
downup

recursion:
itself

131

7 Introduction to Recursion

downup "hello

downup "goodbye

?
hello
hell
hel
he
h
he
hel
hell
hello
?
goodbye
goodby
goodb
good
goo
go
g
go
goo
good
goodb
goodby
goodbye

My goal in this chapter is to write a procedure named that behaves like this:

The programming techniques we’ve used so far in this book don’t allow an elegant
solution to this problem. We’ll use a new technique called writing a procedure
that uses as a subprocedure.

downup1 "j

downup2 "it

Starting Small

Building Up

downup downup

downup1

downup

lot

combining method.

132 Chapter 7 Introduction to Recursion

to downup1 :word
print :word
end

?
j

to downup2 :word
print :word
print butlast :word
print :word
end

?
it
i
it

We’re going to solve this problem using recursion. It turns out that the idea of
recursion is both very powerful—we can solve a of problems using it—and rather
tricky to understand. That’s why I’m going to explain recursion several different ways in
the coming chapters. Even after you understand one of them, you’ll probably find that
thinking about recursion from another point of view enriches your ability to use this idea.
The explanation in this chapter is based on the

My own favorite way to understand recursion is based on the general problem-solving
strategy of solving a complicated problem by starting with a simpler version. To solve the

problem, I’ll start by solving this simpler version: write a procedure that
works only for a single-character input word. (You can’t get much simpler than that!)
Here’s my solution:

See how well it works?

Of course, won’t work at all if you give it an input longer than one character.
You may not think this was such a big step. But bear with me. Next I’ll write a procedure
that acts like when you give it a two-letter input word:

☞

Building Up 133

downup3 "dot

downup2 butlast :word

downup3

print downup4
downup20

downup3

downup2
do downup3

downup2

butlast
dot do

to downup3 :word
print :word
print butlast :word
print butlast butlast :word
print butlast :word
print :word
end

?
dot
do
d
do
dot

to downup3 :word
print :word

print :word
end

to downup4 :word
print :word
downup3 butlast :word
print :word
end

We could keep this up for longer and longer input words, but each procedure gets
more and more complicated. Here’s :

How many instructions would I need to write this way? How many
would I need for ?

Luckily there’s an easier way. Look at the result of invoking :

The trick is to recognize that the boxed lines are what we’d get by invoking
with the word as input. So we can find the instructions in that print those
three lines and replace them with one instruction that calls :

You might have to think a moment to work out where the came from, but
consider that we’re given the word and we want the word .

Once we’ve had this idea, it’s easy to extend it to longer words:

☞

☞

Generalizing the Pattern

downup2

downup

downup
downup

downup5 "hello

downup7 "goodbye

134 Chapter 7 Introduction to Recursion

to downup5 :word
print :word
downup4 butlast :word
print :word
end

?
hello
hell
hel
he
h
he
hel
hell
hello
?
goodbye
goodby
goodb
good
goo
go
g
go
goo
good
goodb
goodby
goodbye

Can you rewrite so that it looks like these others?

Before going on, make sure you really understand these procedures by answering
these questions: What happens if you use one of these numbered versions of
with an input that is too long? What if the input is too short?

We’re now in good shape as long as we want to short words. We can pick the
right version of for the length of the word we have in mind:

☞

Generalizing the Pattern 135

downup
downup28

downup

to downup
if

erase

downup
downup5

downup

to downup :word
if equalp count :word 1 [downup1 :word]
if equalp count :word 2 [downup2 :word]
if equalp count :word 3 [downup3 :word]
if equalp count :word 4 [downup4 :word]
if equalp count :word 5 [downup5 :word]
if equalp count :word 6 [downup6 :word]
if equalp count :word 7 [downup7 :word]
end

downup "antidisestablishmentarianism

to downup :word
print :word
downup butlast :word
print :word
end

Having to count the number of characters in the word is a little unaesthetic, but we could
even have the computer do that for us:

There’s only one problem. What if we want to be able to say

You wouldn’t want to have to type in separate versions of all the way up to
!

What I hope you’re tempted to do is to take advantage of the similarity of all the
numbered procedures by combining them into a single procedure that looks
like this:

(Remember that Logo’s command won’t let you redefine if you’ve already
typed in my earlier version with all the instruction lines. Before you can type in the
new version, you have to the old one.)

Compare this version of with one of the numbered procedures like
. Do you see that this combined version should work just as well, if all the

numbered procedures are identical except for the numbers in the procedure
names? Convince yourself that that makes sense.

Okay, now try it.

downup5 "hello

 print "hello hello
 downup4 "hell

 print "hell hell
 downup3 "hel

 print "hel hel
 downup2 "he

 print "he he
 downup1 "h

 print "h h

 print "he he

 print "hel hel

 print "hell hell

 print "hello hello

What Went Wrong?

downup

downup
downup1

downup downup1

aren’t

136 Chapter 7 Introduction to Recursion

downup "hello

downup0 butlast :word
print :word

?
hello
hell
hel
he
h

butlast doesn’t like as input in downup

to downup1 :word
print :word

end

You probably saw something like this:

There’s nothing wrong with the reasoning I used in the last section. If all the
numbered procedures are identical except for the numbers, it should work to
replace them all with a single procedure following the same pattern.

The trouble is that the numbered procedures quite all identical. The
exception is . If it were like the others, it would look like this:

Review the way the numbered s work to make sure you understand why
is different. Here’s what happens when you invoke one of the numbered versions:

☞

The Stop Rule

The Stop Rule 137

print "hello downup4 "hell downup5
print "hello

downup4

print print :word

downup1
downup1

downup

downup1

downup5

downup

ifelse

to downup :word
ifelse equalp count :word 1 [downup.one :word] [downup.many :word]
end

to downup.one :word
print :word
end

to downup.many :word
print :word
downup butlast :word
print :word
end

In this chart, instructions within a particular procedure are indented the same amount.
For example, the lines and are part of , as is
the line at the very end of the chart. The lines in between are indented
more because they’re part of and its subprocedures.

(By the way, the lines in the chart don’t show actual instructions in the procedure
definitions. Otherwise all the lines would say instead of showing
actual words. In the chart I’ve already evaluated the inputs to the commands.)

The point of the chart is that has to be special because it marks the end of
the “down” part of the problem and the beginning of the “up” part. doesn’t
invoke a lower-numbered subprocedure because there’s no smaller piece of the
word to print.

Okay, Logo knows when to stop the “down” part of the program because
is different from the other procedures. Question: How does Logo know when to stop
the “up” part of the program? Why doesn’t , in this example, have to be written
differently from the others?

Our attempt to write a completely general procedure has run into trouble
because we have to distinguish two cases: the special case in which the input word
contains only one character and the general case for longer input words. We can use

to distinguish the two cases:

Local Variables

to downup :word
print :word
if equalp count :word 1 [stop]
downup butlast :word
print :word
end

downup
downup.one downup1 downup.many
downup

downup.one
downup.many stop

if downup

Downup

print

downup word

stop rule.

recursive call,

before

ends end

before
before

names
separate

138 Chapter 7 Introduction to Recursion

You’ll find that this version of the program actually works correctly. Sub-
procedure is exactly like the old , while is like the
version of that didn’t work.

It’s possible to use the same general idea, however—distinguishing the special case
of a one-letter word—without having to set up this three-procedure structure. Instead
we can take advantage of the fact that ’s single instruction is the same as
the first instruction of ; we can use a single procedure that s early if
appropriate.

The instruction in this final version of is called a

illustrates the usual pattern of a recursive procedure. There are three kinds
of instructions within its definition: (1) There are the ordinary instructions that carry
out the work of the procedure for a particular value of the input, in this case the
instructions. (2) There is at least one an instruction that invokes the same
procedure with a smaller input. (3) There is a stop rule, which prevents the recursive
invocation when the input is too small.

It’s important to understand that the stop rule always comes the recursive call
or calls. One of the common mistakes made by programmers who are just learning about
recursion is to think this way: “The stop rule the program, so it belongs at the
of the procedure.” The right way to think about it is that the purpose of the stop rule is
to stop the innermost invocation of the procedure it has a chance to invoke itself
recursively, so the stop rule must come the recursive call.

When you’re thinking about a recursive procedure, it’s especially important to remember
that each invocation of a procedure has its own local variables. It’s possible to get
confused about this because, of course, if a procedure invokes itself as a subprocedure,
each invocation uses the same for local variables. For example, each invocation of

has a local variable (its input) named . But each invocation has a
input variable.

that

this

procedure invocations,

Local Variables 139

downup5 "hello

print :word

downup4 butlast :word

print :word

downup1 downup2

downup5 hello Downup5
word hello

downup5

:word hello hello

downup4 hell butlast
hello downup4 word

hell

word Downup5 word
hello downup4 word hell

downup4 downup3 downup4
downup5

word
word downup5

hello

downup
word downup4
word downup

word

It’s hard to talk about different invocations in the abstract. So let’s look back at
the version of the program in which each invocation had a different procedure name:

, , and so on.

If you type the instruction

the procedure is invoked, with the word as its input. has a
local variable named , which contains as its value. The first instruction in

is

Since is , this instruction prints . The next instruction is

This instruction invokes procedure with the word (the of
) as input. has a local variable that is also named . The value of

variable is the word .

At this point there are two separate variables, both named . ’s
contains ; ’s contains . I won’t go through all the details of
how invokes and so on. But eventually finishes its task,
and continues with its final instruction, which is

Even though different values have been assigned to variables named in the interim,
variable named (the one that is local to) still has its original value,

. So that’s what’s printed.

In the recursive version of the program exactly the same thing happens about local
variables. It’s a little harder to describe, because all the procedure invocations are
invocations of the same procedure, . So I can’t say things like “the variable

that belongs to ”; instead, you have to think about “the variable named
that belongs to the second invocation of .” But even though there is only

one involved, there are still five procedure each with its own local
variable named .

☞

More Examples

down "hello

up "hello

inout "hello

quite

140 Chapter 7 Introduction to Recursion

?
hello
hell
hel
he
h
?
h
he
hel
hell
hello

?
hello
ello
llo
lo
o

lo
llo

ello
hello

down up

print downup

print down up

down up
inout

inout downup butfirst
butlast Inout downup

Downup

downup

Before I go on to show you another example of a recursive procedure, you might try
to write and , which should work like this:

As a start, notice that there are two instructions in and that one of
them does the “down” half and the other does the “up” half. But you’ll find that just
eliminating one of the s for and the other for doesn’t work.

After you’ve finished and , come back here for a discussion of a similar
project, which I call :

At first glance looks just like , except that it uses the of its
input instead of the . is somewhat more complicated than ,
however, because it has to print spaces before some of the words in order to line up the
rightmost letters. lined up the leftmost letters, which is easy.

Suppose we start, as we did for , with a version that only works for single-letter
words:

More Examples 141

inout1 inout2 downup
inout1

Type Type
print

print type

to inout1 :word
print :word
end

to inout2 :word
print :word
inout2.1 butfirst :word
print :word
end

to inout2.1 :word
type "| | ; a word containing a space
print :word
end

to inout3 :word
print :word
inout3.2 butfirst :word
print :word
end

to inout3.2 :word
type "| |
print :word
inout3.1 butfirst :word
type "| |
print :word
end

But we can’t quite use as a subprocedure of , as we did in the
problem. Instead we need a different version of , which types a space before its
input:

is a command, which requires one input. The input can be any datum.
prints its input, like , but does not move the cursor to a new line afterward. The
cursor remains right after the printed datum, so the next or command will
continue on the same line.

We need another specific case or two before a general pattern will become apparent.
Here is the version for three-letter words:

☞ inout5

142 Chapter 7 Introduction to Recursion

Convince yourself that each of these procedures types the right number of spaces before
its input word.

Here is one final example, the version for four-letter words:

Try this out and try writing along the same lines.

How can we find a common pattern that will combine the elements of all these
procedures? It will have to look something like this:

to inout3.1 :word
repeat 2 [type "| |]
print :word
end

to inout4 :word
print :word
inout4.3 butfirst :word
print :word
end

to inout4.3 :word
type "| |
print :word
inout4.2 butfirst :word
type "| |
print :word
end

to inout4.2 :word
repeat 2 [type "| |]
print :word
inout4.1 butfirst :word
repeat 2 [type "| |]
print :word
end

to inout4.1 :word
repeat 3 [type "| |]
print :word
end

More Examples 143

something

something

something

inout "hello 0

print
inout2.1 inout3.1 inout4.1

repeat
inout2

inout3 inout4
inout4

inout4.3 inout4.3 inout4.2
inout4.2 inout4.1

spaces

to inout :word
repeat [type "| |]
print :word
if [stop]
inout butfirst :word
repeat [type "| |]
print :word
end

to inout :word :spaces
repeat :spaces [type "| |]
print :word
if equalp count :word 1 [stop]
inout (butfirst :word) (:spaces+1)
repeat :spaces [type "| |]
print :word
end

?
hello
ello
llo
lo
o

lo
llo

ello
hello

This is not a finished procedure because we haven’t figured out how to fill the blanks.
First I should remark that the stop rule is where it is, after the first , because that’s
how far the innermost procedures (, , and) get. They
type some spaces, print the input word, and that’s all.

Another thing to remark is that the first input to the commands in this
general procedure will sometimes be zero, because the outermost procedures (,

, and) don’t type any spaces at all. Each subprocedure types one more
space than its superprocedure. For example, types no spaces. Its subprocedure

types one space. ’s subprocedure types two spaces.
Finally, ’s subprocedure types three spaces.

In order to vary the number of spaces in this way, the solution is to use another input
that will have this number as its value. We can call it . The procedure will then
look like this:

Other Stop Rules

inout
inout

inout
inout.sub

inout

inout inout.sub

down

initialization procedure.

144 Chapter 7 Introduction to Recursion

to inout :word
inout.sub :word 0
end

to inout.sub :word :spaces
repeat :spaces [type "| |]
print :word
if equalp count :word 1 [stop]
inout.sub (butfirst :word) (:spaces+1)
repeat :spaces [type "| |]
print :word
end

if equalp count :word 1 [stop]

to down :word
print :word
if equalp count :word 1 [stop]
down butlast :word
end

Notice that, when we use , we have to give it a zero as its second input. We could
eliminate this annoyance by writing a new that invokes this one as a subprocedure:

(The easiest way to make this change is to edit with the Logo editor and change
its title line and its recursive call so that its name is . Then, still in the editor,
type in the new superprocedure . When you leave the editor, both procedures will
get their new definitions.)

This program structure, with a short superprocedure and a recursive subprocedure,
is very common. The superprocedure’s only job is to provide the initial values for some
of the subprocedure’s inputs, so it’s sometimes called an In this
program is an initialization procedure for .

By the way, the parentheses in the recursive call aren’t really needed; I just used them
to make it more obvious which input is which.

The examples I’ve shown so far use this stop rule:

Perhaps you wrote your procedure the same way:

countdown 10

down

down
print

butfirst butlast

tail recursive.

command

Other Stop Rules 145

to down :word
if emptyp :word [stop]
print :word
down butlast :word
end

to countdown :number
if equalp :number 0 [print "Blastoff! stop]
print :number
countdown :number-1
end

?
10
9
8
7
6
5
4
3
2
1
Blastoff!

Here is another way to write , which has the same effect. But this is a more
commonly used style:

This version of has the stop rule as its first instruction. After that comes the
instructions that carry out the specific work of the procedure, in this case the
instruction. The recursive call comes as the last instruction.

A procedure in which the recursive call is the last instruction is called
We’ll have more to say later about the meaning of tail recursion. (Actually, to be precise,
I should have said that a in which the recursive call is the last instruction is
tail recursive. What constitutes a tail recursive operation is a little tricker, and so far we
haven’t talked about recursive operations at all.)

Here’s another example:

In this case, instead of a word that gets smaller by ing or ing it, the
input is a number from which 1 is subtracted for each recursive invocation. This example

☞

☞

146 Chapter 7 Introduction to Recursion

print "Blastoff!

one.per.line

foreach

triangle

one.per.line "hello

one.per.line [the rain in spain]

?
h
e
l
l
o
?
the
rain
in
spain

to down :word
ignore cascade (count :word) [print ? butlast ?] :word
end

also shows how some special action (the instruction) can be taken
in the innermost invocation of the procedure.

Here are some ideas for recursive programs you can write. In each case I’ll show an
example or two of what the program should do. Start with , a command
with one input. If the input is a word, the procedure should print each letter of the word
on a separate line. If the input is a list, the procedure should print each member of the
list on a separate line:

(You already know how to do this without recursion, using instead. Many,
although not all, recursive problems can also be solved using higher order functions. You
might enjoy this non-obvious example:

While you’re learning about recursion, though, don’t use higher order functions. Once
you’re comfortable with both techniques you can choose which to use in a particular
situation.)

As an example in which an initialization procedure will be helpful, try , a
command that takes a word as its single input. It prints the word repeatedly on the same
line, as many times as its length. Then it prints a second line with one fewer repetition,
and so on until it prints the word just once:

☞

Other Stop Rules 147

triangle "frog

diamond "program

diamond

diamond.top diamond.bottom
inout

diamond

?
frog frog frog frog
frog frog frog
frog frog
frog

?
g
ogr

rogra
program
rogra
ogr
g

A more ambitious project is , which takes as its input a word with an odd
number of letters. It displays the word in a diamond pattern, like this:

(Hint: Write two procedures and for the growing and
shrinking halves of the display. As in , you’ll need an input to count the number of
spaces by which to indent each line.) Can you write so that it does something
sensible for an input word with an even number of letters?

