CS281A/Stat241A Lecture 17
 Factor Analysis and State Space Models

Peter Bartlett

Key ideas of this lecture

- Factor Analysis.
- Recall: Gaussian factors plus observations.
- Parameter estimation with EM.
- The vec operator.
- Motivation: Natural parameters of Gaussian.
- Linear functions of matrices as inner products. Kronecker product.
- State Space Models.
- Linear dynamical systems, gaussian disturbances.
- All distributions are Gaussian: parameters suffice.

Factor Analysis: Definition

$X \in \mathbb{R}^{p}$, factors

$Y \in \mathbb{R}^{d}$, observations

Local conditionals:

$$
\begin{aligned}
p(x) & =\mathcal{N}(x \mid 0, I), \\
p(y \mid x) & =\mathcal{N}(y \mid \mu+\Lambda x, \Psi) .
\end{aligned}
$$

Factor Analysis

Factor Analysis: Definition

Local conditionals:

$$
\begin{aligned}
p(x) & =\mathcal{N}(x \mid 0, I) \\
p(y \mid x) & =\mathcal{N}(y \mid \mu+\Lambda x, \Psi)
\end{aligned}
$$

- The mean of y is $\mu \in \mathbb{R}^{d}$.
- The matrix of factors is $\Lambda \in \mathbb{R}^{d \times p}$.
- The noise covariance $\Psi \in \mathbb{R}^{d \times d}$ is diagonal.
- Thus, there are $d+d p+d \sim d p \ll d^{2}$ parameters.

Factor Analysis: Marginals, Conditionals

Theorem

1. $Y \sim \mathcal{N}\left(\mu, \Lambda \Lambda^{\prime}+\Psi\right)$.
2. $(X, Y) \sim \mathcal{N}\left(\binom{0}{\mu}, \Sigma\right)$, with $\Sigma=\left(\begin{array}{cc}I & \Lambda^{\prime} \\ \Lambda & \Lambda \Lambda^{\prime}+\Psi\end{array}\right)$.
3. $p(x \mid y)$ is Gaussian, with
mean $=\Lambda^{\prime}\left(\Lambda \Lambda^{\prime}+\Psi\right)^{-1}(y-\mu)$,
covariance $I-\Lambda^{\prime}\left(\Lambda \Lambda^{\prime}+\Psi\right)^{-1} \Lambda$.

Factor Analysis: Parameter Estimation

- iid data $y=\left(y_{1}, \ldots, y_{n}\right)$.
- The log likelihood is

$$
\begin{aligned}
\ell(\theta ; y)= & \log p(y \mid \theta) \\
= & \text { const }-\frac{n}{2} \log \left|\Lambda \Lambda^{\prime}+\Psi\right| \\
& -\frac{1}{2} \sum_{i}\left(y_{i}-\mu\right)^{\prime}\left(\Lambda \Lambda^{\prime}+\Psi\right)^{-1}\left(y_{i}-\mu\right) .
\end{aligned}
$$

Factor Analysis: Parameter Estimation

Let's first consider estimation of μ :

$$
\hat{\mu}_{M L}=\frac{1}{n} \sum_{i=1}^{n} y_{i},
$$

as for the full covariance case.
From now on, let's assume $\mu=0$, so we can ignore it:

$$
\ell(\theta ; y)=\text { const }-\frac{1}{2} \log \left|\Lambda \Lambda^{\prime}+\Psi\right|-\frac{1}{2} \sum_{i} y_{i}^{\prime}\left(\Lambda \Lambda^{\prime}+\Psi\right)^{-1} y_{i} .
$$

But how do we find a factorized covariance matrix, $\Sigma=\Lambda \Lambda^{\prime}+\Psi$?

Factor Analysis: EM

We follow the usual EM recipe:

1. Write out the complete log likelihood, ℓ_{c}.
2. E step: Calculate $\mathbb{E}\left[\ell_{c} \mid y\right]$.

Typically, find $\mathbb{E}[$ suff. stats $\mid y]$.
3. M step: Maximize $\mathbb{E}\left[\ell_{c} \mid y\right]$.

Factor Analysis: EM

1. Write out the complete log likelihood, ℓ_{c}.

$$
\begin{aligned}
\ell_{c}(\theta)= & \log (p(x, \theta) p(y \mid x, \theta)) \\
= & \mathrm{const}-\frac{n}{2} \log |\Psi|-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{\prime} x_{i} \\
& \quad-\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\Lambda x_{i}\right)^{\prime} \Psi^{-1}\left(y_{i}-\Lambda x_{i}\right)
\end{aligned}
$$

Factor Analysis: EM

2. E step: Calculate $\mathbb{E}\left[\ell_{c} \mid y\right]$.

Typically, find $\mathbb{E}[$ suff. stats $\mid y]$.
Claim: Sufficient statistics are $x_{i}, x_{i} x_{i}^{\prime}$.
Indeed, $\mathbb{E}\left[\ell_{c} \mid y\right]$ is a constant plus $-\frac{n}{2} \log |\Psi|$ plus

$$
\begin{aligned}
& -\frac{1}{2} \mathbb{E}\left(\sum_{i=1}^{n} x_{i}^{\prime} x_{i}+\sum_{i=1}^{n}\left(y_{i}-\Lambda x_{i}\right)^{\prime} \Psi^{-1}\left(y_{i}-\Lambda x_{i}\right) \mid y\right) \\
& =-\frac{1}{2} \sum_{i=1}^{n}\left(\mathbb{E}\left(x_{i}^{\prime} x_{i} \mid y_{i}\right)+\mathbb{E}\left(\operatorname{tr}\left(\left(y_{i}-\Lambda x_{i}\right)^{\prime} \Psi^{-1}\left(y_{i}-\Lambda x_{i}\right)\right) \mid y_{i}\right)\right) \\
& =-\frac{1}{2} \sum_{i=1}^{n} \mathbb{E}\left(x_{i}^{\prime} x_{i} \mid y_{i}\right)-\frac{n}{2} \mathbb{E}\left(\operatorname{tr}\left(S \Psi^{-1}\right) \mid y_{i}\right),
\end{aligned}
$$

Factor Analysis: EM. E-step

$$
\begin{aligned}
& \mathbb{E}\left[\ell_{c} \mid y\right]=-\frac{n}{2} \log |\Psi|-\frac{1}{2} \sum_{i=1}^{n} \mathbb{E}\left(x_{i}^{\prime} x_{i} \mid y_{i}\right)-\frac{n}{2} \mathbb{E}\left(\operatorname{tr}\left(S \Psi^{-1}\right) \mid y_{i}\right) \\
& \text { with } S=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\Lambda x_{i}\right)\left(y_{i}-\Lambda x_{i}\right)^{\prime}
\end{aligned}
$$

We used the fact that the trace (sum of diagonal elements) of a matrix satisfies

$$
\operatorname{tr}(A B C)=\operatorname{tr}(C A B),
$$

as long as the products $A B C$ and $C A B$ are square.

Factor Analysis: EM. E-step

Now, we can calculate

$$
\begin{aligned}
\mathbb{E}(S \mid y) & =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[y_{i} y_{i}^{\prime}-2 \Lambda x_{i} y_{i}^{\prime}+\Lambda x_{i} x_{i}^{\prime} \Lambda^{\prime} \mid y_{i}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} y_{i} y_{i}^{\prime}-2 \Lambda \mathbb{E}\left[x_{i} \mid y_{i}\right] y_{i}^{\prime}+\Lambda \mathbb{E}\left[x_{i} x_{i}^{\prime} \mid y_{i}\right] \Lambda^{\prime},
\end{aligned}
$$

and from this it is clear that the expected sufficient statistics are $\mathbb{E}\left(x_{i} \mid y_{i}\right), \mathbb{E}\left(x_{i} x_{i}^{\prime} \mid y_{i}\right)$ (and its trace, $\mathbb{E}\left(x_{i}^{\prime} x_{i} \mid y_{i}\right)$).

Factor Analysis: EM. E-step

We calculated these conditional expectations earlier:

$$
\begin{aligned}
\mathbb{E}\left[x_{i} \mid y_{i}\right] & =\Lambda^{\prime}\left(\Lambda \Lambda^{\prime}+\Psi\right)^{-1}\left(y_{i}-\mu\right) \\
\operatorname{Var}\left[x_{i} \mid y_{i}\right] & =I-\Lambda^{\prime}\left(\Lambda \Lambda^{\prime}+\Psi\right)^{-1} \Lambda \\
\mathbb{E}\left[x_{i} x_{i}^{\prime} \mid y_{i}\right] & =\operatorname{Var}\left[x_{i} \mid y_{i}\right]+\mathbb{E}\left[x_{i} \mid y_{i}\right] \mathbb{E}\left[x_{i}^{\prime} \mid y_{i}\right] .
\end{aligned}
$$

So we can plug them in to calculate the expected complete log likelihood.

Factor Analysis: EM. M-step

3. M step: Maximize $\mathbb{E}\left[\ell_{c} \mid y\right]$.

For Λ, this is equivalent to minimizing

$$
n \operatorname{tr}\left(\mathbb{E}(S \mid y) \Psi^{-1}\right)=\operatorname{tr}\left(\left(Y^{\prime}-\Lambda X^{\prime}\right)\left(Y^{\prime}-\Lambda X^{\prime}\right)^{\prime} \Psi^{-1}\right)
$$

where $Y \in \mathbb{R}^{n \times d}$, with rows $y_{i}, X \in \mathbb{R}^{n \times p}$, with rows x_{i}. This is a matrix version of linear regression, with the d separate components of the squared error weighted by one of the diagonal entries in Ψ^{-1}. Thus, the Ψ matrix plays no role, and the solution satisfies the normal equations.

Factor Analysis: EM. M-step

Normal Equations:

$$
\hat{\Lambda}^{\prime}=\left(\sum_{i=1}^{n} \mathbb{E}\left[x_{i} x_{i}^{\prime} \mid y_{i}\right]\right)^{-1} \sum_{i=1}^{n}\left(\mathbb{E}\left[x_{i} \mid y_{i}\right] y_{i}^{\prime}\right)
$$

(They are the same sufficient statistics as in linear regression; here we need to compute the expectation of the suff. stats given the observations.)

Factor Analysis: EM. M-step

For Ψ, we need to find a diagonal Ψ to minimize

$$
\log |\Psi|+\operatorname{tr}\left(\mathbb{E}(S \mid y) \Psi^{-1}\right) \cdot=\sum_{j=1}^{d}\left(\log \psi_{j}+s_{j} / \psi_{j}\right)
$$

It's easy to check that this is minimized for $\psi_{j}=s_{j}$, the diagonal entries of $\mathbb{E}[S \mid y]$.

Factor Analysis: EM. Summary.

E step: Calculate the expected suff. stats:

$$
\begin{aligned}
\mathbb{E}\left[x_{i} \mid y_{i}\right] & =\Lambda^{\prime}\left(\Lambda \Lambda^{\prime}+\Psi\right)^{-1}\left(y_{i}-\mu\right) \\
\operatorname{Var}\left[x_{i} \mid y_{i}\right] & =I-\Lambda^{\prime}\left(\Lambda \Lambda^{\prime}+\Psi\right)^{-1} \Lambda \\
\mathbb{E}\left[x_{i} x_{i}^{\prime} \mid y_{i}\right] & =\operatorname{Var}\left[x_{i} \mid y_{i}\right]+\mathbb{E}\left[x_{i} \mid y_{i}\right] \mathbb{E}\left[x_{i}^{\prime} \mid y_{i}\right] .
\end{aligned}
$$

And use these to compute the (diagonal entries of the) matrix

$$
\mathbb{E}(S \mid y)=\frac{1}{n} \sum_{i=1}^{n} y_{i} y_{i}^{\prime}-2 \Lambda \mathbb{E}\left[x_{i} \mid y_{i}\right] y_{i}^{\prime}+\Lambda \mathbb{E}\left[x_{i} x_{i}^{\prime} \mid y_{i}\right] \Lambda^{\prime}
$$

Factor Analysis: EM. Summary.

M step: Maximize $\mathbb{E}\left[\ell_{c} \mid y\right]$:

$$
\begin{aligned}
\hat{\Lambda}^{\prime} & =\left(\sum_{i=1}^{n} \mathbb{E}\left[x_{i} x_{i}^{\prime} \mid y_{i}\right]\right)^{-1} \sum_{i=1}^{n}\left(\mathbb{E}\left[x_{i} \mid y_{i}\right] y_{i}^{\prime}\right) \\
\hat{\Psi} & =\operatorname{diag}(\mathbb{E}(S \mid y)),
\end{aligned}
$$

and recall: $\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$.

Key ideas of this lecture

- Factor Analysis.
- Recall: Gaussian factors plus observations.
- Parameter estimation with EM.
- The vec operator.
- Motivation: Natural parameters of Gaussian.
- Linear functions of matrices as inner products. Kronecker product.
- State Space Models.
- Linear dynamical systems, gaussian disturbances.
- All distributions are Gaussian: parameters suffice.
- Inference: Kalman filter and smoother.
- Parameter estimation with EM.

The vec operator: Motivation

Consider the multivariate Gaussian:

$$
p(x)=(2 \pi)^{-(d) / 2}|\Sigma|^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right) .
$$

What is the natural parameterization?

$$
p(x)=h(x) \exp \left(\theta^{\prime} T(x)-A(\theta)\right) .
$$

The vec operator: Motivation

If we define

$$
\Lambda=\Sigma^{-1} \quad \eta=\Sigma^{-1} \mu,
$$

then we can write

$$
\begin{aligned}
(x-\mu)^{\prime} \Sigma^{-1}(x-\mu) & =\mu^{\prime} \Sigma^{-1} \mu-2 \mu^{\prime} \Sigma^{-1} x+x^{\prime} \Sigma^{-1} x \\
& =\eta^{\prime} \Lambda^{-1} \eta-2 \eta^{\prime} x+x^{\prime} \Lambda x .
\end{aligned}
$$

Why is this of the form $\theta^{\prime} T(x)-A(\theta)$?

The vec operator: Example

$$
\begin{aligned}
& \left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{ll}
\lambda_{11} & \lambda_{12} \\
\lambda_{21} & \lambda_{22}
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& =\lambda_{11} x_{1}^{2}+\lambda_{21} x_{1} x_{2}+\lambda_{12} x_{1} x_{2}+\lambda_{22} x_{2}^{2} \\
& =\left(\begin{array}{llll}
\lambda_{11} & \lambda_{21} & \lambda_{12} & \lambda_{22}
\end{array}\right)\left(\begin{array}{c}
x_{1}^{2} \\
x_{1} x_{2} \\
x_{2} x_{1} \\
x_{2}^{2}
\end{array}\right) \\
& =\operatorname{vec}(\Lambda)^{\prime} \operatorname{vec}\left(x x^{\prime}\right) .
\end{aligned}
$$

The vec operator

Definition [vec]: For a matrix A,

$$
\operatorname{vec}(A)=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
$$

where the a_{i} are the column vectors of A :

$$
A=\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right)
$$

The vec operator

Theorem:

$$
\operatorname{tr}\left(A^{\prime} B\right)=\operatorname{vec}(A)^{\prime} \operatorname{vec}(B)
$$

(Trace of the product is the sum of the corresponding row \times column inner products.)
In the example above,

$$
\begin{aligned}
x^{\prime} \Lambda x & =\operatorname{tr}\left(x^{\prime} \Lambda x\right) \\
& =\operatorname{tr}\left(\Lambda x x^{\prime}\right) \\
& =\underbrace{\operatorname{vec}\left(\Lambda^{\prime}\right)^{\prime}}_{\text {nat. param. suff. stat. }} \underbrace{\operatorname{vec}\left(x x^{\prime}\right)}
\end{aligned}
$$

The Kronecker product

We also use the vec operator for matrix equations like

$$
X \Theta Y=Z,
$$

or, for instance, for least squares minimization of $X \Theta Y-Z$. Then we can write

$$
\operatorname{vec}(Z)=\operatorname{vec}(X \Theta Y)=\left(Y^{\prime} \otimes X\right) \operatorname{vec}(\Theta)
$$

where $\left(Y^{\prime} \otimes X\right)$ is the Kronecker product of Y^{\prime} and X :

The Kronecker product

Definition [Kronecker product] The Kronecker product of A and B is

$$
A \otimes B=\left(\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & \ddots & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right)
$$

The Kronecker product

Theorem [Kronecker product and vec operator]

$$
\operatorname{vec}(A B C)=\left(C^{\prime} \otimes A\right) \operatorname{vec}(B)
$$

The Kronecker product and vec operator are used in matrix algebra. They are convenient for differentiation of a function of a matrix, and they arise: in statistical models involving products of features; in systems theory; and in stability theory.

Key ideas of this lecture

- Factor Analysis.
- Recall: Gaussian factors plus observations.
- Parameter estimation with EM.
- The vec operator.
- Motivation: Natural parameters of Gaussian.
- Linear functions of matrices as inner products. Kronecker product.
- State Space Models.
- Linear dynamical systems, gaussian disturbances.
- All distributions are Gaussian: parameters suffice.
- Inference: Kalman filter and smoother.
- Parameter estimation with EM.

State Space Models

mixture model

factor model

State Space Model

Gaussian

State Space Models

In linear dynamic systems,

- The evolution of the state x_{t}, and
- The relationship between the state x_{t} and the observation y_{t}
are linear with Gaussian noise.

State Space Models

- State space models revolutionized control theory in the late 50 s and early 60 s . Prior to these models, classical control theory could cope with decoupled low order systems. State space models allowed the effective control of complex systems like spacecraft and fast aircraft.
- The directed graph is identical to an HMM, so the conditional independencies are identical: Given the current state (not observation), the past and the future are independent.

Linear System: Definition

Linear System: Definition

State

$$
x_{t} \in \mathbb{R}^{p}
$$

Observation $y_{t} \in \mathbb{R}^{d}$
Initial state

$$
x_{0} \sim \mathcal{N}\left(0, P_{0}\right)
$$

Dynamics

$$
x_{t+1}=A x_{t}+G w_{t}, \quad w_{t} \sim \mathcal{N}(0, Q)
$$

Observation

$$
y_{t}=C x_{t}+v_{t},
$$

$$
v_{t} \sim \mathcal{N}(0, R)
$$

Linear System: Observations

1. All the distributions are Gaussian (joints, marginals, conditionals), so they can be described by their means and variances.
2. The conditional distribution of the next state, $x_{t+1} \mid x_{t}$, is

$$
\mathcal{N}\left(A x_{t}, G Q G^{\prime}\right)
$$

To see this:

$$
\begin{aligned}
\mathbb{E}\left(x_{t+1} \mid x_{t}\right) & =A x_{t}+G E\left(w_{t+1} \mid x_{t}\right)=A x_{t} . \\
\operatorname{Var}\left(x_{t+1} \mid x_{t}\right) & =\mathbb{E}\left(G w_{t}\left(G w_{t}\right)^{\prime}\right) \\
& =G Q G^{\prime} .
\end{aligned}
$$

Linear System: Observations

3. The marginal distribution of x_{t} is $\mathcal{N}\left(0, P_{t}\right)$, where P_{0} is given and, for $t \geq 0$,

$$
P_{t+1}=A P_{t} A^{\prime}+G Q G^{\prime}
$$

To see this:

$$
\begin{aligned}
\mathbb{E} x_{t+1} & =\mathbb{E} \mathbb{E}\left(x_{t+1} \mid x_{t}\right)=A E\left(x_{t}\right)=0 . \\
P_{t+1} & =\mathbb{E}\left(x_{t+1} x_{t+1}^{\prime}\right) \\
& =\mathbb{E}\left(\left(A x_{t}+G w_{t}\right)\left(A x_{t}+G w_{t}\right)^{\prime}\right) \\
& =A P_{t} A^{\prime}+G Q G^{\prime} .
\end{aligned}
$$

Inference in SSMs

Filtering: $p\left(x_{t} \mid y_{0}, \ldots, y_{t}\right)$.
Smoothing: $p\left(x_{t} \mid y_{0}, \ldots, y_{T}\right)$.
For inference, it suffices to calculate the appropriate conditional means and covariances.

Inference in SSMs: Notation

$$
\begin{aligned}
& \hat{x}_{t \mid s}=\mathbb{E}\left(x_{t} \mid y_{0}, \ldots, y_{s}\right) \\
& \hat{P}_{t \mid s}=\mathbb{E}\left(\left(x_{t}-x_{t \mid s}\right)\left(x_{t}-x_{t \mid s}\right)^{\prime} \mid y_{0}, \ldots, y_{s}\right)
\end{aligned}
$$

Filtering: $\quad x_{t \mid t} \sim \mathcal{N}\left(\hat{x}_{t \mid t}, P_{t \mid t}\right)$,
Smoothing: $\quad x_{t \mid T} \sim \mathcal{N}\left(\hat{x}_{t \mid T}, P_{t \mid T}\right)$.
The Kalman Filter is an inference algorithm for $\hat{x}_{t \mid t}, P_{t \mid t}$. The Kalman Smoother is an inference algorithm for $\hat{x}_{t \mid T}, P_{t \mid T}$.

The Kalman Filter

Key ideas of this lecture

- Factor Analysis.
- Recall: Gaussian factors plus observations.
- Parameter estimation with EM.
- The vec operator.
- Motivation: Natural parameters of Gaussian.
- Linear functions of matrices as inner products. Kronecker product.
- State Space Models.
- Linear dynamical systems, gaussian disturbances.
- All distributions are Gaussian: parameters suffice.
- Inference: Kalman filter and smoother.
- Parameter estimation with EM.

