the random-

ized paired blocks into the final hash, one could use a CBC-based

chaining method (NIST, 2001) where for instance the output of

a previous R($) is XORed to the input of the current R($), etc.

This requires an extra R($) computation for every block updated

but prevents the collisions as described in Section 3.

Consideration (1b) is often thought to be a very strong and

impractical restriction. However, we argue that if this is really

the case, then incremental hash functions based on pair block

chaining such as in Bellare et al. (1995a), Goi et al. (2001,

2003a,b) are not themselves practical since their security

and collision resistance depend on such an impractical

assumption. Nevertheless, this consideration would not be

necessary if consideration (1a) is incorporated.

It has been shown in Bellare et al. (1997) that the use of XOR

as a combining function causes an incremental hash function

based on the randomize-then-combine paradigm to fall to col-

lisions obtained via solving linear equations. Instead, other

combining functions such as modulo addition or multiplica-

tion were suggested. We remark here that this consideration

alone is not sufficient against collisions of the sort presented

in Section 3, e.g. PCIHF uses modulo addition for combining

and yet such collisions may pose a problem. Basically, any

combining function that is commutative would fail here

because we need to ensure that when one or more blocks of

an input message are permuted, the same hash output does

not result. This highlights that the order in which the blocks

are combined is important to prevent the collisions.

Finally, we reiterate that all design assumptions should be

explicitly stated by the designer. Though this seems standard,

it is often overlooked (Lowe, 1996) in designers’ proposals, and

this is a fatal mistake since most implementers are them-

selves not security experts and so are unfamiliar with the

‘‘standard’’ assumptions made by security designers. In fact,

this separation of roles between design and implementation

is often a problem in any area of security.

4.1. Other incremental cryptographic primitives

We feel it is worth mentioning as an aside the other security

considerations when incrementality is applied to the case of

other cryptographic primitives including digital signatures
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(Bellare et al., 1994), and message authentication codes (MACs)

(Bellare et al., 1995a,b).

An incremental digital signature is directly derived (Bellare

et al., 1994) from an incremental hash function by hashing

the message with the incremental hash function to obtain

m, and then signing m with a standard digital signature. In

this case, the resistance of the scheme against existential

forgery under adaptive chosen message attacks should be

considered. This means that it should be computationally

infeasible for an attacker to find (forge) a valid signature

s for any new message m, even when he has access to a sign-

ing oracle into which he can arbitrarily submit any other

message of his choice.

An incremental MAC may be viewed as a variant of the incre-

mental hash function where the randomizing function, R($) is

keyed by a secret, and thus this MAC output should be com-

putable only by legitimate parties. The security criterion

then for such MACs is that an attacker should not be able to

compute a valid MAC output. It was highlighted in Bellare

et al. (1995b) that block dependence should be included to pre-

vent attacks similar to our collisions in Section 3. Also, if there

are messages (m1, m2, .) that have valid incremental MAC

outputs (z1, z2, .), then an attacker could generate a new

MAC output z0 that is a valid MAC of a new message m0, both

obtained by linearly combining the messages and the MACs,

respectively. In order to prevent this, it was suggested to use

nonces (Bellare et al., 1995b) (which are random numbers

used only once) in the input to R($) or to use an extra (Bellare

et al., 1995a) nonlinear pseudo-random permutation R2($) at

the output of the combining function.

5. Concluding remarks

Incremental hash functions (Bellare et al., 1994) are good

primitives compared to conventional non-incremental ones,

but care has to be taken when designing them, especially to

avoid collisions. We have shown three cases of how collisions

can occur in incremental hash functions based on pair block

chaining. In particular, this shows that the incremental XOR

scheme (Bellare et al., 1995a) is not collision-resistant, and

that the PCIHF (Goi et al., 2001, 2003a,b) would equally fail to

be collision-resistant if it is not implemented carefully in sev-

eral settings. Our results highlight that extreme caution

should be taken by hash function designers when designing

such hash functions, and that whatever assumptions made

should be stated explicitly so that they will be noted by hash

function implementers. As a first step towards concrete incre-

mental hash function design, we highlighted some security

considerations for designing and implementing collision-

resistant incremental hash functions based on pair block

chaining.
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