
Initials

initials

The Problem:

aggregates

77

5 Functions of Functions

?
[G H]

to initials :name
output sentence (first first :name) (first last :name)
end

?
[J E]
?
[P N]

show initials [George Harrison]

show initials [John Alec Entwistle]

show initials [Peter Blair Denis Bernard Noone]

We now have many of the tools we need to write computer programs. We have the
primitive operations for arithmetic computation, the primitive operations to manipulate
words and sentences, and a way to choose between alternative computations. One
thing that we still lack is a way to deal systematically with data —collections
of data. We want to be able to say “carry out this computation for each member of
that aggregate.” Processing large amounts of data uniformly is one of the abilities that
distinguish computers from mere pocket calculators.

To make this concrete, we’ll look at a very simple example. I’d like to write a procedure
that can figure out a person’s initials, like this:

One obvious approach is to find the initials of the first name and the last name:

The trouble is that this approach doesn’t work for people with middle names. We’d like
our procedure to be able to handle any length name. But it doesn’t:

BASIC
Pascal
C

n
i n

i

...
i 1 i

2 i n

One Solution: Numeric Iteration

numeric iteration.

78 Chapter 5 Functions of Functions

show initials.in.our.dreams [John Alec Entwistle]

show initials.in.our.dreams [Peter Blair Denis Bernard Noone]

?
[J A E]
?
[P B D B N]

show initials [Princess Angelina Contessa Louisa Francesca ~
Banana Fana Bo Besca the Third]

for i = 1 to n : ... : next i ()
for 1 := 1 to n do begin ... end ()
for (i=1; i<=n; i++) { ... } ()

to initials :name
local "result
make "result []
for [i 1 [count :name]] ~

[make "result sentence :result first (item :i :name)]
output :result
end

What we want is this:

If we knew that the input would have exactly five names, we could extract the first letter
of each of them explicitly. But you never know when some smart alec will ask you to

If you’ve programmed before in other languages, then one solution will immediately
occur to you. You create a variable whose value is the number of words in the input,
then you have a variable that takes on all possible values from 1 to , and you select
the th word from the input and pull out its first letter. Most languages have a special
notation for this sort of computation:

All of these have the same meaning: Carry out some instructions (the part shown as
above) repeatedly, first with the variable named having the value , then with equal
to , and so on, up to equal to . This technique is called “Iteration”
means repetition, and it’s “numeric” iteration because the repetition is controlled by a
variable that takes on a sequence of numeric values.

We can do the same thing in Logo, although, as we’ll soon learn, it’s not the usual
approach that Logo programmers take to this problem.

?
4
5
6
7
?
4
7
10

?
7
6
5
?
15
9
3
?
?

result i for
for i for

for

number
value
Value

For

for for x

index variable.

already

One Solution: Numeric Iteration 79

for [number 4 7] [print :number]

for [value 4 11 3] [print :value]

for [i 7 5] [print :i]

for [n 15 2 -6] [print :n]

for [x 15 2 6] [print :x]

(The reason I declare as local, but not , is that Logo’s automatically makes
its index variable local to the itself. There is no variable outside of the
instruction.)

The command takes two inputs. The second input is an instruction list that
will be carried out repeatedly. The first input controls the repetition; it is a list of either
three or four members: a variable name, a starting value, a limit value, and an optional
increment. (The variable named by the first member of the list is called the
For example:

In the first example, takes on all integer values between 4 and 7. In the second,
’s starting value is 4, and on each repetition its new value is 3 more than last time.
never actually has its limiting value of 11; the next value after 10 would have been

13, but that’s bigger than the limit.

can count downward instead of upward:

The last example has no effect. Why? The increment of 6 implies that this invocation
of should count upward, which means that the continues until the value of is
greater than the limit, 2. But the starting value, 15, is greater than 2.

spread 19

spread 83

80 Chapter 5 Functions of Functions

for for 1 -1

for

for
for

for

for

for initials

to spread :ends
for [digit [first :ends] [last :ends]] [type :digit]
print []
end

?
123456789
?
876543

show initials [Raymond Douglas Davies]

local "i ; initialize index variable
make "i 1

if (:i > 3) [stop] ; testing
make "result (se :result first "Raymond) ; action (result is [R])
make "i :i+1 ; incrementing (i is 2)

if (:i > 3) [stop] ; testing
make "result (se :result first "Douglas) ; action (result is [R D])
make "i :i+1 ; incrementing (i is 3)

If no increment is given in the first input to , then will use either or as
the increment, whichever is compatible with the starting and limit values.

Although I’ve been using constant numbers as the starting value, limit value, and
increment in these examples, can handle any Logo expression, represented as a list,
for each of these:

More formally, the effect of is as follows. First it creates the local index variable
and assigns it the starting value. Then carries out three steps repeatedly: testing,
action, and incrementing. The testing step is to compare the current value of the index
variable with the limit value. If the index variable has passed the limit, then the
is finished. (“Passed” means that the index variable is greater than the limit, if the
increment is positive, or that the index variable is less than the limit, if the increment is
negative.) The action step is to evaluate the instructions in the second input to . The
incrementing step is to assign a new value to the index variable by adding the increment
to the old value. Then comes another round of testing, action, and incrementing.

So, for example, if we give Logo the instruction

then the instruction within is equivalent to this sequence of instructions:

Raymond

FIRST FIRST FIRST

Douglas Davies[

[R D D]

]

Critique of Numeric Iteration

Critique of Numeric Iteration 81

stop for
initials

for
initials

result
result

result

first

if (:i > 3) [stop] ; testing
make "result (se :result first "Davies) ; action (result is [R D D])
make "i :i+1 ; incrementing (i is 4)

if (:i > 3) [stop] ; testing

except that the instruction in the testing step stops only the instruction, not
the procedure.

Computers were originally built to deal with numbers. Numeric iteration matches closely
the behind-the-scenes sequence of steps by which computers actually work. That’s why
just about every programming language supports this style of programming.

Nevertheless, a instruction isn’t anything like the way you, a human being,
would solve the problem without a computer. First of all, you wouldn’t begin
by counting the number of words in the name; you really don’t have to know that. You’d
just say, for example, “First of Raymond is R; first of Douglas is D; first of Davies is D.”
When you ran out of names, you’d stop.

The manipulation of the variable to collect the results also seems unnatural.
You wouldn’t think, “I’m going to start with an empty result; then, whatever value
has, I’ll throw in an R; then, whatever value now has, I’ll throw in a D” and so on.

In fact, if you had to explain to someone else how to solve this problem, you probably
wouldn’t talk about a sequence of steps at all. Rather, you’d draw a picture like this one:

To explain the picture, you’d say something like “Just take the of each word.” You
wouldn’t even mention the need to put the results together into a sentence; you’d take
that for granted.

−

argument result

initials

map

map

What’s a Function?

to initials :name
output map "first :name
end

first
item

this those.

function argument

f x x

f x

domain
range

82 Chapter 5 Functions of Functions

* It’s a little awkward to talk about the domain of a function that takes two arguments. That is,
it’s easy to say that the domain of the function represented by the operation is words or lists,
but how do we describe ? We could loosely say “its domain is numbers and words or lists,” but
that sounds as if either argument could be any of those. The most precise way to say it is this: “The

In Logo we can write an procedure using the same way of thinking that
you’d use in English:

The procedure means “collect the results of doing for each of ”

As this example illustrates, is easy to use. But it’s a little hard to talk about,
because it’s a function of a function. So first we’ll take a detour to talk more precisely
about functions in general.

A is a rule for turning one value (called the) into another. If you’ve
studied algebra you’ll remember numeric function rules such as

() = 3 6

but not all functions are numeric, and not all rules need be expressed as algebraic
formulas. For example, here is the Instrument function, which takes a Beatle as its
argument and returns his instrument:

John rhythm guitar
Paul bass guitar
George lead guitar
Ringo drums

This particular function has only four possible arguments. Other functions, like ()
above, may have infinitely many possible arguments. The set of possible arguments is
called the of the function. Similarly, the set of possible result values is called the

of the function.*

× −
− ×

instrument

f g
f 10

g 10

represents is

represent

What’s a Function? 83

to f :x
output 3*:x - 6
end

to instrument :beatle
if :beatle = "John [output [rhythm guitar]]
if :beatle = "Paul [output [bass guitar]]
if :beatle = "George [output [lead guitar]]
if :beatle = "Ringo [output [drums]]
end

to f :x to g :x
output 3*:x - 6 output 3 * (:x-2)
end end

item

Item

domain of is pairs of values, in which the first member of the pair is a positive integer and the
second member is a word or list of length greater than or equal to the first member of the pair.”
But for ordinary purposes we just rephrase the sentence to avoid the word “domain” altogether:
“ takes two inputs; the first must be a positive integer and the second must be a word or list...”

Functions can be represented in many ways. (We’ve seen two in this section: formulas
and tables.) One way to represent a function is with a Logo operation. Here are Logo
representations of the two functions we’ve discussed:

(What if we give an input that’s not in the domain of the function? In that
case, it won’t output any value, and a Logo error message will result. Some people would
argue that the procedure should provide its own, more specific error message.)

I’ve been careful to say that the Logo operation the function, not that it
the function. In particular, two Logo procedures can compute the same function—the
same relationship between input and output values—by different methods. For example,
consider these Logo operations:

The Logo operations and carry out two different computations, but they represent
the same function. For example, to compute we say 3 10 = 30, 30 6 = 24;
to compute we say 10 2 = 8, 3 8 = 24. Different computations, but the same
answer. Functional programming means, in part, focusing our attention on the inputs
and outputs of programs rather than on the sequence of computational steps.

Just as a Logo operation represents a function, the procedure’s inputs similarly
the arguments to the corresponding function. For example, that instrument

function I presented earlier has Beatles (that is to say, people) as its domain and has

Map

?
[R A]

Functions of Functions:

show map "first [Rod Argent]

instrument

instrument

map
map

map

instrument

map

map

Map
map

first
map

map

the name of
the name of

function of functions.

name

purpose

notation

84 Chapter 5 Functions of Functions

musical instruments as its range. But Logo doesn’t have people or instruments as data
types, and so the procedure takes as its input a Beatle (that is,
a word) and returns as its output an instrument (a sentence). Instrument is
a function from Beatles to instruments, but is an operation from words to
sentences.

We’re about to see a similar situation when we explore . The map function—that
is, the function that represents—is a One of the arguments to
the map function is itself a function. The corresponding input to Logo’s procedure
should be a procedure. But it turns out that Logo doesn’t quite allow a procedure to be
an input to another procedure; instead, we must use the of the procedure as the
input, just as we use the name of a Beatle as the input to .

I know this sounds like lawyer talk, and we haven’t written any programs for a while.
But here’s why this is important: In order to understand the of , you have
to think about the map function, whose domain is functions (and other stuff, as we’ll
see in a moment). But in order to understand the that you use with in
Logo, you have to think in terms of the Logo operation, whose input is words (names of
procedures). You have to be clear about this representation business in order to be able
to shift mentally between these viewpoints.

takes two inputs. The first is a word, which must be the name of a one-input Logo
operation. The second can be any datum. The output from is either a word or a list,
whichever is the type of the second input. The members of the output are the results of
applying the named operation to the members of the second input.

In this example, the output is a list of two members, just as the second input is a list of
two members. Each member of the output is the result of applying to one of the
members of ’s second input.

Many people, when they first meet , are confused by the quoting of its first
input. After all, I made a fuss back in Chapter 2 about the difference between these two
examples:

map

Rod Argent

first

MAP

SHOW

FIRST

[Rod Argent]

?

print Hello

print "Hello

first
map

map first

map first

Map

?
I don’t know how to Hello
?
Hello

show map first [Rod Argent] ;; wrong!

another function,

map first Rod Argent

the
output from invoking

composing

Functions of Functions: 85

You learned that a quoted word means the word itself, while an unquoted word asks Logo
to invoke a procedure. But now, when I want to use the procedure as input to

, I’m quoting its name. Why?

All that effort about the domains of functions should help you understand the
notation used here. Start by ignoring the Logo notation and think about the domain of
the map function. We want the map function to have the function “first”
in this case, as one of its arguments:

It’s tempting to say that in Logo, a function is represented by a procedure, so
represents map, and represents first. If this were algebra notation, I’d say

(,), so in Logo I’ll say

But when a Logo instruction has two unquoted procedure names in a row, that doesn’t
mean that the second function is used as argument to the first! Instead, it means that

the second function is used as the argument to the first. In this case,
we’d be and :

MAP

SHOW

first [Rod Argent]

the name of

86 Chapter 5 Functions of Functions

map
first map

first

uppercase

uppercase

map

map map
map

?
YOUNG

?
uppercase doesn’t like [neil young] as input.

?
[NEIL YOUNG]

?
[o p e n]
?
[741 852 963]

print uppercase "young

show uppercase [neil young]

show map "uppercase [neil young]

show (map "item [2 1 2 3] [john paul george ringo])

show (map "sum [1 2 3] [40 50 60] [700 800 900])

As the plumbing diagram shows, the list that we intended as the second input to
actually ends up as the input to , and Logo will complain because isn’t given
enough inputs.

Instead, as I said earlier, we must use the procedure to represent
it. That gives this diagram:

Here’s another simple example. Logo has a primitive operation that
takes a word as input, and outputs the same word but in all capital letters:

What if we want to translate an entire sentence to capital letters? The
primitive doesn’t accept a sentence as its input:

But we can use to translate each word separately and combine the results:

Ordinarily works with one-argument functions. But we can give extra
arguments (by enclosing the invocation of in parentheses, as usual) so that it can
work with functions of more than one argument.

☞

higher order function.

Functions of Functions: 87

[2 1 2 3] item
item

sum

map

hangletter hangword
guessed

exaggerate

map
map

Map

print hangword "potsticker [e t a o i n]

print hangword "gelato [e t a o i n]

print exaggerate [I ate 3 potstickers]

print exaggerate [The chow fun is good here]

to hangword :secret :guessed
output map "hangletter :secret
end

to hangletter :letter
output ifelse memberp :letter :guessed [:letter] ["]
end

?
ot ti er

?
e ato

?
I ate 6 potstickers
?
The chow fun is great here

Each input after the first provides values for one input to the mapped function. For
example, provides four values for the first input to . The input lists
must all have the same length (two lists of length four in the example, three lists of
length three in the example).

In the examples so far, the input data have been lists. Here’s an example in which
we use with words. Let’s say we’re writing a program to play Hangman, the word
game in which one player guesses letters in a secret word chosen by the other player. At
first the guesser sees only a row of dashes indicating the number of letters in the word;
for each guess, more letters are revealed. We aren’t going to write the entire program yet,
but we’re ready to write the operation that takes the secret word, and a list of the letters
that have been guessed so far, and outputs a row of letters and dashes as appropriate.

Notice that depends on Logo’s dynamic scope to have access to ’s
local variable named .

Write an operation that takes a sentence as input and outputs an
exaggerated version:

It should double all the numbers in the sentence, and replace “good” with “great,” “bad”
with “terrible,” and so on.

A function whose domain or range includes functions is called a
The function represented by is a higher order function. (We may speak loosely and
say that is a higher order function, as long as you remember that Logo procedures

FilterHigher Order Selection:

map

map

map
filter

initials

transform
select

88 Chapter 5 Functions of Functions

?
[76 4 8]

to vowelp :letter
output memberp :letter "aeiou
end

?
aei

to beatlep :person
output memberp :person [John Paul George Ringo]
end

?
[George]

?
[C S L S]
?
[A C L U]

show filter "numberp [76 trombones, 4 calling birds, and 8 days]

show filter "vowelp "spaghetti

show filter "beatlep [Bob George Jeff Roy Tom]

show initials [Computer Science Logo Style]

show initials [American Civil Liberties Union]

aren’t really functions!) It’s tempting to say that the procedure itself is a “higher
order procedure,” but in Logo that isn’t true. Procedures aren’t data in Logo; the only
data types are words and lists. That’s why the input to is a word, the name of a
procedure, and not the procedure itself. Some languages do treat procedures themselves
as data. In particular, the language Scheme is a close relative of Logo that can handle
procedures as data. If this way of thinking appeals to you, consider learning Scheme
next!

The purpose of is to each member of an aggregate (a list or a word) by
applying some function to it. Another higher order function, , is used to
some members of an aggregate, but not others, based on a criterion expressed as a
predicate function. For example:

What happens if we use the procedure that we wrote with people’s names
in mind for other kinds of names, such as organizations or book titles? Some of them
work well:

ReduceMany to One:

filter

Reduce

Reduce

really

nonempty

Many to One: 89

?
[A f C M]
?
[P R o C]

to importantp :word
output not memberp :word [the an a of for by with in to and or]
end

to initials :name
output map "first (filter "importantp :name)
end

?
[A C M]
?
[P R C]

?
CSLS
?
18
?
[U N I C E F]

to acronym :name
output reduce "word initials :name
end

show initials [Association for Computing Machinery]

show initials [People’s Republic of China]

show initials [Association for Computing Machinery]

show initials [People’s Republic of China]

show reduce "word [C S L S]

show reduce "sum [3 4 5 6]

show reduce "sentence "UNICEF

but others don’t give quite the results we’d like:

We’d like to eliminate words like “for” and “of” before taking the first letters of the
remaining words. This is a job for :

Of course, what we’d like is to have those initials in the form of a single word: ACLU,
CSLS, ACM, and so on. For this purpose we need yet another higher order function, one
that invokes a combining function to join the members of an aggregate.

takes two inputs. The first must be the name of a two-input operation; the
second can be any word or list.

[]

[]

− − − −

Choosing the Right Tool

show biggest [5 7 781 42 8]

constructor.

90 Chapter 5 Functions of Functions

reduce
sum

difference

word sentence sum product

map filter reduce

Map

reduce "difference [5 6 7]

to bigger :a :b
output ifelse :a > :b [:a] [:b]
end

to biggest :nums
output reduce "bigger :nums
end

?
781

In practice, the first input to won’t be any old operation; it’ll be a
It’ll be something that doesn’t care about the grouping of operands; for example, is
a good choice but is problematic because we don’t know whether

means 5 (6 7) or (5 6) 7, and the grouping affects the answer. Almost all the time,
the constructor will be , , , or . But here’s an example of
another one:

So far you’ve seen three higher order functions: , , and . How do
you decide which one to use for a particular problem?

transforms each member of a word or list individually. The result contains as
many members as the input.

[]

[]

[]

Anonymous Functions

Anonymous Functions 91

Filter

Reduce

hangletter importantp bigger

to hangword :secret :guessed
output map [ifelse memberp ? :guessed [?] ["]] :secret
end

selects certain members of a word or list and discards the others. The
members of the result are members of the input, without transformation, but the result
may be smaller than the original.

transforms the entire word or list into a single result by combining all of the
members in some way.

In several of the examples in this chapter, I’ve had to write “helper” procedures such as
, , and that will never be used independently, but are

needed only to provide the function argument to a higher order function. It would be
simpler if we could avoid writing these as separate procedures.

Does that sound confusing? This is one of those ideas for which an example is worth
1000 words:

Higher Order Miscellany

map

?
?1 ?2

output

output

output

Map

map.se

template.

instructions, expression

from the procedure containing it!

92 Chapter 5 Functions of Functions

?

[George]

to biggest :nums
output reduce [ifelse ?1 > ?2 [?1] [?2]] :nums
end

?
?
fiveseveneightnine
?
[five seven eight nine]

?
[[Within You] [Without You]]
?
[Within You Without You]

show filter [memberp ? [John Paul George Ringo]] ~
[Bob George Jeff Roy Tom]

make "numbers [zero one two three four five six seven eight nine]
show map [item ?+1 :numbers] 5789

show map.se [item ?+1 :numbers] 5789

show map [sentence (word "With ?) "You] [in out]

show map.se [sentence (word "With ?) "You] [in out]

Until now, the first input to has always been a word, used to represent the function
with that word as its name. In this example we see how a nameless function can be
represented: as a list containing a Logo expression, but with question marks where the
function’s argument belongs. Such a list is called a

Anonymous functions of more than one argument are a little uglier. Instead of for
the argument, you must use for the first, for the second, and so on.

Notice that the templates don’t say , as the named procedures did. That’s
because procedures are made of whereas these are templates.
When input values are “plugged in” for the question marks, the template becomes a Logo
expression, which means that when evaluated it has a value. If the template said ,
it would be saying to use that value as the output (I’m just
repeating the point made earlier that immediately stops the procedure it’s in,
even if there are more instructions below it.)

combines the partial results into a list, if the second argument is a list, or into a
word, if it’s a word. Sometimes this behavior isn’t quite what you want. An alternative
is (map to sentence), which makes a sentence of the results. Here are some
examples.

☞

Higher Order Miscellany 93

map map.se

map map.se
map map.se

?

show map.se [sentence ? "Warner] [Yakko Wakko Dot]

show map [sentence ? "Warner] [Yakko Wakko Dot]

show crossproduct [red blue green] [shirt pants]

?
[Yakko Warner Wakko Warner Dot Warner]
?
[[Yakko Warner] [Wakko Warner] [Dot Warner]]

?
[[red shirt] [blue shirt] [green shirt] [red pants] [blue pants]
[green pants]]

[red shirt blue shirt green shirt red pants blue pants green pants]

[[[red shirt] [blue shirt] [green shirt]]
[[red pants] [blue pants] [green pants]]]

to crossproduct :these :those
output map.se [prepend.each :these ?] :those
end

to prepend.each :these :that
output map [sentence ? :that] :these
end

As these examples show, sometimes does what you want, but sometimes
does, depending on the “shape” you want your result to have. Do you want a word, a
sentence, or a structured list?

Suppose we have two sets of things, and we want all the pairings of one of these with
one of those. An example will make clear what’s desired:

This is a tricky example because there are two different mistakes we could make. We
don’t want to “flatten” the result into a sentence:

but we also don’t want all the shirts in one list and all the pants in another:

Here’s the solution:

Notice that this solution uses both and . Try to predict what would
happen if you used both times, or both times, or interchanged the two.
Then try it on the computer and be sure you understand what happens and why!

By the way, this is a case in which we still need a named helper function despite the
use of templates, because otherwise we’d have one template inside the other, and Logo
couldn’t figure out which to replace with what:

map.se map find filter

foreach

one

action

instruction

94 Chapter 5 Functions of Functions

print spellout "5d

print spellout "10h

foreach (crossproduct [[ultra chocolate] pumpkin [root beer swirl]
ginger] [cone cup]) "print

to crossproduct :these :those
output map.se [map [sentence ? ?] :these] :those ; (wrong!)
end

to spellout :card
output (sentence (butlast :card) "of

(find [equalp last :card first ?]
[hearts spades diamonds clubs]))

end

?
5 of diamonds
?
10 of hearts

?

ultra chocolate cone
pumpkin cone
root beer swirl cone
ginger cone
ultra chocolate cup
pumpkin cup
root beer swirl cup
ginger cup

Just as is a variant of , is a variant of , for the situations
in which you only want to find member that meets the criterion, rather than all the
members. (Perhaps you know in advance that there will only be one, or perhaps if there
are more than one, you don’t care which you get.)

Sometimes what you want isn’t a function at all. You want to take some for
each member of an aggregate. The most common one is to print each member on a
separate line, in situations where you’ve computed a long list of things. You can use

with an template, rather than an expression template as used with
the others. The template is the last argument, rather than the first, to follow the way in
which the phrase “for each” is used in English: For each of these things, do that.

If you look closely at the letters on your computer screen you’ll see that they are
made up of little dots. One simple pattern represents each letter in a rectangle of dots
five wide and seven high, like this:

☞ say

say "brian

Higher Order Miscellany 95

* ***** ***** **** *****
* * * * * * * *
* * * * * * * *
***** **** * * * ***
* * * * * * * *
* * * * * * * *
* * ***** ***** **** *****

to say :word
for [row 1 7] [foreach :word [sayrow :row ?] print []]
print []
end

to sayrow :row :letter
type item :row thing :letter
type "| |
end

make "b [|*****| |* *| |* *| |**** | |* *| |* *| |*****|]
make "r [|*****| |* *| |* *| |*****| |* * | |* * | |* *|]
make "i [|*****| | * | | * | | * | | * | | * | |*****|]
make "a [| * | | * * | |* *| |*****| |* *| |* *| |* *|]
make "n [|* *| |** *| |** *| |* * *| |* **| |* **| |* *|]

?
***** ***** ***** * * *
* * * * * * * ** *
* * * * * * * ** *
**** ***** * ***** * * *
* * * * * * * * **
* * * * * * * * **
***** * * ***** * * * *

The following program allows you to spell words on the screen in big letters like these.
Each letter’s shape is kept as the value of a global variable with the letter as its name. (I
haven’t actually listed all 26 letters.) The value is a list of seven words, each of which
contains five characters, some combination of spaces and asterisks.

Modify the program so that takes another input, a number representing the size
in which you want to print the letters. If the number is 1, then the program should work
as before. If the number is 2, each dot should be printed as a two-by-two square of spaces
or asterisks; if the number is 3, a three-by-three square, and so on.

≥− −n n n

Cascade

0

1

1 2

23 22 21

Repeated Invocation:

Cascade

map cascade
cascade

F

F

F F F n

F F F

96 Chapter 5 Functions of Functions

print first bf bf bf bf [The Continuing Story of Bungalow Bill]

print first (cascade 4 "bf [The Continuing Story of Bungalow Bill])

print power 2 8

show range 3 8

?
Bungalow
?
Bungalow

to power :base :exponent
output cascade :exponent [? * :base] 1
end

?
256

to range :from :to
output cascade :to-:from [sentence ? (1+last ?)] (sentence :from)
end

?
[3 4 5 6 7 8]

Finally, sometimes you want to compose a function with itself several times:

takes three inputs. The first is a number, indicating how many times to invoke
the function represented by the second argument. The third argument is the starting
value.

Like , can be used with extra inputs to deal with more than one
thing at a time. One example in which multi-input is useful is the Fibonacci
sequence. Each number in the sequence is the sum of the two previous numbers; the
first two numbers are 1. So the sequence starts

1, 1, 2, 3, 5, 8, 13, . . .

A formal definition of the sequence looks like this:

= 1,

= 1,

= + , 2.

In order to compute, say, , we must know both and . As we work our way up, we
must always remember the two most recent values, like this:

22 21

22 21 22

F F
F F F

Repeated Invocation: 97

print fib 5

print fib 23

print reverse [how now brown cow]

cascade ?1 ?2

?1 ?1 ?2

cascade
?1 ?2

?1 ?2

[] [how now brown cow]
[how] [now brown cow]
[now how] [brown cow]
[brown now how] [cow]
[cow brown now how] []

Cascade

to fib :n
output (cascade :n [?1+?2] 1 [?1] 0)
end

?
8
?
46368

to reverse :sent
output (cascade (count :sent)

[sentence (first ?2) ?1] []
[butfirst ?2] :sent)

end

?
cow brown now how

Most recent value Next most recent value

start 1 0
step 1 1 1
step 2 2 1
step 3 3 2
step 4 5 3
.
step 22
step 23 +

To express this using , we can use to mean the most recent value and to
mean the next most recent. Then at each step, we need a function to compute the new

by adding the two known values, and a function to copy the old as the new :

Another situation in which multi-input can be useful is to process every
member of a list, using to remember the already-processed ones and to remember
the still-waiting ones. The simplest example is reversing the words in a sentence:

start
step 1
step 2
step 3
step 4

TM

A Mini-project: Mastermind

function start
function start

cascade

?1 ?2
Cascade ?1

rgbv royg

rgrb

n
n

98 Chapter 5 Functions of Functions

howmany function1 start1 function2 start2 ...(cascade)

red green blue violet

red orange yellow green

Here is the general notation for multi-input :

There must be as many inputs as inputs. Suppose there are pairs
of inputs; then each of the s must accept inputs. The s provide the
initial values for , , and so on; each function provides the next value for one of
those. returns the final value of .

It’s time to put these programming tools to work in a more substantial project. You’re
ready to write a computer program that plays a family of games like Mastermind . The
computer picks a secret list of colors; the human player makes guesses. (The number
of possible colors can be changed to tune the difficulty of the game.) At each turn, the
program should tell the player how many colors in the guess are in the correct positions
in the secret list and also how many are in the list, but not at the same positions. For
example, suppose the program’s secret colors are

and the player guesses

There is one correct-position match (red, because it’s the first color in both lists) and one
incorrect-position match (green, because it’s second in the computer’s list but fourth in
the player’s list).

In the program, to reduce the amount of typing needed to play the game, represent
each color as a single letter and each list of colors as a word. In the example above, the
computer’s secret list is represented as and the player’s guess as .

There are two possible variations in the rules, depending on whether or not color
lists with duplications (such as , in which red appears twice) are allowed. The
program will accept a true-or-false input to determine whether or not duplicates are
allowed.

Here’s an example of what an interaction with the program should look like:

A Mini-project: Mastermind 99

master "roygbiv 4 "false

royg

rogy

orygbv

oryx

oryr

oryg

rbyg

boyg

roby

?

What’s your guess?

You have 1 correct-position matches
and 2 incorrect-position matches.

What’s your guess?

You have 1 correct-position matches
and 2 incorrect-position matches.

What’s your guess?

You must guess exactly 4 colors.

What’s your guess?

The available colors are: roygbiv

What’s your guess?

No fair guessing the same color twice!

What’s your guess?

You have 0 correct-position matches
and 3 incorrect-position matches.

What’s your guess?

You have 1 correct-position matches
and 2 incorrect-position matches.

What’s your guess?

You have 0 correct-position matches
and 3 incorrect-position matches.

What’s your guess?

You have 1 correct-position matches
and 3 incorrect-position matches.

☞

100 Chapter 5 Functions of Functions

for

make print output

choose.dup
choose.nodup

pick

rybo

ryob

print choose.nodup 4 "roygbiv

print pick [Pete John Roger Keith]

print pick [Pete John Roger Keith]

print pick "roygbiv

What’s your guess?

You have 2 correct-position matches
and 2 incorrect-position matches.

What’s your guess?

You win in 8 guesses!
?

?
briy

?
John
?
Keith
?
b

If you prefer, just jump in and start writing the program. But I have a particular
design in mind, and you may find it easier to follow my plan. The core of my program
is written sequentially, in the form of a instruction that carries out a sequence of
steps once for each guess the user makes. But most of the “smarts” of the program are
in a collection of subprocedures that use functional programming style. That is, these
procedures are operations, not commands; they merely compute and output a value
without taking any actions. Pay attention to how these two styles fit together. In writing
the operations, don’t use or ; each operation will consist of a single
instruction.

The first task is for the computer to make a random selection from the available
colors. Write two versions: that allows the same color to be chosen more
than once, and that does not allow duplication. Each of these operations
should take two inputs: a number, indicating how many colors to choose, and a word of
all the available colors. For example, to choose four colors from the rainbow without
duplication, you’d say

You’ll find the Logo primitive helpful. It takes a word or list as its input, and
returns a randomly chosen member:

☞

add one color
remove that color

rotate

A Mini-project: Mastermind 101

(cascade :number-wanted
[] "
[] :colors)

?
ygbivro
?
vroygbi
?
bivroyg

?
1
?
1
?
2

rotate "roygbiv

rotate "roygbiv

rotate "roygbiv

print exact "rgrb "yrrr

print inexact "rgrb "yrrr

print inexact "royg "rgbo

choose.dup pick cascade

Choose.nodup
cascade

reverse

rotate

rotate cascade random
Random

random 3 0 1 2

exact
inexact

anymatch

rgrb
yrrr

Writing is a straightforward combination of and .

is a little harder. Since we want to eliminate any color we choose
from further consideration, it’s plausible to use a multi-input sort of like this:

If we always wanted to choose the first available color, this would be just like the
example earlier. But we want to choose a color randomly each time. One solution is
to the available colors by some random amount, then choose what is now the first
color. To use that idea you’ll need a operation that rotates a word some random
number of times, like this:

You can write using along with the Logo primitive operation .
takes a positive integer as its input, and outputs a nonnegative integer less than

its input. For example, will output , , or .

The second task is to evaluate the player’s guess. You’ll need an operation called
that takes two words as inputs (you may assume they are the same length) and

outputs the number of correct-position matches, and another operation called
that computes the number of wrong-position matches. (You may find it easier to write a
helper procedure that takes two words as inputs, but outputs the total number
of matches, regardless of position.) Be sure to write these so that they work even with the
duplicates-allowed rule in effect. For example, if the secret word is and the user
guesses , then you must report one exact and one inexact match, not one exact and
two inexact.

☞

☞

102 Chapter 5 Functions of Functions

Exact map

anymatch map

howmany

valid.guessp true
false

false

master

true false
choose.dup choose.nodup

for

is a straightforward application of multi-input , since you want to look at
each letter of the secret word along with the same-position letter of the user’s guess.
My solution to was to use to consider each of the available colors. For
each color, the number of matches is the smaller of the number of times it appears in
the secret word and the number of times it appears in the guess. (You’ll need a helper
procedure that takes two inputs, a letter and a word, and outputs the number
of times that letter occurs in that word.)

Up to this point, we’ve assumed that the player is making legitimate guesses. A
valid guess has the right number of colors, chosen from the set of available colors, and
(perhaps, depending on the chosen rules) with no color duplicated. Write a predicate

that takes a guess as its input and returns if the guess is valid,
otherwise. In this procedure, for the first time in this project, it’s a good idea to

violate functional programming style by printing an appropriate error message when the
output will be .

We now have all the tools needed to write the top-level game procedure .
This procedure will take three inputs: a word of the available colors, the number of colors
in the secret word, and a or to indicate whether or not duplicate colors are
allowed. After using either or to pick the secret word, I
used a loop to carry out the necessary instructions for each guess.

