
Computer Science Logo Style
Symbolic Computing





Volume 1

Brian Harvey

SECOND EDITION

Computer Science Logo Style

Symbolic Computing

The MIT Press
Cambridge, Massachusetts
London, England









′

1997 by the Massachusetts Institute of Technology

The Logo programs in this book are copyright 1997 by Brian Harvey.

These programs are free software; you can redistribute them and/or modify them
under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

These programs are distributed in the hope that they will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License (Appendix B of
this book) for more details.

For information on program diskettes for PC and Macintosh, please contact the Marketing
Department, The MIT Press, 55 Hayward Street, Cambridge, Massachusetts, 02142.

Drawings on pages 53 and 169 by James Brzezinski. Photograph of U.C. Berkeley on
page 234 by Dennis Galloway, courtesy of the Public Information Office, University of
California. Photographs of Stanford University on page 235 courtesy of the News and
Publications Service, Stanford University.

This book was typeset in the Baskerville typeface.

The cover art is an untitled mixed media acrylic monotype by San Francisco artist Jon
Rife, copyright 1996 by Jon Rife and reproduced by permission of the artist.

Library of Congress Cataloging-in-Publication Data

Harvey, Brian, 1949–
Computer Science Logo Style / Brian Harvey. — 2nd ed.

p. cm.
Includes indexes.
Contents: v. 1. Symbolic computing. — v. 2. Advanced techniques —
v. 3. Beyond programming.
ISBN 0–262–58151–5 (set : pbk. : alk. paper). — ISBN
0–262–58148–5 (v. 1 : pbk. : alk. paper). — ISBN 0–262–58149–3 (v.
2 : pbk. : alk. paper). — ISBN 0–262–58150–7 (v. 3 : pbk. : alk.
paper)
1. Electronic digital computers–Programming. 2. LOGO (Computer

programming language) I. Title.
QA76.6.H385 1997
005.13 3—dc20 96–35371

CIP



xi

xix

1

Contents

xi
xii

xiii
xv

xvii
xvii

xx

2
3

3
4

4
6

7
7

8
9

v

Preface

Acknowledgments

1 Exploration

The Intellectual Content of Computer Programming
Computer Science Apprenticeship
About the Second Edition
Why Logo?
Hardware and Software Requirements
Words of Wisdom

Second Edition

Getting Acquainted with Logo...
... in Two Senses
Another Greeting
Fooling Around
A Slightly Longer Conversation
A Sneaky Greeting
A Quiz Program
Saving Your Work
About Chapter 2
No Exercises



11

39

61

Print Show

X

2 Procedures

3 Variables

4 Predicates

11
12

13
16

17
18

20
21

27
28

29
30

33
33

35
37

39
42

43
43

47
48

48
49

51
55

56
57

59

61
64

64
66

vi Contents

Procedures and Instructions
Technical Terms
Evaluation
Error Messages
Commands and Operations
Words and Lists
How to Describe a Procedure
Manipulating Words and Lists

and
Order of Evaluation
Special Forms of Evaluation
Writing Your Own Procedures
Editing Your Procedures
Syntax and Semantics
Parentheses and Plumbing Diagrams
Nonsense Plumbing Diagrams

User Procedures with Inputs
What Kind of Container?
An Abbreviation
More Procedures
An Aside on Variable Naming
Don’t Call It
Writing New Operations
Scope of Variables
The Little Person Metaphor
Changing the Value of a Variable
Global and Local Variables
Indirect Assignment
Functional Programming

True or False
Defining Your Own Predicates
Conditional Evaluation
Choosing Between Alternatives



77

103

Ifelse

Initials

Map
Filter

Reduce

Cascade

5 Functions of Functions

6 Example: Tic-Tac-Toe

68
69

69
70

71
72

74
75

77
78

81
82

84
88

89
90

91
92

96
98

103
106

109
112

115
117

119
120

121
125

126

Contents vii

Conditional Evaluation Another Way
About Those Brackets
Logical Connectives

as an Operation
Expression Lists and Plumbing Diagrams
Stopping a Procedure
Improving the Quiz Program
Reporting Success to a Superprocedure

The Problem:
One Solution: Numeric Iteration
Critique of Numeric Iteration
What’s a Function?
Functions of Functions:
Higher Order Selection:
Many to One:
Choosing the Right Tool
Anonymous Functions
Higher Order Miscellany
Repeated Invocation:
A Mini-project: Mastermind

The Project
Strategy
Program Structure and Modularity
Data Representation
Arrays
Triples
Variables in the Workspace
The User Interface
Implementing the Strategy Rules
Further Explorations
Program Listing



Filter

131

149

167

179

195

132
132

134
136

137
138
140

144

149
152

153
157

161
162

165

167
173

174
175

179
182

185
186

191
194

195
200

202

viii Contents

7 Introduction to Recursion

8 Practical Recursion: the Leap of Faith

9 How Recursion Works

10 Turtle Geometry

11 Recursive Operations

Starting Small
Building Up
Generalizing the Pattern
What Went Wrong?
The Stop Rule
Local Variables
More Examples
Other Stop Rules

Recursive Patterns
The Leap of Faith
The Tower of Hanoi
More Complicated Patterns
A Mini-project: Scrambled Sentences
Procedure Patterns
Tricky Stop Rules

Little People and Recursion
Tracing
Level and Sequence
Instruction Stepping

A Review, or a Brief Introduction
Local vs. Global Descriptions
The Turtle’s State
Symmetry
Fractals
Further Reading

A Simple Substitution Cipher
More Procedure Patterns
The Pattern



219

233

255

Reduce
Find

Cascade

Subsets

Sentence

12 Example: Playfair Cipher

13 Planning

14 Example: Pitcher Problem Solver

203
205

208
211

213
214

216

223
225
228

229
230

236
237

238
240

244
245

246
251

252
253

259
261

264
265

267
267

270
272

273
274

Contents ix

The Pattern
The Pattern
Numerical Operations: The Pattern
Pig Latin
A Mini-project: Spelling Numbers
Advanced Recursion:
A Word about Tail Recursion

Data Redundancy
Composition of Functions
Conversational Front End
Further Explorations
Program Listing

Structured Programming
Critique of Structured Programming
A Sample Project: Counting Poker Hands
An Initialization Procedure
Second Edition Second Thoughts
Planning and Debugging
Classifying Poker Hands
Embellishments
Putting the Project in a Context
Program Listing

Tree Search
Depth-first and Breadth-first Searching
Data Representation
Abstract Data Types

as a Combiner
Finding the Children of a Node
Computing a New State
More Data Abstraction
Printing the Results
Efficiency: What Really Matters?



Appendices

283

299

305

309

313

275
276
277

278
279

283
285

288
293

293
295

299
300

302
303

x Contents

15 Debugging

A Running Berkeley Logo

B GNU General Public License

Index of Defined Procedures

General Index

Avoiding Meaningless Pourings
Eliminating Duplicate States
Stopping the Program Early
Further Explorations
Program Listing

Using Error Messages
Invalid Data
Incorrect Results
Tracing and Stepping
Pausing
Final Words of Wisdom

Getting Berkeley Logo
Berkeley Logo for DOS Machines
Berkeley Logo for the Macintosh
Berkeley Logo for Unix



Preface

using

xi

The Intellectual Content of Computer Programming

This book isn’t for everyone.

Not everyone needs to program computers. There is a popular myth that if you
aren’t “computer literate,” whatever that means, then you’ll flunk out of college, you’ll
never get a job, and you’ll be poor and miserable all your life. The myth is promoted by
computer manufacturers, of course, and also by certain educators and writers.

The truth is that no matter how many people study computer programming in high
school, there will still be only a certain number of programming jobs. When you read
about “jobs in high-tech industry,” they’re talking mostly about manufacturing and sales
jobs that are no better paid than any other manufacturing jobs. (Often, these days, those
jobs are exported to someplace like Taiwan where they pay pennies a day.) It’s quite
true that many jobs in the future will involve computers, but the computers will be
disguised. When you use a microwave oven, drive a recently built car, or play a video
game, you’re using a computer, but you didn’t have to take a “computer literacy” course
to learn how. Even a computer that looks like a computer, as in a word processing system,
can be mastered in an hour or two.

This book is for people who are interested in computer programming because it’s
fun.

When I wrote the first edition of this book in 1984, I said that the study of computer
programming was intellectually rewarding for young children in elementary school, and
for computer science majors in college, but that high school students and adults studying
on their own generally had an intellectually barren diet, full of technical details of some
particular computer brand.



is

Byte.

xii Preface

Computer Science Apprenticeship

At about the same time I wrote those words, the College Board was introducing
an Advanced Placement exam in computer science. Since then, the AP course has
become popular, and similar official or semi-official computer science curricula have
been adopted in other countries as well. Meanwhile, the computers available to ordinary
people have become large enough and powerful enough to run serious programming
languages, breaking the monopoly of BASIC.

So, the good news is that intellectually serious computer science is within the reach
of just about everyone. The bad news is that the curricula tend to be imitations of what is
taught to beginning undergraduate computer science majors, and I think that’s too rigid
a starting point for independent learners, and especially for teenagers.

See, the wonderful thing about computer programming is that it fun, perhaps not
for everyone, but for very many people. There aren’t many mathematical activities that
appeal so spontaneously. Kids get caught up in the excitement of programming, in the
same way that other kids (or maybe the same ones) get caught up in acting, in sports, in
journalism (provided the paper isn’t run by teachers), or in ham radio. If schools get too
serious about computer science, that spontaneous excitement can be lost. I once heard
a high school teacher say proudly that kids used to hang out in his computer lab at all
hours, but since they introduced the computer science curriculum, the kids don’t want
to program so much because they’ve learned that programming is just a means to the
end of understanding the curriculum. No! The ideas of computer science are a means
to the end of getting computers to do what you want.

My goal in this series of books is to make the goals and methods of a serious computer
scientist accessible, at an introductory level, to people who are interested in computer
programming but are not computer science majors. If you’re an adult or teenaged
hobbyist, or a teacher who wants to use the computer as an educational tool, you’re
definitely part of this audience. I’ve taught these ideas to teachers and to high school
students. What I enjoy most is teaching high school freshmen who bring a love of
programming into the class with them—the ones who are always tugging at my arm to
tell me what they found in the latest

I said earlier that I think that for most people programming as job training is
nonsense. But if you happen to be interested in programming, studying it in some depth
can be valuable for the same reasons that other people benefit from acting, music, or
being a news reporter: it’s a kind of intellectual apprenticeship. You’re learning the
discipline of serious thinking and of taking pride in your work. In the case of computer



About the Second Edition

mathematical formal

anyone

About the Second Edition xiii

programming, in particular, what you’re learning is thinking, or
thinking. (If you like programming, but you hate mathematics, don’t panic. In that case
it’s not really mathematics you hate, it’s school. The programming you enjoy is much
more like real mathematics than the stuff you get in most high school math classes.) In
these books I try to encourage this sort of formal thinking by discussing programming in
terms of general rules rather than as a bag of tricks.

When I wrote the first edition of this book, in 1984, it was controversial to suggest
that not everyone has to learn to program. I was accused of elitism, of wanting to keep
computers as a tool for the rich, while condemning poorer students to dead-end jobs.
Today it’s more common that I have to fight the opposite battle, trying to convince people
why should learn about computer programming. After all, there is all that great
software out there; instead of wasting time on programming, I’m told, kids should learn
to use Microsoft Word or Adobe Illustrator or Macromind Director. At the same time,
kids who’ve grown up with intricate and beautifully illustrated video games are frustrated
by the relatively primitive results of their own first efforts at programming. A decade ago
it was thrilling to be able to draw a square on a computer screen; today you can do that
with two clicks of a mouse.

There are two reasons why you might still want to learn to program. One is that
more and more application programs have programming languages built in; you can
customize the program’s behavior if you learn to speak its “extension” language. (One
well-known example is the Hypertalk extension language for the Hypercard program; the
one that has everyone excited as I’m writing this is the inclusion of the Java programming
language as the extension language for the Netscape World Wide Web browser.) But I
think a more important reason is that programming—learning how to express a method
for solving a problem in a formal language—can still be very empowering. It’s not the
same kind of fast-paced fun as playing a video game; it feels more like solving a crossword
puzzle.

I’ve tried to make these books usable either with a teacher or on your own. But
since the ideas in these books are rather different from those of most computer science
curricula, the odds are that you’re reading this on your own. (When I published the
first edition, one exception was that this first volume was used fairly commonly in teacher
training classes, for elementary school teachers who’d be using Logo in their work.)

Three things have happened since the first edition of these books to warrant a revision.
The first is that I know more about computer science than I did then! In this volume,



Advanced Techniques,

Beyond Programming,

xiv Preface

the topics of recursion and functional programming are explained better than they were
the first time; there is a new chapter on higher order functions early in the book. There
are similar improvements in the later volumes, too.

Second, I’ve learned from both my own and other people’s experiences teaching
these ideas. I originally envisioned a style of work in which high school students would
take a programming course in their first year, then spend several years working on
independent projects, and perhaps take a more advanced computer science class senior
year. That’s why I put all the programming language instruction in the first volume
and all the project ideas in the second one. In real life, most students don’t spread out
their programming experience in that way, and so the projects in the second volume
didn’t get a chance to inspire most readers. In the second edition, I’ve mixed projects
with language teaching. This first volume teaches the core Logo capabilities that every
programming student should know, along with sample projects illustrating both the
technical details and the range of possibilities for your own projects. The second volume,

teaches more advanced language features, along with larger and
more intricate projects.

Volume three, is still a kind of sampler of a university computer
science curriculum. Each chapter is an introduction to a topic that you might study in
more depth during a semester at college, if you go on to study computer science. Some
of the topics, like artificial intelligence, are about programming methods for particular
applications. Others, like automata theory, aren’t how-to topics at all but provide a
mathematical approach to understanding what programming is all about. I haven’t
changed the table of contents, but most of the chapters have been drastically rewritten to
improve both the technical content and the style of presentation.

The third reason for a second edition of these books is that the specific implementa-
tions of Logo that I used in 1984 are all obsolete. (One of them, IBM Logo, is still available
if you try very hard, but it’s ridiculously expensive and most IBM sales offices seem to
deny that it exists.) The commercial Logo developers have moved toward products in
which Logo is embedded in some point-and-click graphical application program, with
more emphasis on shapes and colors, and less emphasis on programming itself. That’s
probably a good decision for their purposes, but not for mine. That’s why this new
edition is based on Berkeley Logo, a free implementation that I developed along with
some of my students. Berkeley Logo is available for Unix systems, DOS machines, and
Macintosh, and the language is exactly the same on all platforms. That means I don’t
have to clutter the text with footnotes like “If you’re using this kind of computer, type
that instead.”



PRINT

Why Logo?

books

doesn’t

automatic;

syntax

Why Logo? xv

Logo has been the victim of its own success in the elementary schools. It has acquired a
reputation as a trivial language for babies. Why, then, do I use it as the basis for a series
of books about serious computer science? Why not Pascal or C++ instead?

The truth is that Logo is one of the most powerful programming language available
for home computers. (In 1984 I said “by far the most powerful,” but now home computers
have become larger and Logo finally has some competition.) It is a dialect of Lisp, the
language used in the most advanced research projects in computer science, and especially
in artificial intelligence. Until recently, all of the about Logo have been pretty
trivial, and they tend to underscore the point by strewing cute pictures of turtles around.
But the cute pictures aren’t the whole picture.

What does it mean for a language to be powerful? It mean that you can write
programs in a particular language that do things you can’t do in some other language.
(In that sense, all languages are the same; if you can write a program in Logo, you can
write it in Pascal or BASIC too, one way or another. And vice versa.) Instead, the power
of a language is a way of measuring how much the language helps you concentrate on the
actual problem you wanted to solve in the first place, rather than having to worry about
the constraints of the language.

For example, in C, Pascal, Java, and all of the other languages derived originally
from Fortran, the programmer has to be very explicit about what goes where in the
computer’s memory. If you want to group 20 numbers together as a unit, you must
“declare an array,” saying in advance that there will be exactly 20 numbers in it. If you
change your mind later and want 21 numbers, too bad. You also have to say in advance
that this array will contain 20 integers, or perhaps 20 numbers with fractions allowed,
or perhaps 20 characters of text—but not some of each. In Logo the entire process of
storage allocation is if your program produces a list of 20 numbers, the space
for that list is provided with no effort by you. If, later, you want to add a 21st number,
that’s automatic also.

Another example is the of a language, the rules for constructing legal
instructions. All the Fortran-derived languages have a dozen or so types of instructions,
each with its own peculiar syntax. For example, the BASIC statement requires a
list of expressions you want printed. If you separate expressions with commas, it means
to print them one way; if you separate them with semicolons, that means something else.
But you aren’t allowed to use semicolons in other kinds of statements that also require
lists of expressions. In Logo there is only one syntax, the one that invokes a procedure.



Structure and Interpretation of Computer Programs,

Simply Scheme: Introducing Computer
Science

xvi Preface

It’s not an accident that Logo is more powerful than Pascal or C++; nor is it just that
Logo’s designers were smarter. Fortran was invented before the mathematical basis of
computer programming was well understood, so its design mostly reflects the capabilities
(and the deficiencies) of the computers that happened to be available then. The
Fortran-based languages still have the same fundamental design, although some of its
worst details have been patched over in the more recent versions like Java and C++. More
powerful languages are based on some particular mathematical model of computing and
use that model in a consistent way. For example, APL is based on the idea of matrix
manipulation; Prolog is based on predicate calculus, a form of mathematical logic. Logo,
like Lisp, is based on the idea of composition of functions.

The trouble is that if you’re just starting this book, you don’t have the background
yet to know what I’m talking about! So for now, please just take my word for it that I’m
not insulting you by asking you to use a “baby” language. After you finish the book, come
back and read this section again.

A big change since 1984 is that Logo is no longer the only member of the Lisp
family available for home computers. Another dialect, Scheme, has become popular
in education. Scheme has many virtues in its own right, but its popularity is also due
in part to the fact that it’s the language used in the best computer science book ever
written: by Harold Abelson and Gerald
Jay Sussman with Julie Sussman (MIT Press/McGraw-Hill, 1985). I have a foot in both
camps, since I am co-author, with Matthew Wright, of

(MIT Press, 1994), which is sort of a Scheme version of the philosophy of this
book.

The main difference between Scheme and Logo is that Scheme is more consistent
in its use of functional programming style. For example, in Scheme, every procedure
is what Logo calls an operation—a procedure that returns a computed value for use by
some other procedure. Instead of writing a program as a sequence of instructions, as
in Logo, the Scheme programmer writes a single expression whose complexity takes the
form of composition of functions.

The Scheme approach is definitely more powerful and cleaner for writing advanced
projects. Its cost is that the Scheme learner must come to terms from the beginning with
the difficult idea of function as object. Logo is more of a compromise with the traditional,
sequential programming style. That traditional style is limiting, in the end, but people
seem to find it more natural at first. My guess is that ultimately, Logo programmers who
maintain their interest in computing will want to learn Scheme, but that there’s still a
place for Logo as a more informal starting point.



☞

2+3

Words of Wisdom xvii

Hardware and Software Requirements

Words of Wisdom

The programs in this series of books are written using Berkeley Logo, a free interpreter
that is available on diskette from the MIT Press or on the Internet. (Details are in
Appendix A.) Berkeley Logo runs on Unix systems, DOS machines, and Macintosh.

Since Berkeley Logo is free, I recommend using it with this book, even if you have
another version of Logo that you use for other purposes. One of the frustrations I had
in writing the first edition was dealing with all the trivial ways in which different Logo
dialects differ. (For example, if you want to add 2 and 3, can you say , or do you have
to put spaces around the plus sign? Different dialects answer this question differently.)
Nevertheless, the examples in this first volume should be workable in just about any Logo
dialect with some effort in fixing syntactic differences. The later volumes in the series,
though, depend on advanced features of Berkeley Logo that are missing from many other
dialects.

The Berkeley Logo distribution includes the larger programs from these books.
When a program is available in a file, the filename is shown at the beginning of the
chapter. (There are only a few of these in the first volume, but more in later volumes.)

The trick in learning to program, as in any intellectual skill, is to find a balance between
theory and practice. This book provides the theory. One mistake would be to read
through it without ever touching a computer. The other mistake would be to be so eager
to get your hands on the keyboard that you just type in the examples and skip over the
text.

There are no formal exercises at the ends of chapters. That’s because (1) I hate a
school-like atmosphere; (2) you’re supposed to be interested enough already to explore
on your own; and (3) I think it’s better to encourage your creativity by letting you invent
your own exercises. However, at appropriate points in the text you’ll find questions
like “What do you think would happen if you tried thus-and-such?” and suggestions for
programs you can write. These questions and activities are indicated by this symbol:
(the finger of fate). You’ll get more out of the book if you take these questions seriously.

If you’re not part of a formal class, consider working with a friend. Not only will you
keep each other from handwaving too much but it’s more fun.





xix

Acknowledgments

The people who read and commented on early drafts of this book include Hal Abelson,
Sharon Yoder, Michael Clancy, Jim Davis, Batya Friedman, Paul Goldenberg, Tessa
Harvey, Phil Lewis, Margaret Minsky, and Cynthia Solomon. I am especially grateful
to Paul Goldenberg and Cindy Carter for their professional, financial, and emotional
support during the months I spent as a guest in their home while working on this project,
keeping them from their own work and tying up Paul’s computer equipment. This book
wouldn’t exist without them. Special mention also goes to Hal Abelson, without whose
support this book wouldn’t have found a publisher.

The main ideas in this book, and some of the specific examples, first surfaced in
the form of self-paced curriculum units for a programming class at the Lincoln-Sudbury
Regional High School, in Sudbury, Massachusetts. Alison Birch, Larry Davidson, and
Phil Lewis were my colleagues there. (So, later, was Paul.) All of them helped debug
the curriculum by finding mistakes and by pointing out the parts that were correct but
incomprehensible. Larry, especially, was my mentor and untiring collaborator, helping
me survive my first real teaching job, even though he had his own work and wasn’t
officially part of the computer department at all. I’m also grateful to the many students
who served as guinea pigs for the curriculum, and to David Levington, then the district
superintendent, who was generous with equipment and with administrative freedom in
support of an untested idea.

My work at Lincoln-Sudbury would not have been possible without the strong support
of computer scientists at the Massachusetts Institute of Technology, especially but not
only the ones at the Logo Laboratory. Equipment grants from the Digital Equipment
Corporation and from Atari, Inc., were also crucial to this work.

And thanks, also, to my faculty supervisors in the Graduate Group in Science and
Mathematics Education, at the University of California at Berkeley, for their patience and
understanding while I worked on this instead of my thesis.



Second Edition

Simply Scheme,

Simply Scheme,
Computer Science Logo Style.

xx Acknowledgments

In 1992 one of my then-undergraduate students, Matt Wright, suggested that we collabo-
rate on a textbook for Berkeley’s introductory programming course for non-majors. The
book would use Scheme, the same language used in our first course for students in the
computer science major, but would be based on the ideas in the first edition of this book.
The result of that collaboration, was published in 1994.

In writing Matt and I reconsidered every detail of the presentation used
in We added a greater emphasis on higher order functions,
and we completely reorganized the chapters on recursion. Large example programs were
added to the text, along with suggestions for student projects.

Most of the changes in this second edition were inspired by the work that Matt and
I did together for the Scheme book. In a few cases I have lifted entire paragraphs from
it! Matt also read early drafts of some of the new chapters in this edition, and this text
benefits from his comments.

Berkeley Logo, the interpreter used in this edition, is a collective effort of many
people, both at Berkeley and across the Internet. My main debt in that project is to
three former students: Dan van Blerkom, Michael Katz, and Doug Orleans. At the risk
of missing someone, I also want to acknowledge substantial contributions by Freeman
Deutsch, Khang Dao, Fred Gilham, Yehuda Katz, George Mills, Sanford Owings, and
Randy Sargent.



Computer Science Logo Style
Symbolic Computing




