Cryptanalysis of a Provably Secure CRT-RSA Algorithm

. *
David Wagner
University of California at Berkeley

ABSTRACT

We study a countermeasure proposed to protect Chinese
remainder theorem (CRT) computations for RSA against
fault attacks. The scheme was claimed to be provably se-
cure. However, we demonstrate that the proposal is in fact
insecure: it can be broken with a simple and practical fault
attack. We conclude that the proposed countermeasure is
not safe for use in its present form.

Categories and Subject Descriptors
E.3 [Data]: Encryption

General Terms
Security

Keywords

Fault attacks, RSA, Chinese remainder theorem, cryptanal-
ysis

1. INTRODUCTION

For decades, cryptographers have analyzed the security
of cryptosystems by treating them as mathematical entities
and analyzing the properties of the underlying cryptographic
algorithm. Recently, though, the community has begun to
realize that this approach overlooks some important con-
siderations: to ensure security in practice, one must also
consider the properties of the implementations of these al-
gorithms. Strikingly, Boneh, DeMillo, and Lipton showed
that when cryptographic computations are faulty, the nom-
inal security of the cryptosystem may evaporate [5]. More-
over, practical experience has shown that, in some impor-
tant cases, attackers may be able to induce faults at will
at arbitrary points in a computation [1, 2, 3], putting secu-
rity at risk. Results like this have motivated researchers to

>i<dauw@cs.berkeley.edu. This research was supported in part
by NSF ITR CCR-0113941.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS 04, October 25-29, 2004, Washington, DC, USA.

Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

study how to build cryptosystems that are robust even in
the presence of faults.

One such countermeasure was proposed by Blémer, Otto,
and Seifert in ACM CCS 2003 [4]. Their scheme is intended
to protect Chinese Remainder Theorem computations, as
used in many RSA implementations, against fault attacks.
They combine several novel and clever ideas into a counter-
measure that, on the surface, looks quite promising. Dis-
appointingly, we show in this paper that their proposal is
not secure. We review their scheme (Section 2). Then, we
exhibit a simple fault attack against their proposal (Sec-
tion 3), we outline a few other attacks (Section 4), and we
conclude with a discussion of the implications of our results
(Section 5-6).

2. REVIEW

Notation. Let N = pq denote a RSA modulus, e a pub-
lic exponent, and d the corresponding private exponent, so
that ed =1 (mod ¢(N)). Let CRT(z,y) mod N denote the
number z € Z/NZ such that z = z (mod p) and z = y
(mod ¢); note that this number is uniquely determined mod-
ulo N.

We adopt the notation of Blomer, Otto, and Seifert for
describing faults [4]. If z is a value produced during some
computation, we write f(z) to represent a faulty value that
replaces x during a fault attack. Also, we write f(z) =z +
e(z) so that e(z) denotes the error introduced by the fault.
We write [(z) for the number of bits needed to represent the
variable z, so that z € {0,1,...,2'® —1}.

RSA, CRT, and fault attacks. Many RSA implementa-
tions use the Chinese Remainder Theorem (CRT) to speed
up private-key computations. In a standard CRT-RSA al-
gorithm, we compute m? mod N as follows: first, compute

Sp L m¥ mod P, Sq < m mod q,
where d, ' ¢ mod p—1andd, ' 4 mod q — 1; then, com-
pute

S < CRT(S,, Sy) mod N
and output S. This provides a fourfold speedup over straight-
forward exponentiation.

However, Lenstra showed that this use of CRT puts im-
plementations at great risk, if faults can occur during the
computation [7]. Suppose that the exponentiation modulo
p is erroneous, so that instead of receiving the correct value

Sp = m mod p, the device instead receives some faulty
value f(Sp). In this case, the device will compute the erro-
neous output f(S) = CRT(f(Sp),Sq) mod N. Notice that
f(S) is correct modulo ¢ but incorrect modulo p. Since
¢ = m (mod N) for a correct computation, we see that
f(S)*mod N is = m (mod ¢q) but Z m (mod p). Conse-
quently, ged(m — f(5)® mod N, N) reveals p and thereby
allows factoring N. This shows that the standard use of
CRT-RSA is totally insecure in the presence of faults.

This motivates the search for some way to secure CRT-
RSA against fault attacks, so that we can retain the CRT’s
speed advantages without its susceptibility to fault attacks.
The first countermeasure that might come to mind is to
check the correctness of the result of the computation before
outputting it, so that erroneous values are not revealed to
the attacker. This defeats Lenstra’s attack, but it turns out
that checking the output for correctness is not enough to
stop certain other fault attacks [8]. Consequently, we need
a stronger defense, if fault attacks are a realistic threat.

In response, Yen, Kim, Lin, and Moon proposed the ap-
pealing notion of infective computation [9]. An infective
computation is one where any error introduced by a fault
propagates throughout the computation, ultimately ensur-
ing that the final result is randomized in such a way that
no useful information can be obtained from any erroneous
output of the computation. Consequently, with an infective
algorithm, there is no need to check the output for errors;
any error will not be useful to the attacker. Yen, Kim, Lin,
and Moon proposed a candidate scheme claimed to achieve
this property, but it was later shown to be insecure [4]. Con-
sequently, it remained a challenging open problem to find
some infective implementation of CRT-RSA.

At ACM CCS 2003, Blomer, Otto, and Seifert proposed
a CRT-RSA scheme based on the ideas of infective compu-
tation. Since they did not give their proposal a name, for
this paper we will call it the BOS algorithm. We describe
the BOS algorithm next.

The BOS algorithm. In the BOS algorithm, we first gen-
erate random 80-bit primes ¢1,t2. Next, we set

def

dp = dmod p(p-t1),
d; < dmod p(q-t2),
et L' 771 mod t1,

def —1
e, = d " mod ts.

These values are kept secret from the attacker and never
disclosed; they will be used to check for faults.
With these definitions, the algorithm is as follows [4]:
Input. A message m € (Z/NZ)".
Output. Sig “'m% mod N.
In memory. p-t1, q-t2, N, N -ty -t2, dp, dg,
t1, ta, et,, and ey, .
. Set' S, & mod p-ti.
Set Sq & i mod q-ta.
. Set S CRT(Sp, Sq) mod N - t; - to.
CSetcp Z (m—5% + 1) mod t;.
. Set ¢ & (m —S%2 + 1) mod t».
. Set Sig “ g mod N.
Note that if there are no errors, we have ¢; = c2 = 1, and
thus the BOS algorithm produces the right result. The intu-

SRR I SO

ition is that if there are any errors in the computation, then
we will most likely have ¢; # 1 or c2 # 1, which renders Sig
irreversibly altered and (we hope) useless to an attacker.

Threat models. The authors of the BOS algorithm pro-
posed four different threat models under which a candidate
algorithm could be evaluated:

Fault Model #1: The attacker can cause a fault in a sin-
gle bit. The attacker has full control over the timing
and location of the fault.

Fault Model #2: The attacker can cause a fault in a sin-
gle byte. The attacker has full control over the timing,
but may have only partial control over the location
of the fault (e.g., which byte is affected), and cannot
predict the new faulty value that is introduced.

Fault Model #3: The attacker can cause a fault in a sin-
gle byte. The attacker has only partial control over
the timing and location of the fault, and cannot pre-
dict the new faulty value.

Fault Model #4: The attacker can cause a fault in a sin-
gle variable. The attacker has only partial control over
the timing and no control over the location; the target-
ted variable will be replaced by an entirely new random
value not known to the attacker.

Note that these models are listed in terms of decreasing
attacker power, so a scheme that is secure against one fault
model will be secure against all higher-numbered models as
well.

Provable security. In the ACM CCS 2003 paper propos-
ing this construction, the BOS algorithm was claimed to be
provably secure against fault attacks: “we rigorously ana-
lyze the success probability of an adversary ... we prove that
our new algorithm is secure against the Bellcore attack” [4,
p-311]. In particular, the paper claims security against Fault
Models #2, #3, and #4.

Unfortunately, although the scheme is claimed to be prov-
ably secure, there is no statement of a security theorem and
no security reduction or mathematical proof. Instead, the
paper systematically enumerates many possible attacks and
shows that these attacks do not work. Such results are of
considerable interest, but they fall short of a proof of se-
curity. There is no assurance that the attacks examined
exhaust the space of all possible attacks, so the risk is that
other methods not anticipated by the designers of the cryp-
tosystem might be able to defeat the scheme. In the re-
mainder of the paper, we show that further analysis in fact
reveals serious attacks on the BOS scheme.

3. AFAULT ATTACK

Our fault attack works as follows. We cause a random
transient fault that modifies the value of m as it is being
read from memory in line 1 while leaving the value stored
in memory unaffected, so that further reads will return the
correct value of m.

We will assume that the introduced error pattern e(m)
is known or guessable by the attacker. For instance, if we
know that the fault will cause a single-byte error in m, then

the error pattern will be guessable: there are only 510 - @

Correct computation:
Set Sp 2 m% mod p-ti.

Set Sq 4 mda mod q-t.
def

Set S = CRT(Sp,Sq) mod N - t; - to.
Set ¢; & (m —S% + 1) mod t;.
Set ca & (m — S% + 1) mod to.

def

Set Sig = S mod N.

S ot W

Incorrect computation:

S ot W

Set £(Sp) L f(m)* mod p - ti.

Set Sq 4 mda mod q-to.
Set £(S) & CRT(f(Sp), Sq) mod N - t; - to.
def

Set f(c1) = (m —f(S)®* + 1) mod t;.
Set f(c2) & (m — f(S)*2 + 1) mod to.
(si

(fault!)

def

Set f(Sig) = f(S)f1)f(2) mod N.

Figure 1: On the left, a correct computation. On the right, a faulty computation.

possible values of e(m) (not all equally likely). We will show
that the output from the RSA-CRT computation can be
used to factor N if the error pattern e(m) can be predicted.

Let us trace the effect of this fault on the operation of the
BOS algorithm. The computation in line 1 will use a faulty
value f(m) instead of m in the exponentiation, resulting in

an erroneous value f(S,) = f(m)% modp - t;. Suppose
that the rest of the computation proceeds without further
disruption. Line 3 computes f(S) & CRT(f(S,),S,) mod

def

N -t1-t2. Line 4 computes f(c1) = (m— f(S)°t +1) mod ¢;.
Line 5 computes f(co) = (m — f(5)°2 + 1) mod t2, but
because f(S) = S mod t2, we see that f(c2) =c2 =1, so c2
is unaffected. Line 6 computes f(Sig) & f(S)7 (V) (¢2) mod
N. Thus the output produced will be erroneous. We show
a trace of the faulty computation in Figure 1 side-by-side
with a correct computation.

We claim that this erroneous result f(Sig) can be used by
an attacker to factor N. Note that f(c1) = m — f(m) +
1modt; = 1 — e(m) mod t1, and e(m) # 0, hence we can
be almost certain that f(ci) # 1. Also, f(c2) = c2 =1, so
the erroneous output is given by f(Sig) = £(5)¥°1) mod N.
Now f(S) = S (mod q) but # S (mod p), so f(S)* = m
(mod ¢) but Z m (mod p). If we were given f(S), we could
factor N by computing ged(m — f(S5)° mod N, N), but of
course we are not given f(S); instead, we are only given
F£(8)) mod N.

How can we deal with the extra unknown term in the ex-
ponent? If we could take the f(c1)-th root of f(Sig) modulo
N, we would be done, but of course taking roots modulo N
is hard when the factorization of N is unknown. Instead,
we exploit a slightly different insight.

Assume, for the moment, that f(ci1) is known. Then
we are given f(c1) where f(c1) # 1 and given f(Sig) =

£(8)¥1) mod N, where f(S) = S (mod ¢) but # S (mod p).

The goal is to factor N. In short, the problem is as follows:

Problem 1.

Given: m € (Z/NZ)*, f(Sig) € (Z/NZ)*, and
f(c1) € Z, where f(Sig) = f(S)7) mod N for
some f(S) € (Z/NZ)" such that f(S)° = m
(mod ¢q) and f(S)® Zm (mod p).

Goal: Factor N.

It turns out that this problem is not hard to solve. Let
us define the value X &' f(Sig)° mod N. Note that X =
(£(5)%)7) mod N, so X =m0 (mod ¢) but X # m/ (V)
(mod p). Consequently, gcd(mf(cl)fX mod N, N) discloses

a factor of N. In other words, the solution is as follows:

Solution to Problem 1.
Compute gcd(mf(cl) — f(Sig)® mod N, N).

Is it realistic to assume that f(c1) will be known to the at-
tacker? Yes, it is. If the fault is a single-byte fault, then the
error pattern e(m) is guessable, since there are not too many
possible values of e(m). Moreover, f(c1) = 1—e(m) mod ¢1,
so knowledge of e(m) reveals f(c1) if e(m) is negative and
greater than —¢; + 1, since then no modular reduction oc-
curs. Let us call the fault usable in this case, i.e., when f(c1)
can be predicted (without knowledge of ¢1). For a random
single-byte fault, it is easy to calculate that

Pr(fault is usable] = Pr[—t1 +1 < e(m) < 0] ~ %l(tl) JIN).

For instance, for a 1024-bit RSA modulus, a 80-bit prime t1,
and a random single-byte error, a random single-byte fault
in m has about a 4% chance of being usable in an attack, and
in this case there are about 2550 different possible values of
f(e).

Thus, our attack works as follows. We induce a tran-
sient random single-byte fault somewhere in m as it is read
from memory in line 1, and we hope that this fault will be
usable. We then observe the output f(Sig) of the computa-
tion, and for each of the 2550 possible values of f(c1), we
compute ged(m? (1) — f(Sig)® mod N, N) and check whether
we have learned a non-trivial factor of N. If not, we repeat
the attack, iteratively inducing faults until we succeed. On
average, we will need to try about 25 times before factoring
N, and the total workload is about 25 x 2550 ~ 2'6 modu-
lar multiplications. If instead of assuming that the attacker
can introduce random single-byte faults, we assume that the
attacker can inject random faults that affect a single 32-bit
word, then the complexity of the attack increases to about
32 faults and about 32 x 233 = 23% modular multiplications.

The attack requires only loose control over the timing and
location of the fault. Thus, it fits within Blémer, Otto, and
Seifert’s Fault Model #3. This shows that the BOS algo-
rithm is not secure against Fault Models #2 or #3, despite
the fact that it was claimed to be secure against these kinds
of attacks.

If we have more precise control over the timing or location
of the fault, we may be able to ensure that the fault occurs
somewhere among the low 10 bytes of m as it is being read
from memory in line 1, and then the fault will be usable in
an attack with probability % We see that tighter control
over the fault will allow the attack to succeed with fewer

trials. In summary, the BOS algorithm is insecure not only
in theory, but also quite possibly in practice as well.

4. OTHER FAULT ATTACKS

Earlier, we described in detail one possible attack against
the BOS scheme. This is enough to demonstrate that the
BOS construction is not secure. However, it may be of in-
terest to see other possible attacks against the BOS scheme.
Therefore, in this section we outline two other attack meth-
ods. This list is not claimed to be exhaustive.

Long-lived faults. The attack in Section 3 required a tran-
sient fault. However, if long-lived or permanent faults are
easier to induce, the attack can be modified to this setting
as well. Suppose we induce a long-lived fault in the value of
m stored in memory between lines 1 and 2 of the BOS algo-
rithm. Then the output will be f(Sig) = f(5)7) mod N,
where f(S) = m% = S (mod p) and f(S) = f(m)* # S
(mod g). Notice that we will have f(c1) = e(m) + 1 mod t;
and f(c2) = 1; thus we are in a situation similar to that of
Section 3. We see that f(Sig)° mod N is = m/(“Y) (mod p)
but # m’ 1) (mod q), so ged(f(Sig)® — m’ (1) mod N, N)
reveals a factor of N. Also, the value of f(c1) can be pre-
dicted if the fault is usable. In short, an attack with long-
lived faults can be made to work in almost exactly the same
way as an attack with transient faults.

If we assume that the implementation uses the exponen-
tiation algorithm suggested by the designers of the BOS
scheme [4, Algorithm 3], then this attack requires only loose
control over the timing and location of the fault. This is be-
cause their exponentiation algorithm first copies the value
m into a variable y and then never uses m again for the
duration of the exponentiation, so the attacker can use any
long-lived fault that occurs to m at any point during the
execution of line 1 of the BOS algorithm. Therefore, this
attack also falls into Fault Model #3.

Random, unpredictable faults. So far we have assumed
that error patterns are predictable. We show next that it is
also possible to mount a fault attack even if we have very
little control over the error introduced. Suppose we can
introduce a random fault in the value of N stored in memory
before it is used in line 6. Suppose moreover that we can
arrange that this fault leaves the 160 most significant bits of
N undisturbed: the low [(N) — 160 bits can be modified in
arbitrary ways, but we require that the high 160 bits remain
unchanged. For instance, N might be replaced by the value
f(N) = N + e(N), where e(N) is uniformly distributed on
[—2U(N)=161 9lN)=161) and unknown to the attacker. In this
setting, we can break the BOS algorithm.

The attack proceeds in two phases. The first phase learns
the values t1, 2 using a few faults. The second phase learns
the factors of N using a slight modification of Lenstra’s at-
tack with a single fault and a chosen input. In more detail:

1. First, run the algorithm with no fault. The BOS al-
gorithm outputs Sig = S mod N. Then, re-run the
algorithm on the same input, this time triggering a
random fault in the low [(N) — 160 bits of N. This
time the algorithm outputs f(Sig) = S mod f(N). We

know N, o & S mod N, and 8 &' S mod f(N), where
S and f(N) are unknown but are known to satisfy

0< 8 < 2N and |f(N) — N| < 2"™=161 Tt turns
out that this is enough to deduce the value of S and
then t1 and t-.

The math is not too difficult. Note that S = a+k- N,
for some 0 < k < 2'%°, Thus f—a=S—-a=k- (N —
F(N)) (mod f(N)). Since k- (N — F(N))| < N/2,
there is a good chance that no overflow or modular
reduction occurs when computing |3 — «| mod f(N),
and in this case v = |f — « is an integer multiple
of k. Thus, after gathering several faulty signatures,
we obtain a list of values ~1,...,7, containing many
integer multiples of k. Taking many pairwise gcd’s,
we find that &k (or some small multiple thereof) occurs
many times among the values ged(yi,7;), hence the
value k can be easily recovered. This reveals S through
the equation S = a+ k- N, which reveals the product
t1-t2 = (S — Sig)/N. Finally, we may easily factor the
160-bit product ¢ - t2 to learn the values of ¢1 and to.

This is already troubling, because it discloses 160 bits
of the private key. Given S and m, note that S = m®
(mod t1), hence by computing a 80-bit discrete log we
can learn d, mod ¢(¢1). This can be done very effi-
ciently, and it reveals d mod ¢(t1). Likewise we can
learn d mod ¢(t2). This might be viewed as a certifi-
cational weakness. As we shall see next, it can also be
leveraged further to fully break the BOS algorithm.

2. Next, we will take advantage of our knowledge of t2 to
mount a classical fault attack. Run the BOS algorithm
on an input m that is an multiple integer of t2, and
introduce an arbitrary fault in the value of d, at any
point before line 2 is executed. Since m =0 (mod dy),
we will also have f(Sq) =0 (mod dq) and thus f(c2) =
1. Line 1 is undisturbed, so f(c1) = 1. We see that
the fault goes undetected for this input, and the output
reveals the factorization of N via ged(f(Sig)®—m mod
N, N).

In practice, whether it is possible to choose an input m
that is a multiple of t2 will depend on the application
setting, because the hashing present in most signature
schemes may prevent the attack. For instance, with
PKCS #1 v1.5 signatures, the value m is (essentially)
the hash of the message to be signed, so finding a mes-
sage whose hash is a multiple of t2 would require about
280 steps of computation. Similar comments apply to
PKCS #1 v2.1 (PSS). If the hashing is performed out-
side of the cryptographic module, though, this chosen-
input attack will apply.

This attack requires only loose control over the timing, lo-
cation, and error pattern of the fault. As such, this attack
lies quite close to Fault Model #4. The main difference is
that this attack does need just enough control over the er-
ror introduced to ensure that the high 160 bits of N are
undisturbed.

5. DISCUSSION

Paradox resolved. This demonstrates that the claims of
provable security for the BOS algorithm were incorrect. This
might seem to present a paradox: How can a scheme that
was proven secure later be found insecure?

One answer is that the proof was flawed. If we examine the
intended proof of security, we find an important gap in the
reasoning. The proof implicitly assumed that if ¢; # 1 (indi-
cating that a fault has been detected), then the final output
of the algorithm would be randomized enough that no useful
information can be gleaned from it. This assumption was
never clearly stated or justified in the proof. The conclud-
ing discussion does mention that if ¢; becomes known, then
a variation of the Lenstra attack allows to break the sys-
tem [4, § 5.7], and the informal description accompanying
the algorithm does claim that if ¢; # 1, line 6 “will change
the final result in a way unpredictable to an adversary” [4,
§ 4]; however, this claim was never examined or justified in
the proof. As we have seen, this assumption turns out to be
wrong. There is no paradox.

More fundamentally, in hindsight we can spot structural
flaws in the reasoning that was intended to establish the
security of the scheme. The security analysis only focuses
on a class of attacks known to the authors, and does not
attempt to prove anything about the possibility of other
attacks. For instance, this comment leads off the security
analysis:

“we need to investigate the probability of any in-
duced error to circumvent our countermeasures
and result in an undetectable error. Note that
we are only concerned with errors that cause the
final signature to be correct modulo p but false
modulo ¢ (or vice versa), in which case the clas-
sic Bellcore attack can be applied. Otherwise,
no exploits of specific errors in faulty CRT-RSA
signature are known yet” [4, § 5.1].

Our attacks fall outside the class of attacks they focused
on, and thereby illustrate the danger in only demonstrating
security against previously known attacks. Of course, any
valid proof of security must consider all attacks, not just
known attacks. In retrospect, then, the problem was that
the security analysis did not have the structure of a mathe-
matical proof of security. This highlights the need for claims
of provable security to be backed up by complete proofs.

Evaluating potential fixes. It is not clear how to repair
the BOS scheme in a way that provides any form of provable
security.

After seeing the attack of Section 3, one anonymous ref-
eree suggested adding to the original algorithm:

5.1. Pickr € [2,t1 — 1] and r2 € [2,t2 — 1] randomly.
52 Setci Z ;" mod t1 and ¢ & mod t,.

This addition will not impose much performance overhead.
However, this augmented scheme is still not secure: it does
not prevent the second attack described in Section 4.

Another potential defense is to add a check for correctness
at the end of the computation:

6.1. If Sig® mod N # m, set Sig = 0.

This extension will not affect performance too much if the
public exponent e is small. However, depending upon the
implementation, the resulting scheme seems likely to remain
vulnerable to Yen and Joye’s attacks on checking before out-
put [8]. These attacks do require control on the location
and/or timing of the fault; we have not tried to evaluate

whether it is feasible for current devices to defend against
such attacks using hardware countermeasures.

We make no claims about the security of these or other
fixes, and we would be extremely reluctant to recommend
any of these schemes without further analysis. Even if it
were possible to defeat all known attacks, we suspect that
focusing on stopping known attacks may not be the most
fruitful line of research; it is unclear whether such an ap-
proach can provide enough confidence that it will stop at-
tacks not anticipated by the designer. We feel that Yen, et
al., and Blomer, et al., had the right idea in seeking prov-
able security, and we leave it as a fascinating open problem
to find some CRT-RSA algorithm that can be rigorously
proven secure against fault attacks.

Towards sound frameworks for fault attacks. One of the
challenges facing researchers in this area is the lack of a
sound mathematical framework that captures fault attacks.
We sketch one form such a theory might take.

We can consider a cryptographic device as a finite-state
machine. Let S denote its state space; for example, the
state might include the value of all registers and memory.
Introduce a relation ~» on S x S to model the single-step op-
erational semantics of the device, so that s ~ s’ if executing
a single step of computation on state s yields the new state
s’. Computation can then be viewed as a sequence of steps

(o,) = 0.~ 510+ 80 = (),

where the initial state so = (z, k) somehow encodes the de-
vice’s input x and its key k, and the output of the compu-
tation is contained in the final state sn, = (y).

A fault model specifies a family F of relations on S x S.
Each —; € F describes one type of fault that the attacker
can select and models the effect of applying this fault to
the state of the device. A fault attack is specified by a
sequence of relations —1,...,—, € F. The effect of the
faulty computation is then given by the chain

(11, k) = 80~ 51 1 85 > 82 >3 8 = -+ = 50 = (1),

A scheme is secure if an attacker who can choose tuples
(z,—»1,...,—»x) and learn the resulting y cannot learn any-
thing useful. For instance, we might require that anything
an attacker can learn by injecting faults while interacting
with the device could also have been learned by interacting
with the device without faults. The power of the attacker
could be restricted by limiting his computational power, re-
stricting the family F of possible faults, and/or placing an
upper bound on the number of faults the attacker may in-
ject. To flesh this out more concretely, it would be necessary
to instantiate the relation ~» with some specific semantics
(e.g., x86 assembly, JVML), to identify a realistic family F
of faults, and to specify appropriate limits on the power of
the attacker.

This is just one possible direction that a theory of fault
attacks might take. It is a fascinating research problem to
establish a principled foundation for security against fault
attacks and to find schemes that can be proven secure within
that framework.

6. CONCLUSION

We showed how to cryptanalyze a provably secure CRT-
RSA algorithm. To summarize, the BOS algorithm for pro-

tecting CRT computations against fault attacks is insecure
and should not be used.

7.

ACKNOWLEDGEMENTS

I thank Martin Otto and the anonymous reviewers for

their helpful comments and feedback.

8.
1]

2]

3]

[4

[5

REFERENCES

R. Anderson, M. Kuhn, “Tamper resistance—a
cautionary note,” 2nd USENIX Workshop on
Electronic Commerce, pp.1-11, 1996.

R. Anderson, M. Kuhn, “Low cost attacks on tamper
resistant devices,” 1997 Security Protocols Workshop.
H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C.
Whelan, “The sorcerer’s apprentice guide to fault
attacks,” Workshop on Fault Detection and Tolerance
in Cryptography, June 2004.

J. Blomer, M. Otto, J.-P. Seifert, “A new CRT-RSA
algorithm secure against Bellcore attacks,” ACM CCS
2003, ACM Press, pp.311-320, 2003.

D. Boneh, R.A. DeMillo, R.J. Lipton, “On the
importance of checking cryptographic protocols for
fault,” EUROCRYPT’97, Springer-Verlag, LNCS 1233,
pp-37-51, 1997.

M. Joye, A.K. Lenstra, J.-J. Quisquater, “Chinese
remaindering based cryptosystems in the presence of
faults,” Journal of Cryptology, vol. 12, no. 4,
pp-241-245, 1999.

A.K. Lenstra, “Memo on RSA signature generation in
the presence of faults,” Sept. 1996.

S.-M. Yen, M. Joye, “Checking before output may not
be enough against fault-based cryptanalysis,” IEEE
Transactions on Computers, vol. 49, no. 9, pp.96-970,
2000.

S.-M. Yen, S. Kim, S. Lim, S. Moon, “RSA Speedup
with Residue Number System Immune against
Hardware Fault Cryptanalysis,” ICICS 2001,
Springer-Verlag, LNCS 2288, pp.397-413, 2002.

