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ABSTRACT

Conditional generative models, such as Schott et al.’s Analysis-by-

Synthesis (ABS), have state-of-the-art robustness on MNIST, but

fail in more challenging datasets. In this paper, we present E-ABS,

an improvement on ABS that achieves state-of-the-art robustness

on SVHN. E-ABS gives more reliable class-conditional likelihood

estimations on both in-distribution and out-of-distribution sam-

ples than ABS. Theoretically, E-ABS preserves ABS’s key features

for robustness; thus, we show that E-ABS has similar certified ro-

bustness as ABS. Empirically, E-ABS outperforms both ABS and

adversarial training on SVHN and a traffic sign dataset, achieving

state-of-the-art robustness on these two real-world tasks. Our work

shows a connection between ABS-like models and some recent

advances on generative models, suggesting that ABS-like models

are a promising direction for defending adversarial examples.
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1 INTRODUCTION

Deep neural networks are susceptible to adversarial examples: a

deep model’s accuracy drops significantly under adversarially cho-

sen perturbations, even though these perturbations do not change

human perception [7, 45]. In this paper, we want to improve adver-

sarial robustness against small imperceptible perturbations. Specif-

ically, our goal is to build an image classifier that maintains good

accuracy under perturbations bounded by a 𝐿𝑝 ball.
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To this end, Schott et al. proposedAnalysis-by-Synthesis (ABS) [42]

and achieved state-of-the-art robustness on MNIST [28] against any

𝐿𝑝 bounded perturbations. Golan et al. compared several defenses

with human subjects and found that ABS’s adversarial examples

are more likely to fool human subjects [16]. Therefore, ABS opens

a promising research direction on defending adversarial examples.

Despite state-of-the-art robustness on MNIST, ABS fails on more

challenging datasets such as SVHN [35] and CIFAR-10 [26]. Schott

et al. pointed out that ABS has low clean accuracy on CIFAR-10.

Fetaya et al. found that behaviors of ABS-like models are different

from MNIST on CIFAR-10 and these undesired behaviors cause un-

derperformance on CIFAR-10. Based on their observations, Fetaya

et al. claimed that ABS-like models are ineffective classifiers on

complex images [15].

In this paper, we address the issues of ABS-like models with

better generative models. Generative models are the building block

of ABS. Given a 𝐾-class classification task, ABS learns 𝐾 class-

conditional data distributions with generative models. At inference

time, ABS estimates the input’s conditional likelihood of each class

and classifies with Bayes’ rule. Therefore, ABS needs high-quality

conditional likelihood estimates. However, several studies suggest

that generative models may give unreliable estimates to out-of-

distribution samples on complex datasets [8, 19, 33]. This explains

Fetaya et al.’s observation, where ABS-like models give a high

likelihood to an interpolation of two images. Besides, variational

autoencoders [25], the generative model used by Schott et al., could

fail to learn a distribution of latent vectors thatmatches the prior [10,

40]; this also undermines ABS’s performance.

E-ABS introduces three extensions to address these issues. First,

we use adversarial autoencoders [30] to improve estimates for in-

distribution samples. Second, we optimize a variational distribution

at inference time. Third, we introduce a discriminative loss that

uses outlier exposure [19] to improve the model’s estimates for out-

of-distribution samples. These extensions improve E-ABS’s clean

accuracy and robust accuracy on datasets that are more complex

than MNIST while retaining ABS’s certified robustness.

Empirically, we show that E-ABS outperforms adversarial train-

ing [29] and ABS [42] on several real-world datasets. We run ex-

tensive experiments on two simple datasets (MNIST [28] and Fash-

ion MNIST [51]) and two more challenging real-world datasets

(SVHN [35] and a dataset of European traffic signs). We measure

robustness against a wide range of attacks with carefully chosen pa-

rameters. Results suggest that E-ABS preserves ABS’s performance

on simple datasets and sets a new state-of-the-art on SVHN and

traffic signs superior to prior work.

This paper is organized as follows: Section 2 introduces ABS;

Section 3 explains E-ABS’s extensions; Section 4 and Section 5
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present E-ABS’s implementation and experiments where we com-

pare E-ABS with other baseline defenses on four datasets. Section 6

discusses other defenses and some relevant studies on generative

models. Section 7 is a discussion on some future research directions

to improve E-ABS.

2 BACKGROUND

ABS classifies with class-conditional likelihood estimates. Given a

datum (𝑥,𝑦) where 𝑥 ∈ X ⊂ R𝑁 , 𝑦 ∈ Y = {1, . . . , 𝐾}, 1

𝑃 (𝑦 |𝑥) = 𝑃 (𝑥 |𝑦)𝑃 (𝑦)
𝑃 (𝑥) ∝ 𝑃 (𝑥 |𝑦)𝑃 (𝑦) .

Accordingly, ABS esimates 𝑃 (𝑥 |𝑘), 𝑘 ∈ Y and chooses the class

with highest likelihood as its prediction.

Schott et al.’s ABS uses variational autoencoders (VAEs) [25, 38]

for class-conditional likelihood estimation. VAEs use variational

inference to estimate 𝑃 (𝑋 ) 2. Given a variational distribution𝑄 (𝑍 )
where 𝑍 ∈ Z = R𝑀 is a latent representation, we have a lower

bound of 𝑃 (𝑥) from

log 𝑃 (𝑋 ) − DKL [𝑄 (𝑍 )∥𝑃 (𝑍 |𝑋 )] =
𝐸𝑍∼𝑄 (𝑍 ) [log 𝑃 (𝑋 |𝑍 )] − DKL [𝑄 (𝑍 )∥𝑃 (𝑍 )] (1)

whereDKL [·∥·] is KL-divergence. Since KL-divergence is non-negative,
the right side is a lower bound for 𝑃 (𝑋 ) known as the Evidence

Lower Bound (ELBO).

The choice of 𝑄 (𝑍 ) is arbitrary, but better 𝑄 (𝑍 ) gives a tighter
bound. VAEs use an encoder to propose a variational distribution

𝑄 (𝑍 |𝑋 ) and a decoder to estimate log 𝑃 (𝑋 |𝑍 ). The encoder maps

an image 𝑥 ∈ X to the parameters of 𝑄 (𝑍 |𝑥); typically 𝑄 (𝑍 |𝑥) is a
multivariate Gaussian, and thus the encoder outputs a mean vector

and a variance vector. The decoder maps a latent vector 𝑧 ∈ Z
back to the input space R𝑁 ; the output is viewed as the mean of

a Gaussian distribution, so log 𝑃 (𝑥 |𝑧) becomes ∥𝑥 −𝐺 (𝑧)∥2
2
where

𝐺 (𝑧) is the reconstructed image.

Given a 𝐾-class classification task, ABS trains 𝐾 class-specific

VAEs; the VAE for class 𝑘 ∈ Y maximizes in-distribution sample

likelihood by optimizing the ELBO objective (1) on {(𝑥,𝑦) |𝑦 =

𝑘}. At test time, as encoders are deep neural networks that are

susceptible to attack, ABS replaces the encoder with an optimization

step and estimates the class-conditional likelihood log 𝑃 (𝑥 |𝑘) as

max

𝑧∈Z

[
∥𝑥 −𝐺𝑘 (𝑧)∥22 − 𝛽 DKL [N (𝑧, 1)∥ N (0, 1)]

]
(2)

where N(𝜇, Σ) is a multivariate Gaussian distribution with mean 𝜇

and variance Σ, and 𝛽 is a hyperparameter [20]. Denote the optimal

𝑧 in (2) with 𝑧∗. Inference uses the variational distributionN(𝑧∗, 1)
instead of the distribution 𝑄 (𝑍 |𝑥) given by the encoder. It avoids

encoders and thus is more robust to adversarial perturbations.

Conceptually, ABS learns 𝐾 class-specific data manifolds and

classifies an input 𝑥 by its distance to these manifolds. Figure 1

shows intuition on why ABS’s predictions are stable under small

perturbations. When the learned manifolds are good representa-

tions of the real data distribution, ABS pushes adversarial examples

towards the human-perceptual decision boundary [42].

1
In this paper, we use 𝑋,𝑌 to represent random variables, 𝑥, 𝑦 to represent data, and

X,Y to represent sets.

2
In ABS, 𝑃 (𝑋 ) becomes 𝑃 (𝑋 |𝑌 ) for a class-specific VAE.

3 E-ABS DESCRIPTION

3.1 Generative Models

We use adversarial autoencoders (AAE) [30] to estimate class-

conditional probabilities, because VAEs may fail to match the prior

𝑃 (𝑧) and give unreliable likelihood estimates [10, 40], AAE uses

a discriminator 𝐷 to distinguish latent vectors encoded from in-

put images from vectors sampled from the prior. AAE trains the

encoder and discriminator like a generative adversarial network

(GAN) [17], pushing the encoder’s marginal distribution 𝑄 (𝑍 ) to
match the prior 𝑃 (𝑍 ) [30].

We denote the discriminator’s output with𝐷 (𝑧).𝐷 (𝑧) is the prob-
ability that an input 𝑧 is sampled from the prior so 0 ≤ 𝐷 (𝑧) ≤ 1.

Accordingly, the objective for training AAE’s encoder and decoder

is to minimize

E
(𝑥,𝑦)∼𝑃 (𝑋,𝑌 )

E
𝑧∼𝑄𝜙 (𝑍 |𝑥)

[
𝑐 (𝑥,𝐺𝜃 (𝑧)) − 𝛽 log𝐷𝜂 (𝑧)

]
(3)

where 𝜃, 𝜙, 𝜂 denote model parameters, 𝑐 (·, ·) is a cost function such

as squared error, and 𝛽 is a hyperparameter. Similar to GANs, the

objective for training discriminators is to minimize

E
𝑥∼𝑃 (𝑋 )

E
𝑧∼𝑄𝜙 (𝑍 |𝑥)
𝑧∼𝑃 (𝑍 )

−
(
log𝐷𝜂 (𝑧) + log

(
1 − 𝐷𝜂 (𝑧)

) )
Although AAEs do not give an explicit probability estimation

like VAEs, they implicitly minimize the Wasserstein distance [1,

3] between the learned 𝑃𝜃 (𝑋 ) and the prior 𝑃 (𝑋 ). Tolstikhin et

al. showed that AAE’s objective (3) is a relaxed version of the

optimization

inf

𝑄 :𝑄𝑍=𝑃𝑍
E

𝑥∼𝑃 (𝑋 )
E

𝑧∼𝑄 (𝑍 |𝑥)
[𝑐 (𝑥,𝐺 (𝑧))]

which is theWasserstein distance between 𝑃𝜃 (𝑋 ) and 𝑃 (𝑋 ) under a
cost 𝑐 [49]. Therefore, (3) measures the distance of the input image

to the learnedmanifold under a cost, and we use (3) for classification

in E-ABS. In our experiments, we choose 𝐿2 distance as our cost

function, which means 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥2
2
.

3.2 Discriminative Loss

A discriminative loss is used at training time to expose conditional

generative models to out-of-distribution samples. Hendrycks et al.

showed that outlier exposure fixes generative models’ undesired

behavior on out-of-distribution samples [8, 19, 33], improving the

quality of likelihood estimates [19]. Specifically, we minimize E-

ABS’s cross-entropy with respect to class-conditional likelihood

estimates. This loss facilitates each conditional AAE to recognize

out-of-distribution samples and avoid giving high likelihood esti-

mates to these samples.

The discriminative loss necessitates a structural change where

class-specific encoders are replaced by a shared encoder. With

class-specific encoders, a discriminative loss hinders each encoder

to match the marginal distribution of latent vectors because the loss

encourages a higher discriminator loss − log𝐷 (𝑧) for OoD samples.

To address this, we use the same encoder for all classes; because

all samples are in-distribution for the encoder, this issue does not

arise. Formally, given a datum (𝑥,𝑦) and 𝑙𝑘 (𝑥) denotes the model’s



Figure 1: A simplified explanation of why ABS’s predictions are stable under perturbations. Left: suppose a clean 50 image is

distance 𝑑1 away from its reconstruction using the model for class 50; then a perturbed image (of 𝑙2 norm 𝜖 from the original)

will be at most 𝑑1 + 𝜖 away from its optimal reconstruction. Right: suppose the clean image is distance 𝑑2 away from its

reconstruction using themodel for class 30; then the perturbed imagewill be at least𝑑2−𝜖 away from its optimal reconstruction.

Therefore, the classification is stable when 𝜖 < (𝑑1 − 𝑑2)/2.
estimate (3) for a class 𝑘 ∈ Y, the discriminative loss is defined as

− log

𝑒−𝑙𝑦 (𝑥)∑
𝑘∈Y 𝑒−𝑙𝑘 (𝑥)

= − E
𝑧∼𝑄 (𝑍 |𝑥)

log

𝑒−𝑐 (𝑥,𝐺𝑦 (𝑧))+𝛽 log𝐷 (𝑧)∑
𝑘 𝑒

−𝑐 (𝑥,𝐺𝑘 (𝑧))+𝛽 log𝐷 (𝑧)

= − E
𝑧∼𝑄 (𝑍 |𝑥)

log

𝑒−𝑐 (𝑥,𝐺𝑦 (𝑧))∑
𝑘 𝑒

−𝑐 (𝑥,𝐺𝑘 (𝑧))
(4)

Because of the shared encoder, the effect of the discriminator 𝐷 (𝑧)
has cancelled out, so with this change to the architecture, the dis-

criminative loss no longer encourages the encoder to produce latent

vectors far away from the prior for OoD samples.

Combining (3) and (4), the training objective for encoders and

decoders in E-ABS is

E
(𝑥,𝑦)∼𝑃 (𝑋,𝑌 )

E
𝑧∼𝑄𝜙 (𝑍 |𝑥)

𝑐 (𝑥,𝐺𝜃𝑦 (𝑧)) − 𝛽 log𝐷𝜂 (𝑧)

− 𝛾 log 𝑒
−𝑐 (𝑥,𝐺𝜃𝑦 (𝑧))∑

𝑘∈Y 𝑒
−𝑐 (𝑥,𝐺𝜃𝑘 (𝑧))

(5)

where 𝛽 and 𝛾 are hyperparameters. Algorithm 1 summarizes the

training method. In practice, we update discriminators and en-

coders/decoders in an interleaved fashion; we choose 𝛽 = 1 and

𝛾 = 10 for all datasets.

3.3 Variational Inference

ABS-like models estimate the likelihood for each class through

an optimization process in the latent space that maximizes the

likelihood estimate. Schott et al. fix the variance of the variational

distribution 𝑄 (𝑍 ) during this optimization and optimize its mean.

Therefore, the KL divergence term drives latent vectors towards the

origin, moving away from the Gaussian prior’s typical set [34]. For

AAE, such an inference method leads to outlier latent vectors that

significantly deviate from the prior because AAE’s discriminator is

a non-smooth neural network. These are undesired behaviors that

undermine the model’s performance.

To address this issue, we optimize both mean and variance of

the variational distribution 𝑄∗ (𝑍 ) at test time. Formally, we use

Algorithm 1 Training E-ABS.

Inputs: Hyperparameters 𝛽 > 0, 𝛾 > 0.

Initialize parameters of the encoder 𝑄𝜙 , the discriminator 𝐷𝜂 ,

and 𝐾 decoders 𝐺𝜃1 , . . . ,𝐺𝜃𝐾 .

repeat

Sample (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) from the training set.

Sample 𝑧1, . . . , 𝑧𝑛 from the prior 𝑃 (𝑍 ).
Sample 𝑧𝑖 from 𝑄𝜙 (𝑍 |𝑥𝑖 ) for 𝑖 = 1, . . . , 𝑛.

Update 𝜙 and 𝜃𝑖 for 𝑖 = 1, . . . , 𝐾 by descending

1

𝑛

𝑛∑
𝑗=1

𝑐 (𝑥𝑖 ,𝐺𝜃𝑦𝑖 (𝑧𝑖 )) − 𝛽 log𝐷𝜂 (𝑧𝑖 )

− 𝛾 log 𝑒
−𝑐 (𝑥𝑖 ,𝐺𝜃𝑦𝑖 (𝑧𝑖 ))∑𝐾

𝑘=1
𝑒
−𝑐 (𝑥𝑖 ,𝐺𝜃𝑘 (𝑧𝑖 ))

Update 𝜂 by descending

− 𝛽
𝑛

𝑛∑
𝑖=1

log𝐷𝜂 (𝑧𝑖 ) + log

(
1 − 𝐷𝜂 (𝑧𝑖 )

)
until convergence.

gradient methods to find

min

𝜇,Σ
E

𝑧∼N(𝜇,Σ)
[𝑐 (𝑥,𝐺 (𝑧)) − 𝛽 log𝐷 (𝑧)] (6)

The reparameterization trick [38] allows us to optimize the varia-

tional distribution’s parameters 𝜇 and Σ directly.

To avoid local minima for the optimization process, Schott et

al. start the optimization from the best point out of 8000 random

vectors. Similarly, we sample 8000 variational distributions that

are parameterized by random means and unit variance. We also

include 𝑄𝜂 (𝑍 |𝑥), the encoder’s output, as a candidate. Therefore,
we choose the best from 8000 + 1 variational distributions as the

starting point of the optimization.

When optimizing (6), we use one sample to compute the expecta-

tion. Importance weighted sampling gives better estimations with

more samples [5]. In practice, we find that a one-sample approx-

imation is sufficient for reliable estimation and is more efficient

than importance weighted sampling.



3.4 Lower Bounds for the Robustness of E-ABS

Using the same technique from Schott et al., we can deduce a lower

bound for the distance to the nearest adversarial examples for E-

ABS. For simplicity, we analyze 𝐿2 bounded perturbations and use

an exact 𝑧 instead of a variational distribution 𝑄 (𝑧). We analyze

the case where 𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥2
2
.

Given an input 𝑥 ∈ X and a class 𝑘 ∈ Y, our estimate of

− log 𝑃 (𝑥 |𝑘) is given by

𝑙∗
𝑘
(𝑥) = min

𝑧∈Z

[
∥𝑥 −𝐺𝑘 (𝑧)∥22 − 𝛽 log𝐷 (𝑧)

]
.

Let 𝑧∗
𝑘
denote the optimal 𝑧 for class 𝑘 . Given a perturbation 𝛿 where

∥𝛿 ∥2 ≤ 𝜖 , under certain conditions, we have

(𝑑𝑘 (𝑥) − 𝜖)2 ≤ 𝑙∗
𝑘
(𝑥 + 𝛿) ≤ 𝑙∗

𝑘
(𝑥) + 2𝜖 ∥𝑥 −𝐺𝑘 (𝑧∗𝑘 )∥

2

2
+ 𝜖2

where 𝑑𝑘 (𝑥) = min𝑧∈Z ∥𝑥 −𝐺𝑘 (𝑥)∥2. As ABS-like models make

predictions with argmin𝑘 𝑙
∗
𝑘
(𝑥), adversarial perturbations increase

𝑙∗𝑦 (𝑥)while decreasing 𝑙∗𝑘 (𝑥), and the optimal perturbation is achieved

when

𝑙∗𝑦 (𝑥) + 2𝜖 ∥𝑥 −𝐺𝑦 (𝑧∗𝑦)∥22 + 𝜖
2 = (𝑑𝑘 (𝑥) − 𝜖)2

for some 𝑘 . Therefore, we have the following lower bound on 𝜖 :

𝜖∗ = min

𝑘∈Y

𝑑2
𝑘
(𝑥) − 𝑙∗𝑦 (𝑥)

2𝑑𝑘 (𝑥) + 2∥𝑥 −𝐺𝑦 (𝑧∗𝑦)∥22
(7)

Section A in the appendix gives more details about this bound,

including its proof.

(7) suggests that robustness improves when 𝑙∗𝑦 (𝑥) decreases and
𝑑𝑘 (𝑥) increases, which has a direct connection to the goodness of

generative models. On the one hand, 𝑙∗𝑦 (𝑥) is lower when generative
models can model in-distribution samples well. On the other hand,

increasing 𝑑𝑘 (𝑥) means that the learned manifold {𝐺𝑘 (𝑧) |𝑧 ∈ Z}
for class 𝑘 is away from samples from other classes.

4 EXPERIMENTS

4.1 Datasets

We evaluate our models on four datasets. At training time, we aug-

ment datasets with additive Gaussian noise, except for adversarially

trained models. We use a random 10% of each dataset’s training set

as a validation set.

MNIST is a dataset of handwritten digits [28]. MNIST has a clean

background and binarized values, making it naturally robust against

some adversarial perturbations. Schott et al. showed that binarized

CNN, a simple extension to CNN models that exploits the binarized

value distribution, can achieve robustness comparable with Madry

et al.’s adversarially trained models [42].

Fashion MNIST is a dataset proposed by Xiao et al. as an MNIST

alternative [51]. Previous studies suggest that Fashion MNIST is

more challenging than MNIST. Therefore, we use Fashion MNIST

to complement our comparison on simple datasets.

SuperTraffic-10 is a European traffic sign dataset composed of

three datasets: the German Traffic Sign (GTS) dataset [44], the

DFG traffic sign dataset [46], and the Belgium Traffic Sign (BTS)

dataset [48]. We merge the three datasets because they all contain

European traffic signs. We filter out small images (images that are

smaller than 32 × 32 pixels) and choose the top 10 classes with the

most images. All images in SuperTraffic-10 are 32× 32 RGB images,

making it a more complex dataset than MNIST or Fashion MNIST.

The Street View House Numbers (SVHN) dataset is a real-world

dataset of digits [35]. SVHN is more challenging than MNIST be-

cause its images are 32 × 32 RGB images, and its images are taken

from the real world.

4.2 Attacks

We evaluate model robustness against gradient-based attacks. ABS-

like models use optimization at inference time, which makes it

difficult for attacks to computing gradients. We propose an adaptive

method to compute gradients. This method is an extension of Schott

et al.’s Latent Descent Attack customized for ABS [42]. Furthermore,

we confirm on SVHN with gradient-free attacks that E-ABS does

not have obfuscated gradients [2].

All attacks are implemented with Foolbox [37].

Anadaptivemethod to compute gradients.Adaptive attacks

are necessary when evaluating model robustness [6, 50]. ABS-like

models have convoluted gradients because they run several itera-

tions of optimization at inference time. Therefore, adaptive methods

to compute gradients are necessary to evaluate the robustness of

these models properly.

We compute gradients from the optimal variational distribution

𝑄∗ (𝑍 ) and exclude the optimization process from gradients. Specif-

ically, given 𝑧∗ sampled from the optimal𝑄∗ (𝑍 ), the reconstruction
loss is the 𝐿2 distance between 𝑥 and𝐺 (𝑧∗). Therefore, its gradient
is given by

𝜕𝑙 (𝑥, 𝑧∗)
𝜕𝑥𝑖

= 2

(
𝑥𝑖 −𝐺𝑖 (𝑧∗)

)
(8)

where 𝑖 indexes the location of a pixel in the image.

This gradient method is efficient and effective. Projected gradient

descent [27, 29] using this gradient method extends and improves

Schott et al.’s Latent Descent Attack [42] on ABS-like models. LDA

searches for adversarial examples in the direction of the closest

out-of-distribution reconstruction. A PGD attack with gradients

given by (8) also pushes the adversarial example towards the best

OoD reconstruction.

Unlike many other models, E-ABS’s classification decision is

randomized thanks to its use of the reparameterization trick at

inference time. We use expectation over transformation [2], with 5

samples per batch, to deal with this randomness. Appendix B’s ex-

periments suggest that 5 samples are sufficient to stabilize gradient-

based attacks.

Gradient-based attacks. We use two gradient-based 𝐿∞ at-

tacks:

• (PGD) Projected gradient descent attack [27, 29] with 80

steps. We use 5 random starts for MNIST and FashionMNIST,

and 20 random starts for SuperTraffic-10 and SVHN.

• (DeepFool) DeepFool attack [31] with 100 steps.

We use 𝐿∞ PGD to choose attack parameters. In Appendix B, sup-

plementary experiments suggest that 20 random starts and 80 steps

are sufficient.

We use four gradient-based 𝐿2 attacks:

• (PGD) Projected gradient descent attack with the same pa-

rameters as 𝐿∞ PGD.



Figure 2: E-ABS’s structure. E-ABS has one shared encoder

withmultiple decoders. The discriminator distinguishes vec-

tors sampled from𝑄 (𝑍 |𝑋 ) from vectors sampled from 𝑃 (𝑍 ).

• (DDN) Decoupled direction and norm attack [39] with 80

steps. DDN is an extension of the PGD attack.

• (CW) Carlini-Wagner attack [7] with 5 binary searches and

100 steps.

• (DeepFool) DeepFool attack with the same parameters as

𝐿∞ DeepFool.

Furthermore, we include an attack that adds Gaussian noise with

increasingly large standard deviation. Previous studies suggest that

a model’s performance under additive Gaussian noises is correlated

with a model’s robustness against 𝐿2 attacks [14].

Gradient-free attacks. We use two gradient-free attacks: a

Boundary attack [4] and a PGD attack with gradient estimation. We

use 100000 iterations for the Boundary attacks and 50 steps for the

PGD attack with gradient estimation. We initialize the Boundary

attack with a random sample that is classified as a different class

from the ground truth.

4.3 Models

We run attacks against E-ABS and two baseline defenses: Schott

et al.’s ABS model and an adversarially trained model. Our E-ABS

model uses a convolutional encoder and decoder; the discrimina-

tor is a two-layer feed-forward network. Figure 2 shows E-ABS’s

structure. The other models share E-ABS’s modules. ABS uses the

same model structure as E-ABS, but does not have discriminators.

CNNs add a linear layer after E-ABS’s encoder for classification.

Adversarially trained CNNs are tuned to have comparable clean

data accuracy with E-ABS. Because adversarially trained CNNs

under 𝐿∞ attacks do not generalize to 𝐿2 attacks [42], we include

both Adv-𝐿∞, an adversarially trained model with 𝐿∞ attacks, and

Adv-𝐿2, an adversarially trained model with 𝐿2 attacks.

In our experiments, the E-ABS encoder uses 4 convolutional

layers followed by two parallel fully-connected layers that compute

the variational distribution’s parameters. All convolutional layers

use batch normalization [21] and Leaky ReLU activation [52]. We

use dropout [43] after the last convolutional layer. The decoder uses

a fully-connected layer followed by convolution transpose layers.

The fully-connected layer’s output has the same size as the first

convolution transpose layer’s output depth. We use dropout [43]

after the fully-connected layer. All convolution transpose layers,

except the last layer, use batch normalization [21] and ReLU activa-

tion [32]; the last layer uses sigmoid. Table 9 in Appendix C shows

more details of the architecture we use in our experiments.

We use Adam [23] and batch size 512 to train all models. We

use an initial learning rate 0.001 for CNN, ABS, and E-ABS, and

halve the learning rate every 200 epochs. We train CNN, ABS, and

E-ABS for 500 epochs, except for ABS and E-ABS on SVHN, where

we train 800 epochs. For the adversarially trained model, we use

the pre-trained CNN model and retrain the model for 200 epochs

with a learning rate 0.0001 and no learning rate decay.

At training time, we augment data with additive Gaussian noise.

We use a standard deviation 0.2 for MNIST and Fashion MNIST,

and 0.01 for SuperTraffic-10 and SVHN.

4.4 Ablation Study

E-ABS consists of three separate extensions to ABS. We present an

ablation study to demonstrate that all three extensions are neces-

sary. We denote the three extensions with A (for AAE-based mod-

els), D (for models with a discriminative loss and shared encoder),

and V (for models that use variational inference). This ablation

study examines all combinations of the three extensions on SVHN

with 𝐿∞ and 𝐿2 PGD attacks.

When training A-ABS and AV-ABS models, we find that train-

ing discriminators with both in-distribution samples and out-of-

distribution samples improves the model’s performance. This way,

class-specific discriminators see latent vectors encoded from not

only in-distribution images but also out-of-distribution images.

4.5 Metrics

We report eachmodel’s clean accuracy and accuracy under bounded

perturbations. Unless otherwise specified, we choose 1000 random

test samples when reporting robustness results. We run McNemar’s

test [12] on every pair of models to test whether the difference

in their performance is statistically significant; McNemar’s test

is a pairwise test with a null hypothesis that none of the models

performs better than the other. We choose 𝛼 = 0.01. Besides re-

sults under each attack, we report the model’s accuracy under the

combination of all attacks of the same type.

5 RESULTS

E-ABS extends ABS to more complex image datasets.

E-ABS outperforms ABS on SVHN and SuperTraffic-10, as shown

in Table 3 and Table 4. For example, ABS’s clean data accuracy

on SVHN is only 45.8%; E-ABS increases clean accuracy to 89.2%,

comparable with an unprotected CNN (91.3%). This suggests that

E-ABS provides better likelihood estimates on image datasets that

were previously considered challenging for ABS-like models [15].

E-ABS also outperforms adversarial training on SuperTraffic-

10 and SVHN and achieves a new state of the art in robustness

on these datasets.
3
Also, E-ABS is robust against both 𝐿∞ and 𝐿2

attacks, while adversarially trained models have robustness only

3
The best-published result on SVHN that we know of is 55.59% accuracy under PGD-

𝐿∞ attack with 𝜖 = 8/255 [18]; E-ABS achieves 57%. We create SuperTraffic-10, but

GTSRB [44], one of the three datasets included in SuperTraffic-10’s, has the best-known

result of 67.9% under PGD-𝐿2 attack with 𝜖 = 0.2 [9], according to robust-ml.org.

E-ABS’s accuracy is 85% under the same attack.



Table 1: Results of different models on MNIST. Reported

numbers are accuracy under bounded perturbations. Re-

sults are based on 1000 samples. McNemar’s test shows that

all differences are significant (𝑝 < 0.01).

CNN Adv-𝐿∞ Adv-𝐿2 ABS E-ABS

Clean 99.5% 98.5% 98.6% 96.1% 99.4%

𝐿∞ attack (𝜖 = 0.3)

PGD 0% 90.4% 0% 3.4% 17.1%

DeepFool 17.4% 92.9% 43.8% 6.2% 31%

Noise 99.3% 98.4% 98.5% 95.8% 99.1%

All 𝐿∞ 0% 90.3% 0% 3.3% 16.5%

𝐿2 attack (𝜖 = 1.5)

PGD 72.8% 88.4% 89.3% 75.2% 90.6%

DDN 62.3% 81.7% 87.5% 74.1% 91.4%

CW 86.8% 91.2% 94.7% 82.8% 94.8%

DeepFool 83.8% 93.1% 92.2% 95.9% 91.1

Noise 99.3% 98.5% 98.6% 74.4% 99.4%

All 𝐿2 61.8% 81.5% 87.5% 73.7% 90.4%

McNemar’s test p values

𝐿∞ attacks 𝐿2 attacks

against the type of attack used at training time. Figure 3 show the

model’s accuracy under PGD attacks as a function of the size of the

perturbation on SVHN. It confirms that E-ABS outperforms other

baselines for both 𝐿∞ and 𝐿2 attacks. Furthermore, all models lose

accuracy under large perturbations, suggesting that our adaptive

gradient methods are correct.

On MNIST and Fashion MNIST, E-ABS’s clean accuracy is com-

parable with unprotected CNNs, and its robustness is comparable

to ABS and adversarial training, as shown in Table 1 and Table 2.

Both ABS and E-ABS lose robustness under 𝐿∞ attacks with a large

bound, as shown in Table 1. We believe this occurs because likeli-

hood estimates rely on the 𝐿2 distance between the input and its

reconstruction. It may be possible to use other distance metrics to

target 𝐿∞ robustness more specifically.

On MNIST, our results are mostly consistent with [42]. Schott et

al.’s ABS has better clean data accuracy than ours. In comparison,

our ABS baseline uses the same structure as E-ABS, with more

capacity and dropout layers. Our experiments suggest that these

structural differences could explain most of the difference. Our

unprotected CNN models have better robustness than Schott et al.

observed in their experiments because we use Gaussian noise to

augment data at training time.

Results with gradient-free attacks confirm that our model does

not have obfuscated gradients. E-ABS has 92.0% accuracy under

Table 2: Results of different models on Fashion MNIST. Re-

ported numbers are accuracy under bounded perturbations.

Results are based on 1000 samples. McNemar’s test shows

that all differences are significant (𝑝 < 0.01) except for: Adv-

𝐿∞ and Adv-𝐿2 under 𝐿∞ attacks, ABS and E-ABS under 𝐿∞
attacks, Adv-𝐿∞ and ABS under 𝐿2 attacks, and ABS and E-

ABS under 𝐿2 attacks.

CNN Adv-𝐿∞ Adv-𝐿2 ABS E-ABS

Clean 91.0% 88.9% 87.4% 81.6% 90.1%

𝐿∞ attack (𝜖 = 0.1)

PGD 9.4% 57% 56% 46.2% 43.5%

DeepFool 25.9% 64.9% 63.2% 47.7% 45.7%

Noise 90.5% 88.9% 86.5% 81.4% 0.9%

All 𝐿∞ 9.4% 57% 55.7% 45.8% 43.5%

𝐿2 attack (𝜖 = 1.5)

PGD 19.1% 51.9% 59.2% 46.6% 43.3%

DDN 13.4% 46.6% 57.2% 45.4% 49.9%

CW 30.7% 61% 63.6% 50.7% 54.1%

DeepFool 28.9% 56.4% 60.4% 46.4% 44.3%

Noise 90.9% 88.8% 87.1% 81.2% 89.6%

All 𝐿2 13.2% 45.9% 55.1% 45.2% 41.7%

McNemar’s test p values

𝐿∞ attacks 𝐿2 attacks

Boundary attack and 88.0% accuracy under 𝐿∞ PGD attack with

gradient estimators. Comparing with Table 4, gradient-based at-

tacks with the adaptive gradient method are much stronger than

gradient-free attacks.

On MNIST, E-ABS’s adversarial perturbations are semantically

consistent with human perception, similar to ABS [16, 42]. Figure 4

shows some adversarial examples for E-ABS on MNIST under a

PGD-𝐿2 attack. However, on more complex datasets such as SVHN,

E-ABS does not match human perception, as shown in Figure 5.

In summary, results from Table 1 to Table 4 suggest that

• E-ABS has similar or better clean data accuracy than ABS

on both complex and simple datasets.

• Compared with ABS, E-ABS has comparable robustness on

simple datasets and better robustness on complex datasets.

• E-ABS outperforms other models on SuperTraffic-10 and

SVHN, providing a new state-of-the-art on these datasets.

• E-ABS’s clean data accuracy is comparable with an unpro-

tected CNN on all datasets except for SuperTraffic-10.

All three extensions are necessary for E-ABS.



Table 3: Results of different models on SuperTraffic-10. Re-

ported numbers are accuracy under bounded perturbations.

Results are based on 1000 samples. McNemar’s test shows

that all differences are significant (𝑝 < 0.01) except for Adv-

𝐿∞ and ABS under 𝐿2 attacks.

CNN Adv-𝐿∞ Adv-𝐿2 ABS E-ABS

Clean 99% 91.4% 91.6% 84.9% 92.7%

𝐿∞ attack (𝜖 = 8/255)
PGD 29.8% 74.3% 60.2% 53.4% 70.9%

DeepFool 48.1% 74.9% 64.6% 54.5% 82.1%

Noise 99.1% 91.7% 91.6% 84.8% 91.7%

All 𝐿∞ 29.8% 73.7% 59.9% 53.2% 69.8%

𝐿2 attack (𝜖 = 1.5)

PGD 14.8% 46.2% 53.7% 48% 66.1%

DDN 9.3% 44.6% 52.4% 47.1% 73%

CW 14.5% 51% 54.5% 47% 73.8%

DeepFool 33% 49% 56.6% 48.7% 93.3%

Noise 98.6% 91.6% 91.4% 86.3% 73.8%

All 𝐿2 8.7% 44.3% 52.2% 46.3% 59.9%

McNemar’s test p values

𝐿∞ attacks 𝐿2 attacks

Table 5 compares all combinations of Section 3’s three exten-

sions. Table 5 suggests that no single technique can significantly

improve ABS’s performance. AV-ABS and DV-ABS outperform ABS

on clean accuracy, suggesting that variational inference improves

the model’s accuracy. However, variational inference alone gives

no improvement (V-ABS). On the other hand, exact inference sig-

nificantly undermines clean accuracy on models with adversarial

autoencoders; both A-ABS and AD-ABS have a worse accuracy

than ABS. We hypothesize that in these cases, exact inference leads

to latent vectors away from the Gaussian prior’s typical set [34].

6 RELATEDWORK

6.1 Defend against perturbations

Many defenses have been proposed since Szegedy et al. found

that deep neural networks are susceptible to carefully engineered

adversarial inputs [45]. However, later studies showed that many of

these defenses are breakable [7]. Among these defenses, two have

shown promising results and have withstood tests so far.

One is adversarial training [29]. This line of research focuses on

methods that use carefully designed training examples to improve

model robustness. However, it only provides robustness under a

Table 4: Results of different models on SVHN. Reported

numbers are accuracy under bounded perturbations. Re-

sults are based on 1000 samples. McNemar’s test shows that

all differences are significant (𝑝 < 0.01) except for Adv-𝐿∞
and ABS under 𝐿∞ attacks.

CNN Adv-𝐿∞ Adv-𝐿2 ABS E-ABS

Clean 91.3% 89.0% 87.1% 45.8% 89.2%

𝐿∞ attack (𝜖 = 8/255)
PGD 0% 37.2% 26.7% 6.6% 57%

DeepFool 0.1% 50.4% 36.6% 8.4% 64.1%

Noise 90.7% 89% 87% 45.7% 89.3%

All 𝐿∞ 0% 37.2% 26.7% 6.6% 55.7%

𝐿2 attack (𝜖 = 1.5)

PGD 0% 5.1% 13.4% 4.4% 40.9%

DDN 0% 3.7% 11.6% 4.3% 57.8%

CW 0% 5.5% 13.7% 4.5% 47.6%

DeepFool 0% 13.4% 19.1% 4.7% 51.6%

Noise 90% 89.4% 87.4% 43.5% 88.8%

All 𝐿2 0% 3.6% 10.9% 4.3% 36%

McNemar’s test p values

𝐿∞ attacks 𝐿2 attacks

specific perturbation type and may not generalize to other pertur-

bations.

Another defense that is believed to be useful is Schott et al.’s ABS

model [42], which we described in Section 1. Others have proposed

other defenses that use generative models [41], but those defenses

are broken under more powerful attacks [22]. Unlike those models,

ABS uses class-conditional probabilities estimated by generative

models. ABS’s decision-making process does not involve functions

that map from a high-dimensional space to a low-dimensional

space, which might explain why ABS is robust against adversarial

examples.

6.2 Generative models for likelihood

estimation

Variational autoencoders [25, 38] give a lower bound for the likeli-

hood of a sample, as introduced in Section 1. Generative flows [13,

24] could compute the exact likelihood of an input. Compared with

VAEs, generative flows are computationally expensive as they keep

the input dimension unchanged. A recent study [36] shows that

generative flows are susceptible to adversarial attacks.

Generative adversarial networks (GANs) [17] are strong genera-

tive models, achieving better reconstructions than VAEs in many



Table 5: An ablation study on SVHN. We report model accuracy under bounded PGD attacks.

ABS A-ABS D-ABS V-ABS AD-ABS AV-ABS DV-ABS ADV-ABS (E-ABS)

Clean 45.8% 23.7% 44.9% 44.1% 30.8% 60.1% 65.7% 89.2%

PGD-𝐿∞ 6.6% 6.4% 8.4% 2.5% 2.3% 11% 18.9% 57%

PGD-𝐿2 4.4% 5.9% 5.6% 2.1% 1.5% 8.2% 14% 40.9%

(a) 𝐿∞ PGD

(b) 𝐿2 PGD

Figure 3: Model accuracy under PGD attack, as a function of

perturbation size, on SVHN.

domains. However, it remains an open question on how to ob-

tain likelihood estimates from a GAN. Also, Theis et al. show that

the quality of reconstructions and likelihood estimations are unre-

lated [47]. Therefore, it is unclear how to use GANs in an ABS-like

model or whether this would yield any improvement.

Recently, researchers found that generative models give high

probability estimates to out-of-distribution samples [33], which

may explain why ABS struggles with datasets other than MNIST.

Several mechanisms have been proposed since then. Hendrycks

et al. [19] expose the generative model to proxy OoD samples.

Their scheme is simple and applicable to ABS-like models. Another

method uses Watanabe Akaike Information Criterion (WAIC) to

address this issue [8]. Although empirically effective, the authors

acknowledge that this method does not prevent the issue in theory.

Figure 4: E-ABS’s adversarial examples on MNIST under

PGD-𝐿2 attack. Top: Clean images. Bottom: Adversarial ex-

amples.

Figure 5: E-ABS’s adversarial examples on SVHNunder PGD-

𝐿2 attack. Top: Clean images. Bottom: Adversarial examples.

Furthermore, this method requires multiple models, which is costly

at inference time.

7 DISCUSSION

This paper presents E-ABS, an extension to Schott et al.’s ABS

model. E-ABS has state-of-the-art robustness on SVHN and a traffic

sign dataset, beating Madry et al.’s adversarial training [29]. Com-

pared with ABS, E-ABS achieves significantly better clean accuracy,

comparable with unprotected CNN models on the two real-world

datasets. Therefore, E-ABS has successfully addressed the shortcom-

ings of ABS observed by Fetaya et al. [15], suggesting that robust

classification with conditional generative models is a promising

research direction.

Despite the improvements, E-ABS still has limitations on more

complex datasets. On CIFAR-10 [26], E-ABS achieves 60% clean

accuracy, leaving a significant gap to state-of-the-art convolutional

models. Therefore, there are still obstacles to use conditional gen-

erative models in datasets such as CIFAR and ImageNet [11]. Two

obstacles are particularly critical.



First, generative models are sensitive to image similarity mea-

sures. We use 𝐿2 distance to measure the image similarity. However,

this metric is known to perform poorly in high-dimensional spaces:

on the one hand, a one-pixel translation could lead to a large 𝐿2 dis-

tance; on the other hand, two objects sharing the same background

could be very close in terms of 𝐿2 distance. Therefore, finding a

better distance metric that captures semantic similarity while stay-

ing robust against small perturbations might further improve the

performance of ABS-like models.

Second, ABS-like models have two efficiency bottlenecks. The

time for inference scales linearly with the number of classes, mak-

ing inference inefficient on large datasets such as CIFAR-100 and

ImageNet. Also, running time grows approximately linearly with

the number of iterations of optimization used during inference.

With more iterations, the model is more stable and has better accu-

racy and robustness. Better sampling or optimization methods may

allow more efficient inference.

Our work may be of independent interest as an application of

generative models that give explicit likelihood estimates. Tradition-

ally, these models yield lower-quality reconstructions than GANs,

which do not give likelihood estimates. Therefore, the success of

E-ABS on complex image domains motivates research into bet-

ter generative models for distribution matching: progress on such

models may lead to more robust models.
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A PROOFS

Our analysis is similar to Schott et al.’s analysis under𝐿2 attacks [42].

The main difference is that the discriminator loss −𝛽 log𝐷 (𝑧) is
non-negative, which simplifies our conclusions.

A.1 Assumptions and Notations

For simplicity, we study exact inference and 𝐿2 attacks. Exact infer-

ence means that we find

𝑧∗ = argmin ∥𝑥 −𝐺 (𝑧)∥2
2
− 𝛽 log𝐷 (𝑧)

where 𝐷 (𝑧) is discriminator’s output and 0 ≤ 𝐷 (𝑧) ≤ 1; 𝛽 is a

hyperparameter and 𝛽 > 0.

A.2 A Bound of the Distance of Adversarial

Examples for E-ABS

Given an input𝑥 and any class𝑘 , E-ABS estimates the class-conditional

negative log-likelihood with

𝑙∗
𝑘
(𝑥) = min

𝑧
∥𝑥 −𝐺𝑘 (𝑧)∥22 − log𝐷 (𝑧) (9)

Given a perturbation 𝛿 where ∥𝛿 ∥2 = 𝜖 , we want to find a lower

bound of 𝜖 for 𝛿 to change E-ABS’s prediction from 𝑦, the ground

truth, to 𝑘 , a specific class 𝑘 ≠ 𝑦.

First, we show that

Claim 1.

𝑙∗𝑦 (𝑥 + 𝛿) ≤ 𝑙∗𝑦 (𝑥) + 2𝜖 ∥𝑥 −𝐺𝑦 (𝑧∗)∥2 + 𝜖2

where 𝑧∗ = argmin𝑧 ∥𝑥 −𝐺𝑦 (𝑧)∥2
2
− log𝐷 (𝑧).

Proof.

𝑙∗𝑦 (𝑥 + 𝛿) =min

𝑧
∥𝑥 + 𝛿 −𝐺𝑦 (𝑧)∥22 − 𝛽 log𝐷 (𝑧)

≤∥𝑥 + 𝛿 −𝐺𝑦 (𝑧∗)∥22 − 𝛽 log𝐷 (𝑧∗)

=∥𝑥 −𝐺𝑦 (𝑧∗)∥22 + 2𝛿𝑇 (𝑥 −𝐺𝑦 (𝑧∗)) + 𝜖2 − 𝛽 log𝐷 (𝑧∗)
≤∥𝑥 −𝐺𝑦 (𝑧∗)∥22 + 2𝜖 ∥𝑥 −𝐺𝑦 (𝑧∗)∥2 + 𝜖2 − 𝛽 log𝐷 (𝑧∗)
=𝑙∗𝑦 (𝑥) + 2𝜖 ∥𝑥 −𝐺𝑦 (𝑧∗)∥2 + 𝜖2

□

Second, we show that

Claim 2. Let 𝑑𝑘 (𝑥) = min𝑧 ∥𝑥 −𝐺𝑘 (𝑧)∥22 and assume 𝜖 < 𝑑𝑘 (𝑥),

𝑙∗
𝑘
(𝑥 + 𝛿) ≥ (𝑑𝑘 (𝑥) − 𝜖)2

Proof.

𝑙∗
𝑘
(𝑥 + 𝛿) = min

𝑧
∥𝑥 + 𝛿 −𝐺𝑘 (𝑧)∥22 − log𝐷 (𝑧)

Since 0 ≤ 𝐷 (𝑧) ≤ 1 and 𝛽 > 0, we know

𝑙∗
𝑘
(𝑥 + 𝛿) ≥min

𝑧
∥𝑥 + 𝛿 −𝐺𝑘 (𝑧)∥22

=min

𝑧
∥𝑥 −𝐺𝑘 (𝑧)∥22 + 2𝛿𝑇 (𝑥 −𝐺𝑘 (𝑧)) + 𝜖2

≥min

𝑧
∥𝑥 −𝐺𝑘 (𝑧)∥22 − 2𝜖 ∥𝑥 −𝐺𝑘 (𝑧)∥2 + 𝜖2

By the definition of 𝑑𝑘 (𝑥), we know
∥𝑥 −𝐺𝑘 (𝑧)∥ ≥ 𝑑𝑘 (𝑥).

Therefore, when 𝑑𝑘 (𝑥) > 𝜖 ,
𝑙∗
𝑘
(𝑥 + 𝛿) ≥𝑑2

𝑘
(𝑥) − 2𝜖𝑑𝑘 (𝑥) + 𝜖2

=(𝑑𝑘 (𝑥) − 𝜖)2

□

We know from the proof that when 𝜖 > 𝑑𝑘 (𝑥), 𝑙∗𝑘 (𝑥 + 𝛿) ≥ 0.

With Claim 1 and Claim 2, we can find a lower bound for 𝜖 from

𝑙∗𝑦 (𝑥) + 2𝜖 ∥𝑥 −𝐺𝑦 (𝑧∗)∥2 + 𝜖2 = (𝑑𝑘 (𝑥) − 𝜖)2

and the lower bound for an untargeted attack is the minimal of all

bounds, which gives

𝜖∗ = argmin

𝑘

𝑑2
𝑘
(𝑥) − 𝑙∗𝑦 (𝑥)

2𝑑𝑘 (𝑥) + 2∥𝑥 −𝐺𝑦 (𝑧∗)∥2
This bound holds when 𝜖 < 𝑑𝑘 (𝑥), that is, adversarial perturbations
are not large enough to move 𝑥 to its best reconstruction 𝐺𝑘 (𝑧∗)
for some class 𝑘 ≠ 𝑦.

An interesting observation is that Claim 1 reaches the optimal

value when 𝛿 has the opposite direction as 𝑥 −𝐺𝑦 (𝑥) and Claim 2

reaches the optimal value when 𝛿 has the same direction as 𝑥 −
𝐺𝑘 (𝑥). This suggests that our gradient-based attacks that use

𝜕𝑙 (𝑥, 𝑧∗)
𝜕𝑥𝑖

= 2 ∗
(
𝑥𝑖 −𝐺𝑖 𝑗 (𝑧∗)

)
to compute gradients are consistent with the theoretical analysis

presented in this section. Schott et al.’s LDA attack is closely related

to this observation as well, as the LDA attack searches adversarial

examples along the direction 𝐺𝑘 (𝑥) − 𝑥 .
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B SUPPLEMENTARY EXPERIMENTS ON

GRADIENT-BASED ATTACKS

In this section, we present some supplementary expeirments to

justify our choice of parameters for gradient-based attacks. All

experiments use E-ABS model.

B.1 Expectation-over-transformations

We test a range of runs for EOT. We evaluate the model’s accuracy

under a 𝐿∞ PGD attack with 5 random starts on SVHN. Table 6

presents experiment results.

Table 6: Experiments on the number of runs for EOT, based

on an 𝐿∞ PGD attack 5 random starts on SVHN.

Number of runs 1 2 3 5 10

Accuracy 57.5 58.4 57.8 58.7 58.6

Table 6 suggests that 5 runs are enough to stabilize model out-

puts. Specifically, with fewer runs, the model has seemingly better

robustness because it may misclassify due to inference-time ran-

domness, which leads an attack to believe that it has succeeded

falsely.

B.2 Number of PGD random starts

We run experiments to decide the number of random starts neces-

sary for PGD attacks. We evaluate the model’s accuracy under a

𝐿∞ PGD attack with 100 steps. We use 3 runs for EOT for efficiency.

Table 7 presents these experiments.

Table 7: Experiments on the number of random starts for

PGD, based on an 𝐿∞ PGD attack on SVHN.

Number of random starts 5 10 15 20 50

Accuracy 57.9 57.3 56.8 56 56

Based on Table 7, we choose 20 random starts for our PGD attacks

on SVHN and SuperTraffic-10.

B.3 PGD steps

We evaluate the model’s robustness under 𝐿∞ PGD attacks to

choose a proper number of PGD steps. We use 20 random starts

for all PGD attacks, 3 runs for EOT, and 200 random samples from

SVHN. We use less EOT runs and random samples for efficiency

concerns. Table 8 shows the results.

Table 8: Experiments on the number of PGD steps, based on

𝐿∞ PGD attacks on SVHN.

Number of steps 0 10 30 50 100 200 500

Accuracy (%) 87.5 78 63.5 51.5 51.5 52 51.5

Table 8 suggests that PGD attacks achieve the best results with

50 steps. We choose 80 steps in our experiments.

C MODELS AND EXPERIMENTS

Table 9 shows parameters for E-ABS. The other models (CNN, Adv-

𝐿∞, Adv-𝐿2, and ABS) share the same modules.



Table 9: The model parameters for each dataset.

MNIST and Fashion MNIST Latent dimensions: 10

Encoder Decoder Discriminator

Channels Kernel Stride Padding Channels Kernel Stride Padding Neurons

16 5 2 2 32 4 1 0 256

32 5 2 2 32 5 2 0 128

64 5 2 2 16 5 2 0

64 4 1 1 8 4 1 0

1 1 1

SuperTraffic-10 Latent dimensions: 16

Encoder Decoder Discriminator

Channels Kernel Stride Padding Channels Kernel Stride Padding Neurons

16 5 2 2 64 4 1 0 256

32 5 2 2 64 4 2 1 128

64 5 2 2 32 4 2 1

128 4 1 0 16 4 2 1

3 1 1 0

SVHN Latent dimensions: 40

Encoder Decoder Discriminator

Channels Kernel Stride Padding Channels Kernel Stride Padding Neurons

32 5 2 2 64 4 1 0 512

64 5 2 2 64 4 2 1 256

128 5 2 2 32 4 2 1

128 4 1 0 16 4 2 1

3 1 1 0
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