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Abstract—Adversarial examples allow crafted attacks
against deep neural network classification of images. We
propose a defense of expanding the training set with a single,
large, and diverse class of background images, striving to ‘fill’
around the borders of the classification boundary. We find it
aids detection of simple attacks on EMNIST, but not advanced
attacks. We discuss several limitations of our examination.

I. INTRODUCTION

Deep neural networks have been very successful at many
classification tasks. Yet they have been found to be vulnera-
ble to misclassifying deliberately crafted images [SZS+14],
[GSS15].

We examine whether adding a large and diverse back-
ground class to the training data can help detect and neu-
tralize adversarial examples. We assume that there is a set
of key classes that we care about distinguishing between.
We propose to train the classifier by adding additional
training images not from the key classes that we care about
distinguishing between. We introduce a new class, that we
call the background class, for these additional images. The
background class effectively serves as a “none of the above”.
For example, if we want to recognize MNIST digits, we
might use images of non-digit handwriting as examples of
the background class. The background class is intended to
create a default classification to provide better separation
between the key classes within the model’s feature space.
We measure how this defense affects classification of normal
images and detection of adversarial examples.

Figure 1 illustrates a simplified visualization of the de-
cision boundary of an undefended classifier (left) and our
proposed defense (right). We hope that the background class
makes it harder to modify an image from one key class to
be misclassified as another key class.

These background images are not noise, but images of
objects distinct enough from our key classes to be distin-
guished from them by the model.

In use, our network is still evaluated on its ability to
distinguish between images that humans perceive as key
classes. We change the classification task from image→ one
of key classes, to image→ one of key classes or background.

We evaluate this idea with the EMNIST
dataset [CATv17], of hand written digits and letters,
and the fast gradient sign [GSS15], fast gradient [LCLS17],
and Carlini [CW17] attacks.
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(b) With background class (our
defense)

Fig. 1: The intuition behind our defense. In (b), we introduce
an extra class, the background class, for images other than
the classes we want to recognize. The hope is that this
separates those classes enough that adversarial examples are
no longer effective.

We find our defense aids detection of simple attacks but
we have not found any increase in detection of state of the
art attacks. There are weaknesses in our examination, in
particular the letters of our background class are not crafted
for the role of separating the digits in image or feature space.

II. BACKGROUND

Neural networks have been very successful at learning
a function, FΘ(x), by tuning a set of weights, Θ, based
on training data, x, with labels, y, that allow them to
then accurately label new data. For m-class networks, y
is a probability distribution over m labels. These networks
are trained by defining a loss function, R(Θ), that defines
how far off their predicted labels for the training data are
from the training data’s actual labels. The loss function is
evaluated on the training data. Back propagation [RHW88]
is used to allocate blame for the error in each of the
network’s outputs. This output error is propagated backward
through the network based on the current weights on each
neurons inputs. This allows the weights at each layer to be
adjusted appropriately in the direction of reducing the cost,
∂ΘRΘ(x).

Deep Neural networks have improved neural network
performance, achieving near human level performance on
several visual tasks, including visual recognition of objects



[RDS+15] and road signs [SSSI11], leading to their in-
creased use.

A. Adversarial Examples
It has been found that an attacker with knowledge of

the model can construct, from any normal image, x, an
adversarial example [SZS+14], [GSS15], x?, that looks to
humans like the normal image’s classification but that the
model classifies differently from the normal image. In an
untargeted attack, the attacker might strive for these images
to merely be classified by the model differently from how
humans would classify them. In a targeted attack, they might
strive for them to be classified as a specific class. A recent
overview of adversarial examples can be found in [CW17].

Two important aspects of adversarial examples are that 1)
they are classified by humans and the model differently, and
2) we care about that misclassification for some task. Our
defense will exploit the second of these.

Three quantitative metrics are commonly used to measure
how much an attack image differs from the original image,
the L0, L2, and L∞ distance metrics. L0 is the number
of pixels changed. L2 is the square root of the sum of the
squares of the changes to each pixel. L∞ is the maximum
change made to any pixel.

B. Attacks
The basic approach of finding adversarial examples can be

seen as a variation on the normal back propagation training
of the model weights. Instead of propagating the error back
through the network to ascribe proportional blame to the
weights, we ascribe proportional blame to each input pixel.
For each pixel we obtain a contributory sign and magnitude
for the errors in the output neurons. Attack methods vary in
how they use this information. All attack images must be
clipped as needed to remain within the range of valid pixel
values. There are several attacks; we highlight only a few.

a) Fast Gradient Sign: One of the simplest attacks to
understand is the fast gradient sign attack [GSS15]. Using
back propagation, it finds the gradient of the loss function
with respect to the inputs, simplifies that to just the sign of
the gradient1, and then moves by a factor τ in that direction:

x? ← x+ τ sgn(∇xR(F (x))).

b) Fast Gradient: The fast gradient attack [LCLS17]
normalizes the gradient to have an L2 norm of one and then
moves by a factor τ in that direction:

x? ← x+ τ
∇xR(F (x))

‖∇xR(F (x))‖2
.

c) Carlini: The Carlini attack [CW17] is a strong
iterative attack that reduces the set of pixels it uses by
repeatedly eliminating the least effective pixels from the set
it uses. It produces attack images with very small changes,
based on either L0, L2, or L∞ distances.

1Normalizing to an L∞ norm of one.

(a) Original image,
classified as a 9.

(b) Attack image,
classified as a 7.

Fig. 2: Fast gradient untargeted L2 attack with τ = 6.79.

(a) Original image,
classified as a 2.

(b) Attack image,
classified as a 3.

Fig. 3: Carlini targeted L2 attack, adapted from [CW17].

C. Defenses

Several defenses have been proposed but none so far are
effective. One of the most natural defenses is adversarial
retraining. [GSS15] found that an MNIST network trained
with fast gradient sign adversarial examples reduced the
success of that attack from 89.4% to 17.9%. [SYN15] retrain
based on a gradient step of L1, L2, or L∞, and see increased
robustness to fast gradient sign attacks, while achieving
increased accuracy on normal images due to regularization,
on MNIST and CIFAR-10 datasets. Yet unpublished work
by others find that such defenses are vulnerable to attack.
They find that for MNIST, retraining with images generated
with the fast gradient sign attack only increases the mean
minimal distance of adversarial examples by a factor of two
measured using the Carlini L2 attack.

III. BACKGROUND CLASS DEFENSE

Without a diverse background class, there are large areas
of the feature space that are not represented in the training
data. In these unrepresented parts of the feature space,
there is little to drive the model toward a smooth decision
boundary. Our rationale is that having no classifications
besides the ones we care about may also contribute to not
having the smoothness we would prefer in the areas around
our key classes.

For our work, there are two key aspects to adversarial
examples: 1) for humans they are perceptually close to
other images that the model classifies differently, 2) we
care about that misclassification. We hope to manipulate the
model so that when perceptually close images are classified
differently, we no longer care as much, as the classification
difference is between a key class and the background class
instead of between two key classes. Such misclassification
as the background class alerts us that we are under attack.

a) Illustrating Example: As an example, we might
want to distinguish between ships, cars, and frogs, as in
figure 4. With normal training, the model learns to separate



the key classes, yet the decision boundary may have a very
erratic shape in areas with no training data, and the boundary
includes adversarial examples around all the training data
points.

(a) Labels: Ship, Car, Frog (b) Labels: Ship, Car, Frog,
Background

Fig. 4: Example classification task. (a) with a potentially
erratic decision boundary in areas with no data and adver-
sarial examples including a1, a2, a3, (b) with addition of
background class training data.

Our training adds one extra label ‘background’ for a
diverse set of background images added to the training data,
e.g.: birds, trucks, planes, cats, dogs, horses, and deer, as in
figure 4b. We hope that the model will find it cheapest to
learn a decision boundary that connects all these background
images as one area, restricting the key class areas to be
around their training data. The goal is that around images
perceived as key classes by humans, such as S2, the decision
boundary might still not be smooth, but there would no
longer be adversarial examples misclassified as other key
classes, but only images misclassified as background, a mis-
classification we are less concerned about. Such background
classifications might serve as a flag of some failure in our
input or of an attack.

IV. DATA

We base our evaluation on the EMNIST dataset, chosen
for ease of training. EMNIST [CATv17] expands MNIST
to include letters. It contains 28 × 28 grayscale images
of handwritten digits and upper and lower case letters, in
62 classes, with 697,932 training images and 116,323 test
images. In our EMNIST tests, the digits serve as our key
classes and the letters collectively as the background class.
We adjust pixels to the range [-0.5, 0.5].

EMINST has different versions depending on whether you
want digits and/or letters and whether you want the classes
to be balanced. The Balanced set has digits and letters with
balanced class sizes. The By Merge set is roughly balanced
within the digits but very unbalanced within the letters; it
is however larger. Both of these datasets have 47 classes as
they merge several letters whose lower/upper appearances
are similar, the 15 letters ‘cijklmopsuvwxyz’.

A. Confusing Letters

As a source of background images, letters have a problem:
some look to humans like digits. We are trying to use
the background class to fill in the part of the input/feature
space that is away from the key classes and thus normally
unrepresented. Yet pairs such as 0/O and 1/l look alike.
Using such letters in our background class brings the edges
of the background class closer to our key classes than we
may need for our defense.

As a data preparation step, we pick letters for our
background class that are very distinct from digits. We
measure digit/letter confusion by creating a confusion matrix
using the original digit and letter labels. For each letter
we measure how often it is classified as any letter or
‘misclassified’ as any digit. We keep for our background
class the 22 letters, ‘TtUdEPfFXHCnhAKMVWeRrN’, that
are classified as letters 98− 100% of the time, an arbitrary
cutoff. We remove from the dataset the remaining 15 letters,
‘OLqIgZSYGbDBJaQ’, that are classified as letters only
69−97% of the time. To measure this we use 10-fold cross
validation repeated four times on the Balanced set trained for
20 epochs. We used the Balanced set for these tests because
the larger By Merge set caused memory issues.

B. Digits + Background Dataset

We train our defense with the By Merge dataset, the
largest EMNIST dataset, stripped of the confusing letters
found above. All letters are merged into a single background
class, so the classifier classifies every image into one of 11
classes (0-9, or background). This gives us a dataset for the
train/validation splits with class counts of between 31,280
and 38,304 for 0-9 and a class count of 212,657 for the
background class, with a count of 2,535 for the least frequent
letter and 24,657 for the most, summarized in table I.

TABLE I: Data sizes

Baseline classifier (no background class):
Train: 310,912 digits
Test: 34,432 digits

With background class defense:
Train: 310,912 digits + 191,360 letters
Test: 34,432 digits

We found that using more of the confusing letters during
training increases detection of attack, yet decreases accuracy
when not under attack. In the extreme it must learn that zero
and the letter ‘O’ belong to different classes. We do not have
enough results on that tradeoff to report more fully.

V. STANDARD MODEL AND TRAINING

Our EMNIST model is very simple. It is the example
MNIST model of the Keras framework with dropout re-
placed by batch normalization, described in table II. A ReLU
activation function was used for the convolutional and first



fully connected layers. Logits are produced by the final
layer. We did not do any tuning of model parameters. We
simply picked common values for kernel, stride, and layer
outputs.

TABLE II: EMNIST model’s architecture

Layer Kernel Outputs Activation

Conv 3× 3 32 BatchNorm + ReLU
Conv 3× 3 64 BatchNorm + ReLU
MaxOut 2× 2 64
Dense 128 BatchNorm + ReLU
Dense 11 BatchNorm

Training was done with the Ada Delta optimizer[Zei12]
with a cross entropy loss function and batch size of 128.

a) Results Before Attack: To measure the cost of the
defense, we examine the model’s classification rates for nor-
mal images when trained on the data sets, before examining
changes to the robustness to adversarial examples. Training
and testing were done with 10 random 90:10 splits of the
train dataset for 10 epochs each.

The accuracy is shown in table III. We obtain 99.6%
accuracy when trained on digits, and 99.1% when trained
on digits and letters. These results are not state of the art for
MNIST, but those trained with the background class are still
near the range of performance for which we turn to deep
models for.

TABLE III: Classification accuracy for normal images (not
under attack)

Dataset Mean Accuracy (%)

Correct Other Background

Digits 99.62 0.38
Digits+Background 99.11 0.41 0.48
Change -0.51 +0.03 +0.48

VI. ATTACK RESULTS

We use three attacks from the literature in our evaluation,
two weak attacks and one strong. Fast gradient sign has
been used in the past to evaluate defenses, though it is now
considered a weak attack. Fast gradient is an L2 version of
fast gradient sign. The Carlini attack is a strong L2 attack
that has defeated several proposed defenses in the literature.

Table IV summarizes the difference that addition of our
background class has on these attacks. In each case the
attack has full access to the trained model under attack, and
uses images from the EMNIST dataset. We do not see an
increase in security against the Carlini attack. We discuss
these attacks below.

TABLE IV: Attack Success Rates

Attack

Dataset FGS FG Carlini

No background 92% 94% 100%
Background 68% 56% 100%
Change: -24% -38% 0%

A. Weak Attacks

As an initial test of our defense, we use fast gradient sign
and fast gradient, with epsilons of 0.25 and 6.79 respectively.
Fast gradient with ε = 6.79 produces an L2 difference
similar to fast gradient sign with ε = 0.25. As before,
training and attack were done with 10 random 90:10 splits
of the train dataset for 10 epochs each.

Table V reports details of whether each attack image
is classified with its correct original classification, some
other key classification, or the background classification.
Fast gradient sign shows a reduction in attack success from
92% to 68% when the background class is used; the attack
is detected 29% of the time when we use the background
class. Fast gradient shows a reduction in attack success from
94% to 56% when the background class is used; the attack
is detected 43% of the time when we use the background
class. These are significant reductions in attack success.

B. Strong Attack

One of the strongest current attacks is the targeted Carlini
attack. We evaluate our defense against it, training and
testing on a smaller version of the EMNIST dataset, the
balanced dataset instead of the by merge dataset.

Our results show no increase in detection of the Carlini
attack. The Carlini L2 attack succeeds 100% of the time
for both a dataset of digits and a dataset of digits plus
background.

Because we have not found an increase in detection of
strong attacks, we have not used the testing portion of the
EMNIST dataset to produce our results.

VII. LIMITATIONS

We have not found the approach to work, but have not
pushed hard at it. These are some possible changes.

A. Strain the model’s capacity

In adding a large background class, when does the model
architecture have to change to preserve accuracy on key
classes? We did not change the model architecture for our
work, other than switching it to use batch normalization
in an effort to avoid having to tune hyper parameters to
maintain normal image accuracy. Yet a key hypothesis in
our work is that adding the background class will force the
model to learn a default classification of background for
the area between the key classes. We hoped this would be



TABLE V: Classification rates for adversarial images (weak attacks)

Attack and Dataset Mean Classification % Standard Deviation

Correct Other Background Correct Other Background

Fast Gradient Sign

Digits 8.26 91.74 1.92 1.92
Digits+Background 2.26 68.39 29.35 0.99 12.50 13.22
Change -6.00 -23.35 + 29.35

Fast Gradient

Digits 5.91 94.09 1.42 1.42
Digits+Background 1.21 55.99 42.80 0.80 6.82 7.11
Change -4.70 -38.10 +42.80

the cheapest thing to learn and that the model could not
afford to learn anything more complex. Yet we have not
pushed at keeping the capacity of the model under pressure.
How do the results change if we remove capacity from the
network until the point when we can no longer maintain
normal image accuracy?

B. Background images close to and between key classes

We used letters as background images for simplicity. Yet,
with random locations, there is little guarantee that they
fill the crucial space between our key classes. If the idea
behind our approach is a good one, ideally we would like
to sprinkle background images throughout the non-key parts
of the space. And especially all along the border of each
key class, but a bit separated from it so as to not degrade
performance on images within the key class, such as figure 1.

One approximation of the around/between and close part
would be to use various morphing algorithms to change
images from one key class into images of another key class.
Use a human to judge when the image stops being the first
class and when it starts being the second class. Test that
this method does not cause your image paths to cross over
any other key classes along the way. Hopefully you find
a pattern for these change points, such as 30% and 70%
along the way, and use those points, or just 50%, as a new
background image. As you fill in the space, classification of
new ones as background images might reliably allow you to
avoid creating auto generated background images that were
actually key class images. A complication is that each key
class may have several separate areas in the feature space.

A possible experiment to test this would be to pick a small
subset, or one, of our key classes and use this to sprinkle
the area surrounding those classes with close background
images. Then evaluate whether attacks involving this subset
were more difficult than attacks involving only other key
classes.

Such artificial construction of background images is al-
most certainly required for image spaces with higher di-
mensionality or with far more classes, though at some point
this may cause the background images to no longer appear

normal, being just a synthetic morph between two points in
the image space.

C. Use more background images

We could expand the types of images used for the back-
ground class or use standard data augmentation techniques.
For our background images we stayed within the same
domain that our model had to learn, simple things that
were hand written. This was deliberate in an attempt to
not change too much what the network needed to learn
but instead to just add a new large class. Staying within
that domain, letters could be chopped into subareas and
rearranged to form random ’characters’ that were not digits.
This would add extra sharp edges that are not otherwise
present in our data. Using random images – trees, cars,
faces – would expand the data set even more. Also the more
complex domains, represented by such datasets as CIFAR,
GTSRB, and ImageNet, likely do not have a simple and
similar domain from which to draw such images, so use of
more random background images would be necessary for
our method in harder image domains.

VIII. RELATED WORK

Bendale and Boult [BB16] examine detecting images
from the part of the image space not trained on, which they
call the open set. They examine open set and fooling images,
detecting and rejecting images that look to humans like an
unknown class. They do not examine adversarial images.
Their open set is essentially the same as our background
class. However, a crucial difference is that they do not use
open set images in training, while we train with images from
the background class to try to avoid adversarial examples.

Melis et. al propose a similar defense, where the classifier
has the option to reject an image as not belonging to any of
the trained classes [MDB+17]. During training, the classifier
learns a region for each class that encompasses most or all
of the examples of that class in the training set. At test time,
the classifier rejects the image if it does not fall into any of
these regions. Thus, their defense can be considered another
open-set scheme. Like Bendale and Boult, they train only on



normal images, but do not use open set images in training; in
contrast, our defense trains on examples of the background
class.

Goodfellow et al. discuss rubbish classes, “degenerate
inputs that a human would classify as not belonging to any
of the categories in the training set”, and the problem of not
classifying such images as belonging to one of the expected
classes [GSS15]. They discuss rubbish classes in connection
with the fooling images of Nguyen et al.[NYC15], abstract
or apparently random images that are classified with high
confidence. Goodfellow et al. show that on CIFAR-10 it is
easy to create a fooling image from a random image by
adding a few gradient steps toward a target class. Neither
group trains the classifier on such rubbish images, nor do
they discuss normal images that are just not in the classes
of interest. We train on background class images that are
normal, not random, images.

Hosseini et. al introduce NULL labeling to mark ad-
versarial examples added in training, so that under attack
labeling shifts to the NULL class [HCK+17]. We hope
for a similar shift, but without relying on distinguishing
adversarial examples. We rely on background being the
available misclassification.

IX. CONCLUSION

Adding a background class to image classification train-
ing significantly increases detection of simple adversarial
example attacks, but we have not found it to stop advanced
attacks. For the weak attacks, we have reduced the success
rate significantly, suggesting that we have filled the space
between our key classes with the background class. For
the strong Carlini attack, we see no effect, suggesting that
the trained model is still very convoluted near each of the
training examples, and still vulnerable to attack. While not a
successful defense in itself, adding the background class to
the training data may be a useful tool. Further work could
investigate constructing background images between the key
classes and artificially expanding the background data.
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