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Abstract

A matrix A ∈ R
n×m is said to be µ-incoherent if each pair of columns has inner product

at most µ/
√
n. Starting with the pioneering work of Donoho and Huo [18] such matrices

(often called dictionaries) have played a central role in signal processing, statistics and machine
learning. They allow sparse recovery: there are efficient algorithms for representing a given
vector as a sparse linear combination of the columns of A (if such a combination exists). However,
in many applications ranging from sparse coding in machine learning to image denoising, the
dictionary is unknown and has to be learned from random examples of the form Y = AX where
X is drawn from an appropriate distribution — this is the dictionary learning problem. Existing
proposed solutions such as the Method of Optimal Directions (MOD) [22] or K-SVD [2] do not
provide any guarantees on their performance nor do they necessarily learn a dictionary for which
one can solve sparse recovery problems. The only exception is the recent work of Spielman, Wang
and Wright [45] which gives a polynomial time algorithm for dictionary learning when A has full
column rank (in particular m is at most n). However, in most settings of interest, dictionaries
need to be overcomplete (i.e., m is larger than n).

Here we give the first polynomial time algorithm for dictionary learning when A is over-
complete. It succeeds under natural conditions on how X is generated, provided that X has at
most

k ≤ cmin(
√
n/µ logn,m1/2−ǫ)

non-zero entries (for any ǫ > 0). In other words it can handle almost as many non-zeros as the
best sparse recovery algorithms could tolerate even if one knew the dictionary A exactly.
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1 Introduction

1.1 Background

A major focus of computational harmonic analysis is finding sparse representations for various types
of data, e.g. signals, images, natural language, etc [20], [35]. But of course finding such a repre-
sentation is crucially dependent on having the right dictionary A ∈ R

n×m, so that each data point
can be written as a sparse linear combination of the columns of A. There are many popular choices
for this dictionary, such as sinusoids, wavelets, ridgelets, curvelets, etc [35]. There is no universally
optimum choice, since the best basis usually depends on the dataset: wavelets for impulsive events,
ridgelets for discontinuities in edges, curvelets for smooth curves, etc.. One standard approach is to
combine known bases into a single dictionary, which is often called “redundant” or “overcomplete”
because m can be much larger than n. Such redundant dictionaries have proven especially effective
for example at allowing a sparse representation even if an image contains many different “types”
of features such as impulsive events, discontinuities and smooth curves.

There is also evidence that such hand-designed dictionaries do not do as well as dictionaries that
are fit to the dataset using automated methods. The problem of discovering the best dictionary
to a dataset is called dictionary learning and also referred to as sparse coding in machine learning.
In image processing such discovered dictionaries are used to perform denoising [21], edge-detection
[37], super-resolution [49] and compression. In machine learning they are used for feature selection
[42] and for building classifiers atop sparse coding routines [31]. Dictionary learning is also a basic
building block in design of deep learning systems [43]. See [1], [20] for further applications. In
fact, the dictionary learning problem was identified by Olshausen and Field [40] as part of study
on internal image representations in the visual cortex. Their work suggested that basis vectors in
learnt dictionaries often correspond to well-known image filters such as Gabor filters. Our goal is to
design an algorithm for this problem with provable guarantees in the same spirit as recent work on
nonnegative matrix factorization [5], topic models [6], [4] and mixtures models [39], [10]. (We will
later discuss why current algorithms in [34], [22], [2], [32], [33] do not come with such guarantees.)

Designing provably correct algorithms for dictionary learning has proved challenging. Even if
the dictionary is completely known, it can be NP-hard to represent a vector u as a sparse linear
combination of the columns of A (even if such a representation exists) [15]. However for many
natural types of dictionaries, the problem of finding a sparse representation is computationally easy.
The pioneering work of Donoho and Huo [18] (building on the uncertainty principle of Donoho and
Stark [19]) presented a number of important examples of dictionaries that are incoherent and gave
an algorithm to find a sparse representation in a known, incoherent dictionary if one exists. More
precisely:

Definition 1.1 (µ-incoherent). An n×m matrix A whose columns are unit vectors is said to be
µ-incoherent if for all i 6= j we have

〈Ai, Aj〉 ≤ µ/
√
n.

We sometimes say just incoherent if µ is small, like log n.

A randomly chosen dictionary is incoherent with high probability (even if m = nC). Donoho and
Huo [18] gave many other important examples of incoherent dictionaries, such as one constructed
from spikes and sines, as well as those built up from wavelets and sines, or even wavelets and
ridgelets. There is a rich body of literature devoted to incoherent dictionaries (see additional
references in [24]). Donoho and Huo [18] proved that given u = Av where v has k nonzero entries,
where k ≤ √

n/2µ, basis pursuit (solvable by a linear program) recovers v exactly and it is unique.
Gilbert, Muthukrishnan and Strauss [24] (and subsequently [47]) gave algorithms for recovering v
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even in the presence of additive noise. Tropp [46] gave a more general exact recovery condition
(ERC) under which the sparse recovery problem for incoherent dictionaries can be algorithmically
solved. All of these require n > k2µ2. In a foundational work, Candes, Romberg and Tao [11]
showed that basis pursuit solves the sparse recovery problem even for n = O(k log(m/k)) if A
satisfies the weaker restricted isometry property [12]. Also if A is a full-rank square matrix, then
we can compute v from A−1u, trivially. But our focus here will be on incoherent and overcomplete
dictionaries.

The main result in this paper is an algorithm that provably learns an unknown, incoherent
dictionary from random samples Y = AX where X is a random vector that has at most

k ≤ cmin(
√
n/µ log n,m1/2−ǫ)

non-zero entries (for any ǫ > 0). Hence we can handle almost as many non-zeros as we could tolerate
even if we knew the dictionary A. The precise conditions on X are described in Section 1.3. We
can also relax some of these conditions at the cost of increased running time or requiring X to be
more sparse; see Section 6.1.

1.2 Previous Work

There has also been significant prior work on dictionary learning and sparse coding. Lewicki and
Sejnowski [34] provided the first approach, and subsequently Engan, Aase and Husoy [22] introduce
the method of optimal directions (MOD) and Aharon, Elad and Bruckstein [2] introduced K-SVD,
both of which have had considerable success in practice. For completeness, we will describe these
latter two approaches. Suppose the algorithm is given a matrix Y , generated as AX where A is
the unknown dictionary and X is an unknown matrix with iid columns.

Method of Optimal Direction [22] : Start with an initial guess A, and then alternately update
either A or X:

• Given A, compute a sparse X so that AX ≈ Y (using e.g. matching pursuit [36] or basis
pursuit [13])

• Given X, compute the A that minimizes ‖AX − Y ‖F

This algorithm converges to a local optimum, because in each step the error ‖AX − Y ‖F will only
decrease.

K-SVD [2] Start with an initial guess for A. Then repeat the following procedure:

• Given A, compute a sparse X so that AX ≈ Y (again, using a pursuit method)

• Group all data points Y (1) where the corresponding X vector has a non-zero at index i.
Subtract off components in the other directions

Y (1) −
∑

j 6=i

AjX
(1)
j

• Compute the first singular vector v1 of the residual matrix, and update the column Ai to v1
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However, these algorithms do not come with provable guarantees. After all, since the first step in
the algorithm uses some arbitrary guess for A there may not be any sparse representation X so
that AX ≈ Y . Furthermore, even if the algorithm learns some dictionary there is no guarantee
that it is incoherent, and consequently no guarantee that one can use it to solve sparse recovery.

Instead, our goal here is to give an algorithm for dictionary learning that has provable guaran-
tees. Assuming the data is generated by an incoherent dictionary, we recover it to within arbitrary
accuracy. The most closely related work is an elegant paper of Spielman, Wang and Wright [45],
giving an algorithm that provably recovers A to arbitrary accuracy if it is a full column rank matrix,
and X satisfies reasonable assumptions. However, requiring A to be full column rank precludes
most interesting settings where the dictionary is redundant and hence cannot have full column rank
(see e.g. [18], [20], [35]).

1.3 Our Results

First we define the class of distributions that the k-sparse vectors must be drawn from.

Definition 1.2 (Distribution class Γk,C). A distribution is in Γk,C if it is suported on k-sparse
vectors X such that (i) each component Xi has a Θ(k/m) probability of being non-zero (ii) the
probability that Xi 6= 0 is non-positively correlated with other coordinates being non-zero (iii) if
Xi is non-zero, its magnitude is in the range [1, C] and its expectation is zero. We use just Γ if
k,C are clear from context.

Remark 1.3. The requirement that nonzero Xi’s be bounded away from zero in magnitude is
similar in spirit to the Spike-and-Slab Sparse Coding (S3C) model of Goodfellow et al. [26], which
also encourages nonzero latent variables to be bounded away from zero.

Theorem 1.4. There is a polynomial time algorithm to learn a µ-incoherent dictionary A from
random examples of the form Y = AX, where X is chosen according to Γk,C.

• If k ≤ cmin(m2/5,
√
n

µ logn) and we are given p ≥ Ω(max(m2/k2 logm, m logm
ǫ2 )) samples, then

the algorithm succeeds with high probability and returns a dictionary Â so that for each i,
‖Ai − Âi‖ ≤ ǫ. The algorithm runs in time Õ(p2 +m2p).

• If (for some integer ℓ > 0) k ≤ cmin(m(ℓ−1)/(2ℓ−1),
√
n

µ logn), then there is a polynomial time

algorithm with the same guarantees and sample complexity that runs in time Õ(p2+ kℓ−1m+
m2p)

Some important remarks about this theorem:

Remark 1.5. The sparsity that this algorithm can tolerate – roughly
√
n

µ logn or m1/2−ǫ – approaches
the sparsity that the best known algorithms require even if A is known.

Furthermore since this procedure learns a dictionary that is close to the true dictionary, what
it learns must also be incoherent. Hence:

Remark 1.6. This algorithm learns a dictionary for which we can actually solve sparse recovery
problems.

Our algorithm is also noise tolerant - e.g. if we are given samples of the form Y = AX+η where
η has bounded correlation with our samples, then our algorithm will still succeed in recovering A
(see Remark 3.6).

We also know of extensions to our algorithm that can weaken various assumptions about Γ with
some consequence on the running time or the quality of result, see Section 6.1.
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Our approach The main idea is to compute an overlapping clustering. If given many samples,
we can find all the samples for which Xi 6= 0 then we can recover the column Ai from a singular
value decomposition. (Alternatively, we can instead find all the samples for which Xi > 0 and
then the samples will be biased in the direction of Ai). This is exactly the approach taken in
K-SVD [22]. The difference is that in K-SVD, the samples are clustered after running matching
pursuit on an intermediate guess for the dictionary. If this guess is not accurate, then the clustering
could be far from correct. Our main observation is that for incoherent dictionaries, we can recover
the clustering without knowing the dictionary! We build a graph – called the connection graph.
We give a simple combinatorial algorithm for recovering a provably correct overlapping clustering
from this graph, and from this we can immediately recover the true dictionary. In order to prove
correctness of our combinatorial algorithm, we rely on tools from discrete geometry, namely the
piercing number [38], [3]. There is also a connection between our problems and those studied in
community detection literature, where recent papers [8], [9] give provable algorithms for finding
all of the overlapping communities in a graph. However these algorithms applied to our problem
would run in time quasi-polynomial in the sparsity k (see Section 7). Instead, the algorithm we
present runs in polynomial time even for large values of k.

We remark that algorithms for independent component analysis [14] can also provably learn an
unknown dictionary A from random examples. Suppose we are given random samples of the form
AX where the components of X are exactly independent. Frieze, Jerrum and Kannan [23] gave
an algorithm with provable guarantees that recovers the dictionary A up to arbitrary accuracy,
provided that the random variables in the vector X are non-Gaussian (since in that case A is
only determined up to rotations anyways). Subsequent work on this problem considers the over-
determined case and gives provable algorithms even when A is n×m with m larger than n [16], [27].
However, these algorithms are very brittle to the assumption that the entries in X be independent;
if this condition is even slightly violated, the algorithms can fail. The weakest conditions that we
are aware of require that X be 4-wise independent, and typically even higher orders of independence
are required for the overcomplete case [16], [27]. Hence these algorithms are not well-suited for
dictionary learning where this condition seems too restrictive.

2 Notation

Throughout this paper, we will use Y (i) to denote the ith sample and X(i) as the vector that
generated it – i.e. Y (i) = AX(i). Let Xi be the i

th coordinate in a vector X and let supp(X) denote
the support of X. Also we will use ‖M‖F to denote the Frobenius norm and ‖M‖2 to denote the
spectral norm. Moreover we will use Γ to denote the distribution on k-sparse vectors X that is
used to generate our samples, and Γi will denote the restriction of this distribution to vectors X
where Xi 6= 0. Lastly, when we are working with a graph G we will use ΓG(u) to denote the set of
neighbors of u in G.

3 The Connection Graph

Let A be an unknown n×m dictionary whose columns are incoherent – i.e. each column is a unit
vector and for all i 6= j we have

〈Ai, Aj〉 ≤ µ/
√
n

Our goal is to recover the dictionary A given sparse linear combinations of its columns. In particular,
suppose that there is a distribution Γ on k-sparse columns X of length m. We will assume the
following generative model:
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• each X has at most k non-zeroes and the probability that Xi 6= 0 is Θ(k/m) and furthermore
Xi 6= 0 is non-positively correlated with other coordinates being non-zero

• if a coordinate is non-zero, its magnitude is in the range [1, C] and its expectation is zero.

In fact, our analysis will immediately extend to even more general models (see Section 6.1) but
for simplicity we encourage the reader to restrict the distribution Γ so that the support of X is
uniformly random over all k-tuples and that if a coordinate is non-zero it is a Rademacher random
variable (equally likely to be +1 or −1) since this will allow us to not have to keep track of as many
extraneous constants through the various steps of our analysis.

Our strategy is to form an overlapping clustering where we gather together all the samples Y for
which Xi 6= 0. We suggest two approaches for how to use this overlapping clustering to determine
the dictionary in Section 5.1 and Section 5.2 respectively. The first approach is to further determine
which set of samples have Xi > 0. This set of samples will be biased in exactly the direction of
Ai and hence we can recover this column by taking an average. Alternatively, we can compute the
direction of maximum variance. This latter approach recovers (roughly) the direction Ai and yields
insight into why approaches like K-SVD [22] are effective in practice.

But how can we compute the correct overlapping clustering? As a starting point: if there are
two samples Y (1) = AX(1) and Y (2) = AX(2) then we can determine if the support of X(1) and
X(2) intersect, but with false negatives:

Lemma 3.1. If k2µ <
√
n/2 then |〈Y (1), Y (2)〉| > 1/2 implies that he support of X(1) and X(2)

intersect

Proof: Suppose that the support of X(1) and X(2) are disjoint. Then the following upper bound
holds:

|〈Y (1), Y (2)〉| ≤
∑

i 6=j

|〈Ai, Aj〉X(1)
i X

(2)
j | ≤ k2µ/

√
n < 1/2

and this implies the lemma. �

This would be a weak bound in our setting, since we would require that k = O(n1/4/
√
µ).

Whereas if the dictionary is known, then classic results in compressed sensing show (algorithmically)
how to recover a vector that is a linear combination of at most

√
n/2µ columns of A [18]. In fact

we can impose weaker conditions on k, if we use the randomness of the values in X. We will appeal
to the classic Hanson-Wright inequality:

Theorem 3.2 (Hanson-Wright). [29] Let X be a vector of independent, sub-Gaussian random
variables with mean zero and variance one. Let M be a symmetric matrix. Then

Pr[|XTMX − tr(M)| > t] ≤ 2exp{−cmin(t2/‖M‖2F , t/‖M‖2)}

Lemma 3.3. Suppose kµ <
√
n

C′ logn for large enough constant C ′. Then if the support of X(1) and

X(2) are disjoint, with high probability |〈Y (1), Y (2)〉| < 1/2

Proof: Let N be the k × k submatrix resulting from restricting ATA to the locations where X(1)

and X(2) are non-zero. Set M to be a 2k × 2k matrix where the k × k submatrices in the top-left
and bottom-right are zero, and the k × k submatrices in the bottom-left and top-right are (1/2)N
and (1/2)NT respectively. Here we think of the vector X as being a length 2k vector whose first k
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entries are the non-zero entries in X(1) and whose last k entries are the non-zero entries in X(2).
And by construction, we have that

〈Y (1), Y (2)〉 = XTMX

We can now appeal to the Hanson-Wright inequality (above). Note that since the support of
X(1) and X(2) do not intersect, the entries in M are each at most µ/

√
n and so the Frobenius norm

of M is at most µk√
2n
. This is also an upper-bound on the spectral norm of M . We can set t = 1/2,

and for kµ <
√
n/C ′ log n both terms in the minimum are Ω(log n) and this implies the lemma. �

We can build a graph of which pairs intersect, by connecting a pair of samples Y (1) and Y (2) if
|〈Y (1), Y (2)〉| > 1/2.

Definition 3.4. Given p samples Y (1), Y (2), ..., Y (p), build a connection graph on p nodes where i
and j are connected by an edge if and only if |〈Y (1), Y (2)〉| > 1/2.

This graph will “miss” some edges, since if a pair X(1) and X(2) have intersecting support we do
not necessarily meet the above condition, but (with high probability) this graph will not have any
false positives:

Corollary 3.5. With high probability, each edge (i, j) that is present in the connection graph
corresponds to a pair where the support of X(i) and X(j) intersect.

It is important to note that a sample Y (1) will intersect many other samples (say, Y (2) and
Y (3)), each of which corresponds to a coordinate i (reps. i′) where the support of X(2) (resp. X(3))
intersect with the support of X(1). But the challenge is that we do not know if they intersect
X(1) in the same coordinate or not. We will use the other samples as a way to “cross-check” and
determine if X(1),X(2) and X(3) have a common intersection.

Remark 3.6. Even if we are given samples Y = AX + η where η is additive noise, under natural
conditions on the correlation of η with our samples (e.g. if it is spherical Gaussian noise whose
expected norm is at most o(

√
n)) this will not affect the construction of the connection graph, and

hence will not affect the proof of correctness of our algorithms.

4 Overlapping Clustering

Our goal in this section is to determine which samples Y have Xi 6= 0 just from the connection
graph. To do this, we will identify a combinatorial condition that allows us to decide whether or
not a triple Y (1), Y (2) and Y (3) has the property that the support of the vectors that generated
them – X(1),X(2) and X(3) respectively – have a common intersection. From this condition, it is
straightforward to give an algorithm that correctly groups together all of the samples Y that have
Xi 6= 0. We will need the following elementary lemma:

Lemma 4.1. Suppose the support of X intersects the support of each of X(1),X(2), ...,X(ℓ). Then

Pr[ for all j = 1, 2, ..., ℓ, |〈Y, Y (j)〉| > 1/2] ≥ 2−ℓ

Proof: We have that with high probability that round(〈Y, Y (j)〉) = 〈X,X(j)〉 for all j using
Lemma 3.3, and hence we need to prove that with probability at least 2−ℓ, each pair 〈X,X(j)〉 is
non-zero. We can prove this by induction, by considering the X(j)’s in an order such that no set
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Sj = supp(X)∩ supp(X(j)) is entirely contained in a earlier set Si (for i < j). Then conditioned on
all previous inner-products 〈X,X(i)〉 being non-zero, the probability that 〈X(1),X(j)〉 is non-zero
is at least 1/2. �

Now given two samples Y (1) and Y (2) so that the support of X(1) and X(2) intersect uniquely
at index i, we will prove that all the samples Y for which Xi 6= 0 can be recovered because the
expected number of common neighbors between Y (1), Y (2) and Y will be much larger than in any
other case (in particular if Xi = 0 instead).

Claim 4.2. Suppose supp(X(1)) ∩ supp(X(2)) ∩ supp(X(3)) 6= ∅, then

PrY [ for all j = 1, 2, 3, |〈Y, Y (j)〉| > 1/2] ≥ k

8m

Proof: Let i ∈ supp(X(1)) ∩ supp(X(2)) ∩ supp(X(3)). Then the probability that supp(X) ∋ i is
exactly k/m, and hence using the previous lemma this implies the claim. �

Intuitively, if supp(X(1)) ∩ supp(X(2)) ∩ supp(X(3)) = ∅ then the expected number of common
neighbors of Y (1), Y (2) and Y (3) should be smaller. But in principle we should be concerned that the
support of X could still intersect the support of each of X(1),X(2) and X(3). Let a = |supp(X(1))∩
supp(X(2))|, b = |supp(X(1)) ∩ supp(X(3))| and c = |supp(X(2)) ∩ supp(X(3))|. Then:

Lemma 4.3. Suppose that supp(X(1)) ∩ supp(X(2)) ∩ supp(X(3)) = ∅. Then the probability that
the support of X intersects the support of each of X(1),X(2) and X(3) is at most

k6

m3
+

3k3(a+ b+ c)

m2

Proof: We can break up the event whose probability we would like to bound into two (not neces-
sarily disjoint) events: (1) the probability that X intersects each of X(1),X(2) and X(3) disjointly
(i.e. it contains a point i ∈ supp(X(1)) but i /∈ supp(X(2)), supp(X(3)), and similarly for the other
sets ). (2) the probability that X contains a point in the common intersection of two of the sets,
and one point from the remaining set. Clearly if the support of X intersects the support of each of
X(1),X(2) and X(3) then at least one of these two events must occur.

The probability of the first event is at most the probability that the support of X contains
at least one element from each of three disjoint sets of size at most k. The probability that the
support of X contains an element of just one such set is at most the expected intersection which is
k2

m , and since the expected intersection of X with each of these sets are non-positively correlated

(because they are disjoint) we have that the probability of the first event can be bounded by k6

m3 .
Similarly, for the second event: consider the probability that the support of X contains an

element in supp(X(1))∩supp(X(2)). Since supp(X(1))∩supp(X(2))∩supp(X(3)) = ∅, the support of
X must also contain an element in supp(X(3)) too. The expected intersection of X and supp(X(1))∩
supp(X(2)) is ka

m and the expected intersection of X and X(3) is k2

m , and again the expectations are

non-positively correlated since the two sets supp(X(1))∩ supp(X(2)) and supp(X(3)) are disjoint by
assumption. Repeating this argument for the other pairs completes the proof of the lemma. �

Note that the probability that two sets of size k intersect in at least Q elements is at most ( k
m )Q

by the same non-positive correlation argument. Hence we can assume that with high probability
there is no pair of sets that intersect in more than Q locations.
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Algorithm 1 OverlappingCluster, Input: p samples Y (1), Y (2), ..., Y (p)

1. Compute a graph G on p nodes where there is an edge between i and j iff |〈Y (1), Y (2)〉| > 1/2

2. Initialize list of triples to be empty

3. Set T = pk
10m

4. Repeat Ω(mk log2 m) times:

5. Choose a random edge (u, v) in G and a random neighbor w of u

6. If |ΓG(u) ∩ ΓG(v) ∩ ΓG(w)| ≥ T

7. Add (u, v, w) to the list of triples

8. For each node x, add x to each set Su,v,w where (u, v, w) is a triple and |ΓG(u) ∩ ΓG(v) ∩ ΓG(x)| ≥ T

9. Delete any set Su,v,w that contains another set Sa,b,c

10. Output the remaining sets Su,v,w ∪ {u, v, w}

And comparing the lemma and the claim above, we find that if k ≤ cm2/5 then the expected
number of common neighbors is much larger if supp(X(1))∩supp(X(2))∩supp(X(3)) 6= ∅ than if the
intersection is empty. Under this condition, if we take p = O(m2/k2 log n) samples each triple with
a common intersection will have at least T common neighbors, and each triple whose intersection
is empty will have less than T/2 common neighbors.

Hence we can search for a triple with a common intersection as follows: We can find a pair that
intersects, since (with high probability) for any pair |〈Y (1), Y (2)〉| > 1/2 the support of X(1) and
X(2) intersect. We can try neighbors of Y (1) at random, and we can use the number of common
neighbors as a test to verify whether all three sets have a common intersection.

Definition 4.4. We will call a triple of samples Y (1), Y (2) and Y (3) an identifying triple for coor-
dinate i if the support of X(1),X(2) and X(3) intersect and furthermore the support of X(1) and
X(2) is exactly {i}.

Theorem 4.5. The algorithm OverlappingCluster finds an overlapping clustering where each
set corresponds to some i and contains all Y (j) for which i ∈ supp(X(j)). The algorithm runs in

time Õ(p2n) and succeeds with high probability if k ≤ cmin(m2/5,
√
n

µ logn) and if p = Ω(m2/k2 logm)

Proof: We can use Lemma 3.3 to conclude that each edge in G corresponds to a pair whose support
intersects. We can appeal to Lemma 4.3 and Claim 4.2 to conclude that for p = Ω(m2/k2 logm),
with high probability each triple with a common intersection has at least T common neighbors,
and each triple without a common intersection has at most T/2 common neighbors.

In fact, for a random edge (u, v), the probability that the common intersection of u and v (of
the supports of their X’s) is exactly {i} is Ω(1/m) because we know that their X’s do intersect,
and that intersection has a constant probability of being size one and it is uniformly distributed
over m possible locations. Furthermore the probability that a randomly chosen neighbor w of u
contains i (in the support of its X) is at least k/m, and hence appealing to a coupon collector
argument we conclude that if the inner loop is run at least Ω(km log2 m) times then the algorithm
finds an identifying triple (u, v, w) for each column Ai with high probability.

Note that we may have triples that are not an identifying triple for some coordinate i. However,
any other triple (u, v, w) found by the algorithm must have a common intersection. Consider for
example a triple (u, v, w) where u and v have a common intersection {i, j}. Then we know that
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Algorithm 2 OverlappingAverage, Input: p samples Y (1), Y (2), ...Y (p)

1. Run OverlappingCluster (or OverlappingCluster2) on the p samples

2. Let C1, C2, ...Cm be the m returned overlapping clusters

3. For each Ci
4. For each pair u, v ∈ Ci such that X(u) and X(v) have a unique intersection

5. Label the pair +1 if 〈Y (u), Y (v)〉 > 0 and otherwise label it −1.

6. Choose an arbitrary ui ∈ Ci, and set Si = {ui}
7. For each v ∈ Ci
8. If the pair ui, v is labeled +1 add v to Si

9. Else if there is w ∈ Ci where the pairs ui, w and v, w have the same label, add v to Si.

10. If |Si| ≤ |Ci|/2 set Si = Ci\Si.

11. Let Âi =
∑

v∈Si
X(v)/‖∑v∈Si

X(v)‖2
12. Output Â, where each column is Âi for some i

there is some other triple (a, b, c) which is an identifying triple for i and hence Sa,b,c ⊂ Su,v,w. (In
fact this containment is strict, since Su,v,w will also contain a set corresponding to an identifying
triple for j too). Then the second-to-last step in the algorithm will necessarily delete all such triples
Su,v,w. What is the running time of this algorithm? We need O(p2n) time to build the connection

graph, and the loop takes Õ(mpk) time. Finally, the deletion step requires time Õ(m2p) since there
will be Õ(m2) triples found in the previous step. This concludes the proof of correctness of the
algorithm, and its running time analysis. �

5 Recovering the Dictionary

5.1 Finding the Relative Signs

Here we show how to recover the columns of A once we have learned the correct overlapping

clustering. The key observation is that if the support of X
(1)
i and X

(2)
i uniquely intersect in index

i then the sign of 〈Y (1), Y (2)〉 is equal to the sign of X
(1)
i X

(2)
i . And if there are enough such pairs

X
(1)
i and X

(2)
i , then we can correctly determine the relative sign of every pair X

(1)
i and X

(2)
i in the

same cluster Ci. We formalize this idea in the following lemma:

Lemma 5.1. In Algorithm 2, Si is either {u : X
(u)
i > 0} or {u : X

(u)
i < 0}.

Proof: It suffices to prove the lemma at the start of Step 10, since this step only takes the
complement of Si with respect to Ci. Appealing to Lemma 3.3 we conclude that if the support
of X(u) and X(v) uniquely intersect in coordinate i then the sign of 〈Y (u), Y (v)〉 is equal to the

sign of X
(u)
i X

(v)
i . Hence when Algorithm 2 adds an element to Si it must have the same sign as

the ith component of X(ui). What remains is to prove that each node v ∈ Ci is correctly labeled.
We will do this by showing that for any such vertex, there is a length two path of labeled pairs
that connects ui to v, and this is true because the number of labeled pairs is large. We need the
following simple claim:

10



Claim 5.2. If p > m2 logm/k2 then with high probability any two clusters share at most 2pk2/m2

nodes in common.

This follows since the probability that a node is contained in any fixed pair of clusters is at
most k2/m2. Then for any node u ∈ Ci, we would like to lower bound the number of labeled pairs
it has in Ci. Since u is in at most k − 1 other clusters Ci1 , ..., Cik−1

, the number of pairs u, v where
v ∈ Ci that are not labeled for Ci is at most

k−1∑

t=1

|Cit ∩ Ci| ≤ k · 2pk2/m2 ≪ pk/3m = |Ci|/3

Therefore for a fixed node u for at least a 2/3 fraction of the other nodes w ∈ Ci the pair u,w is
labeled. Hence we conclude that for each pair of nodes ui, v ∈ Ci the number of w for which both
ui, w and w, v are labeled is at least |Ci|/3 > 0 and so for every v, there is a labeled path of length
two connecting ui to v. �

Using this lemma, we are ready to prove Algorithm 2 correctly learns all columns of A.

Theorem 5.3. The algorithm OverlappingAverage outputs a dictionary Â so that for each i,

‖Ai − Âi‖ ≤ ǫ with high probability if k ≤ cmin(m2/5,
√
n

µ logn) and if

p = Ωmax(m2/k2 logm,m logm/ǫ2)

Furthermore the algorithm runs in time O(p2k2/m).

Proof: We can invoke Lemma 5.1 and conclude that Si is either {u : X
(u)
i > 0} or {u : X

(u)
i < 0},

whichever set is larger. Let us suppose that it is the former. Then each Y (u) in Si is an independent
sample from the distribution conditioned on Xi > 0, which we call Γ+

i . We have that EΓ+

i

[AX] =

cAi where c is a constant in [1, C] because EΓ+

i

[Xj ] = 0 for all j 6= i.

Let us compute the variance:

E
Γ+

i

[‖AX − E
Γ+

i

AX‖2] ≤ E
Γ+

i

X2
i +

∑

j 6=i

E
Γ+

i

[X2
j ] ≤ C2 +

∑

j 6=i

C2k/m ≤ C2(k + 1),

Note that there are no cross-terms because the signs of each Xj are independent. Furthermore
we can bound the norm of each vector Y (u) via incoherence. We can conclude that if |Si| >
C2k logm/ǫ2, then with high probability ‖Âi − Ai‖2 ≤ ǫ using vector Bernstein’s inequality ([28],
Theorem 12). This latter condition holds because we set Si to itself or its complement based on
which one is larger. �

5.2 An Approach via SVD

Here we give an alternative algorithm for recovering the dictionary based instead on SVD. The
advantage is that approaches such as K-SVD which are quite popular in practice also rely on
finding directions of maximum variance, so the analysis we provide here yields insights into why
these approaches work. However, we note that the crucial difference is that we rely on finding
the correct overlapping clustering in the first step of our dictionary learning algorithms, whereas
K-SVD and approaches like it attempt to alternate between updating the dictionary and fixing the
overlapping clustering.

Let us fix some notation: Let Γi be the distribution conditioned on Xi 6= 0. Then once we
have found the overlapping clustering, each cluster is a set of random samples from Γi. Also let
α = |〈u,Ai〉|.
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Definition 5.4. Let R2
i = 1 +

∑
j 6=i〈Ai, Aj〉2EΓi

[X2
j ].

Note that R2
i is the projected variance of Γi on the direction u = Ai. Our goal is to show that for

any u 6= Ai (i.e. α 6= 1), the variance is strictly smaller.

Lemma 5.5. The projected variance of Γi on u is at most

α2R2
i + α

√
(1− α2)

2µk√
n

+ (1− α2)(
k

m
+

µk√
n
)

Proof: Let u|| and u⊥ be the components of u in the direction of Ai and perpendicular to Ai.
Then we want bound EΓi

[〈u, Y 〉2] where Y is sampled from Γi. Since the signs of each Xj are
independent, we can write

EΓi
[〈u, Y 〉2] =

∑

j

EΓi
[〈u,AjXj〉2] =

∑

j

EΓi
[〈u|| + u⊥, AjXj〉2]

Since α = ‖u||‖ we have:

EΓi
[〈u, Y 〉2] = α2R2

i + EΓi
[
∑

j 6=i

(2〈u||, Aj〉〈u⊥, Aj〉+ 〈u⊥, Aj〉2)X2
j ]

Also EΓi
[X2

j ] = (k − 1)/(m − 1). Let v be the unit vector in the direction u⊥. We can write

EΓi
[
∑

j 6=i

〈u⊥, Aj〉2X2
j ] = (1− α2)(

k − 1

m− 1
)vTA−iA

T
−iv

where A−i denotes the dictionary A with the ith column removed. The maximum over v of
vTA−iA

T
−iv is just the largest singular value of A−iA

T
−i which is the same as the largest singu-

lar value of AT
−iA−i which by the Greshgorin Disk Theorem (see e.g. [30]) is at most 1 + µ√

n
m.

And hence we can bound

EΓi
[
∑

j 6=i

〈u⊥, Aj〉2X2
j ] ≤ (1− α2)(

k

m
+

µk√
n
)

Also since |〈u||, Aj〉| = α|〈Ai, Aj〉| ≤ αµ/
√
n we obtain:

E[
∑

j 6=i

2〈u||, Aj〉〈u⊥, Aj〉X2
j ] ≤ α

√
(1− α2)

2µk√
n

and this concludes the proof of the lemma. �

Definition 5.6. Let ζ = max{ µk√
n
,
√

k
m}, so the expression in Lemma 5.5 can be be an upper

bounded by α2R2
i + 2α

√
1− α2 · ζ + (1− α2)ζ2.

We will show that an approach based on SVD recovers the true dictionary up to additive
accuracy ±ζ. Note that here ζ is a parameter that converges to zero as the size of the problem
increases, but is not a function of the number of samples. So unlike the algorithm in the previous
subsection, we cannot make the error in our algorithm arbitrarily small by increasing the number
of samples, but this algorithm has the advantage that it succeeds even when E[Xi] 6= 0.
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Algorithm 3 OverlappingSVD, Input: p samples Y (1), Y (2), ...Y (p)

1. Run OverlappingCluster (or OverlappingCluster2) on the p samples

2. Let C1, C2, ...Cm be the m returned overlapping clusters

3. Compute Σ̂i =
1

|Ci|

∑
Y ∈Ci

Y Y T

4. Compute the first singular value Âi of Σ̂i

5. Output Â, where each column is Âi for some i

Corollary 5.7. The maximum singular value of Γi is at least Ri and the direction u satisfies
‖u−Ai‖2 ≤ O(ζ). Furthermore the second largest singular value is bounded by O(R2

i ζ
2).

Proof: The bound in Lemma 5.5 is only an upper bound, however the direction α = 1 has variance
R2

i > 1 and hence the direction of maximum variance must correspond to α ∈ [1−O(ζ2), 1]. Then
we can appeal to the variational characterization of singular values (see [30]) that

σ2(Σi) = max
u⊥Ai

uTΣiu

uTu

Then condition that α ∈ [−O(ζ), O(ζ)] for the second singular value implies the second part of the
corollary. �

Since we have a lower bound on the separation between the first and second singular values of
Σi, we can apply Wedin’s Theorem and show that we can recover Ai approximately even in the
presence of noise.

Theorem 5.8 (Wedin). [48] Let δ = σ1(M)− σ2(M) and let M ′ = M +E and furthermore let v1
and v′1 be the first singular vectors of M and M ′ respectively. Then

sinΘ(v1, v
′
1) ≤ C

‖E‖
δ

Hence even if we do not have access to Σi but rather an approximation to it Σ̂i (e.g. an empirical
covariance matrix computed from our samples), we can use the above perturbation bound to show
that we can still recover a direction that is close to Ai – and in fact converges to Ai as we take
more and more samples.

Theorem 5.9. The algorithm OverlappingSVD outputs a dictionary Â so that for each i, ‖Ai−
Âi‖ ≤ ζ with high probability if k ≤ cmin(m2/5,

√
n

µ logn) and if

p ≥ max(m2/k2 logm,
mn logm log n

ζ2
)

Proof: Appealing to Theorem 4.5, we have that with high probability the call to Overlapping-

Cluster returns the correct overlapping clustering. Then given n logn
ζ2 samples from the distribu-

tion Γi the classic result of Rudelson implies that the computed empirical covariance matrix Σ̂i is
close in spectral norm to the true co-variance matrix [44]. This, combined with the separation of
the first and second singular values established in Corollary 5.7 and Wedin’s Theorem 5.8 imply
that we recover each column of A up to an additive accuracy of ǫ and this implies the theorem. Note
that since we only need to compute the first singular vector, this can be done via power iteration
[25] and hence the bottleneck in the running time is the call to OverlappingCluster. �
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Algorithm 4 OverlappingCluster2, Input: p samples Y (1), Y (2), ..., Y (p), integer ℓ

1. Compute a graph G on p nodes where there is an edge between i and j iff |〈Y (1), Y (2)〉| > 1/2

2. Initialize list of ℓ-tuples to be empty

3. Set T = pk
Cm2ℓ

4. Repeat Ω(kℓ−2m log2 m) times:

5. Choose a random node u in G, and ℓ− 1 neighbors u1, u2, ...uℓ−1

6. If |ΓG(u) ∩ ΓG(u1) ∩ ... ∩ ΓG(uℓ−1)| ≥ T

7. Add (u, u1, u2, ...uℓ−1) to the list of ℓ-tuples

8. For each node x, add x to each set Su,u1,u2,...uℓ−1
where (u1, u2, ...uℓ−1) is an ℓ-tuple and |ΓG(u) ∩

ΓG(u1) ∩ ... ∩ ΓG(x)| ≥ T

9. Delete any set Su,u1,u2,...uℓ−1
that contains another set Sv,v1,v2,...vℓ−1

10. Output the remaining sets Su,u1,u2,...uℓ−1
∪ {u, u1, u2, ...uℓ−1}

6 A Higher-Order Algorithm

Here we extend the algorithm OverlappingCluster presented in Section 4 to succeed even when
k ≤ cmin(m1/2−ǫ,

√
n/µ log n). We can then use the algorithm OverlappingSVD in conjunction

with this new clustering algorithm and obtain an analogue of Theorem 5.9 that works even for

k ≤ cmin(m1/2−ǫ,
√
n/µ log n)

The premise of OverlappingCluster is that we can distinguish whether or not a triple of sets
X(1),X(2),X(3) has a common intersection based on their number of common neighbors in the
connection graph. However for k = ω(m2/5) this is no longer true! But we will instead consider
higher-order groups of sets. In particular, for any ǫ > 0 there is an ℓ so that we can distinguish
whether an ℓ-tuple of sets X(1),X(2), ...,X(ℓ) has a common intersection or not based on their
number of common neighbors even for k = Ω(m1/2−ǫ).

The main technical challenge is in showing that if the sets X(1),X(2), ...,X(ℓ) do not have a
common intersection, that we can upper bound the probability that a random set X intersects
each of them. To accomplish this, we will need to bound the number of ways of piercing ℓ sets
X(1),X(2), ...,X(ℓ) that have bounded pairwise intersections by at most s points (see Lemma 6.5),
and from this an analysis of OverlappingCluster2 will be immediate.

What we need is an analogue of Claim 4.2 and Lemma 4.3. First the easy part:

Claim 6.1. Suppose supp(X(1)) ∩ supp(X(2)) ∩ ... ∩ supp(X(ℓ)) 6= ∅, then

PrY [ for all j = 1, 2, ..., ℓ, |〈Y, Y (j)〉| > 1/2] ≥ 2−ℓ k

m

The proof of this claim is identical to the proof of Claim 4.2. But what about an analogue of
Lemma 4.3? To analyze the probability that a set X intersects each of the sets X(1),X(2), ...,X(ℓ)

we will rely on the following standard definition:

Definition 6.2. Given a collection of sets supp(X(1)), supp(X(2)), ..., supp(X(ℓ)), the piercing num-
ber is the minimum number of points p1, p2, ..., pr so that each set contains at least one point pi.
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The notion of piercing number is well-studied in combinatorics (see e.g. [38]). However, one is
usually interested in upper-bounding the piercing number. For example, a classic result of Alon
and Kleitman concerns the (p, q)-problem [3]: Suppose we are given a collection of sets that has
the property that each choice of p of them has a subset of q which intersect. Then how large can
the piercing number be? Alon and Kleitman proved that the piercing number is at most a fixed
constant c(p, q) independent of the number of sets [3].

However, here our interest in piercing number is not in bounding the minimum number of points
needed but rather in analyzing how many ways there are of piercing a collection of sets with at
most s points, since this will directly yield bounds on the probability that X intersects each of
X(1),X(2), ...,X(ℓ). We will need as a condition that each pair of sets has bounded intersection,
and this holds in our model with high-probability.

Claim 6.3. With high probability, the intersection of any pair supp(X(1)), supp(X(2)) has size at
most Q

Definition 6.4. We will call a set of ℓ sets a (k,Q) family if each set has size at most k and the
intersection of each pair of sets has size at most Q.

Lemma 6.5. The number of ways of piercing (k,Q) family (of ℓ sets) with s points is at most
(ℓk)s. And crucially if ℓ ≥ s + 1, then the number of ways of piercing it with s points is at most
Qs(s+ 1) + (ℓk)s−1.

Proof: The first part of the lemma is the obvious upper bound. Now let us assume ℓ ≥ s + 1:
Then given a set of s points that pierce the sets, we can partition the ℓ sets into s sets based on
which of the s points is hits the set. (In general, a set may be hit by more than one point, but we
can break ties arbitrarily). Let us fix any s + 1 of the ℓ sets, and let U be the the union of the
pairwise intersections of each of these sets. Then U has size at most Qs(s + 1). Furthermore by
the Pidgeon Hole Principle, there must be a pair of these sets that is hit by the same point. Hence
one of the s points must belong to the set U , and we can remove this point and appeal to the first
part of the lemma (removing any sets that are hit by this point). This concludes the proof of the
second part of the lemma, too. �

Corollary 6.6. The probability that the support of X hits each set in a (k,Q) family (of ℓ sets) is
at most ∑

2≤s≤ℓ−1

(Cs + (ℓk)s−1)
( k

m

)s
+
∑

s≥ℓ

(ℓk2
m

)s

where Cs is a constant depending polynomially on s.

Proof: We can break up the probability of the event that the support of X hits each set in a (k,Q)
family into another family of events. Let us consider the probability that X pierces the family with
s ≤ ℓ− 1 points or s ≥ ℓ points. In the former case, we can invoke the second part of Lemma 6.5
and the probability that X hits any particular set of s points is at most (k/m)s. In the latter case,
we can invoke the first part of Lemma 6.5. �

Note that if k ≤ m1/2 then k/m is always greater than or equal to ks−1(k/m)s. And so
asymptotically the largest term in the above sum is (k2/m)ℓ which we want to be asymptotically
smaller than k/m which is the probability in Claim 6.1. So if k ≤ cm(ℓ−1)/(2ℓ−1) then above bound
is o(k/m) which is asymptotically smaller than the probability that a given set of ℓ nodes that have
a common intersection are each connected to a random (new) node in the connection graph. So
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again, we can distinguish between whether or not an ℓ-tuple has a common intersection or not and
this immediately yields a new overlapping clustering algorithm that works for k almost as large as√
m, although the running time depends on how close k is to this bound.

Theorem 6.7. The algorithm OverlappingCluster2(ℓ) finds an overlapping clustering where
each set corresponds to some i and contains all Y (j) for which i ∈ supp(X(j)). The algorithm runs

in time Õ(kℓ−2mp + p2n) and succeeds with high probability if k ≤ cmin(m(ℓ−1)/(2ℓ−1),
√
n

µ logn) and

if p = Ω(m2/k2 logm)

Hence this yields a polynomial time algorithm for finding an unknown incoherent dictionary

whenever k ≤ cmin(
√
n

µ logn ,m
1/2−ǫ) using Theorem 5.3. The proof of correctness of this algorithm

is identical to one of Theorem 5.3 except that the definition of an identifying ℓ-tuple for coordinate
i is a set of ℓ samples that have a common intersection and for which the first ℓ− 1 have a common
intersection that is exactly {i}. And note that the probability of finding an identifying ℓ-tuple for
coordinate i is at least Ω(1/(mkℓ−1)).

The threshold of k ≤ √
n/2µ is a natural barrier: Suppose we are given a vector u of the form

u = Av where v has at most k non-zeros. Then if k ≤ √
n/2µ, the vector v is uniquely defined and

is the sparsest solution to the system u = Ax (where x is the variable). However when k >
√
n/2µ

this is no-longer true and there are incoherent dictionaries where a vector u admits more than one
representation as a sparse linear combination of the columns of A. In fact, there are many known
algorithms for recovering v from u up to the uniqueness threshold when the dictionary A is known.
The above algorithm gives a method to recover the dictionary at almost the same threshold – i.e.

if k ≤ cmin(
√
n

µ logn ,m
1/2−ǫ).

6.1 Extensions

Here we have studied the dictionary learning problem under what we believe to be quite flexible and
general conditions. To underscore this point, let us further examine the conditions we have assumed
and we note how these conditions can actually be further relaxed. Our algorithm is based on three
steps: constructing the connection graph, finding the overlapping clustering, and recovering the
dictionary. However if we invoke Lemma 3.1 (as opposed to Lemma 3.3) then the properties we
need of the connection graph follow from each X being at most k sparse for k ≤ n1/4/

√
µ without

any distributional assumptions.
Furthermore, the crucial steps in finding the overlapping clustering are bounds on the probability

that a sample X intersects a triple with a common intersection, and the probability that it does
so when there is no common intersection (Claim 4.2 and Lemma 4.3). Indeed, these bounds hold
whenever the probability of two sets intersecting in two or more locations is smaller (by, say, a
factor of k) than the probability of the sets intersecting once. This can be true even if elements
in the sets have significant positive correlation (but for the ease of exposition, we have emphasized
the simplest models at the expense of generality). Lastly, Algorithm 2 we can instead consider
the difference between the averages for Si and Ci\Si and this succeeds even if E[Xi] is non-zero.
This last step does use the condition that the variables Xi are independent, but if we instead use
Algorithm 3 we can circumvent this assumption and still recover a dictionary that is close to the
true one. Finally, the “bounded away from zero” assumption in Definition 1.2 can be relaxed: the
resulting algorithm recovers a dictionary that is close enough to the true one and still allows sparse
recovery.
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7 Discussion: Overlapping Communities

There is a connection between the approach used here, and the recent work on algorithms for
finding overlapping communities (see in particular [8], [9]). We can think of the set of samples Y
for which Xi 6= 0 as a “community”. Then each sample is in more than one community, and indeed
for our setting of parameters each sample is contained in k communities. We can think of the main
approach of this paper as:

Observation 1. If we can find all of the overlapping communities, then we can learn an unknown
dictionary.

So how can we find these overlapping communities? The recent papers [8], [9] pose determin-
istic conditions on what constitutes a community (e.g. each node outside of the community has
fewer edges into the community than do other members of the community). These papers provide
algorithms for finding all of the communities, provided these conditions are met. However for our
setting of parameters, both of these algorithms would run in quasi-polynomial time. For example,
the parameter “d” in the paper [8] is an upper-bound on how many communities a node can belong
to, and the running time of the algorithms in [8] are quasi-polynomial in this parameter. But in
our setting, each sample Y belongs to k communities – one for each non-zero value in X – and the
most interesting setting here is when k is polynomially large. Similarly, the parameter “θ” in [9]
can be thought of as: If node u is in community c, what is the ratio of the edges incident to u that
leave the community c compared to the number that stay inside c? Again, for our purposes this
parameter “θ” is roughly k and the algorithms in [9] depend quasi-polynomially on this parameter.

Hence these algorithms would not suffice for our purposes because when applied to learning
an unknown dictionary, their running time would depend quasi-polynomially on the sparsity k. In
contrast, our algorithms run in polynomial time in all of the parameters, albeit for a more restricted
notion of what constitutes a community (but one that seems quite natural from the perspective
of dictionary learning). Our algorithm OverlappingCluster finds all of the overlapping “com-
munities” provided that whenever a triple of nodes shares a common community they have many
more common neighbors than if they do not all share a single community. The correctness of the
algorithm is quite easy to prove, once this condition is met; but here the main work was in showing
that our generative model meets these neighborhood conditions.
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