CS281A/Stat241A Homework Assignment 5 (due Monday November 16, 2009)

1. (Kalman filter) The data in file hw5-1.data on the course web site contains noisy measurements of the location of a particle moving in the plane, subject to gravity, random forces, and drag. Each line of the file consists of the measurements $y_t \in \mathbb{R}^2$ of the location at time t = 1, ..., T. The true location of the particle at time t is $x_t \in \mathbb{R}^2$, and its velocity is $\dot{x}_t \in \mathbb{R}^2$. The equations of motion are

$$x_{t+1} = x_t + \dot{x}_t,$$

$$\dot{x}_{t+1} = 0.98\dot{x}_t - 0.02x_t + w_t,$$

where $w_t \sim N(0, 0.05I_2)$. The observations y_t have the form

$$y_t = x_t + v_t,$$

where $v_t \sim N(0, 100I_2)$. Suppose also that

$$\left(\begin{array}{c} x_1\\ \dot{x}_1 \end{array}\right) \sim N(0, 5I_4).$$

- (a) Plot the particle's true location x_t (from the file hw5-1.true on the web site).
- (b) Plot the observations y_t of the particle's position, on top of a plot of the true location.
- (c) Explain how to estimate the particle's initial state (that is, its position x_1 and velocity \dot{x}_1 at the initial time t=1) from the noisy measurements y_1, \ldots, y_T .
- (d) Calculate the maximum a posteriori probability initial state given the data in hw5-1.data.
- (e) For each t, plot the vector \tilde{x}_t of locations that maximize the probability $p(x_t|y_1,\ldots,y_T)$, on top of a plot of the true location. Include in the plot an arrow from \tilde{x}_1 in the direction of the MAP initial velocity.
- 2. Suppose that we have a linear state space model with Gaussian disturbances, and we wish to estimate the initial state x_1 from the noisy observations y_1, \ldots, y_T , as in Question 1. It seems reasonable that as T increases, later observations provide less information about the initial state. In this question, we investigate this property.

Suppose that

$$x_t \in \mathbb{R}^p,$$

 $y_t \in \mathbb{R},$
 $x_{t+1} = Ax_t + w_t,$ $w_t \sim \mathcal{N}(0, Q),$
 $y_t = Cx_t + v_t,$ $v_t \sim \mathcal{N}(0, \sigma^2).$

(Notice that $C \in \mathbb{R}^{1 \times p}$ is a row vector.)

- (a) What is the conditional distribution of y_T given x_1 ?
- (b) Suppose that the C vector has unit length (||C|| = 1) and the matrix A is such that for all $v \in \mathbb{R}^p$, $||A^t v|| \le \alpha^t ||v||$, where $\alpha < 1$. Define the $T \times p$ matrix

$$O_T = \begin{pmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{T-1} \end{pmatrix}.$$

(Matrices like O_T are called observability matrices: in a deterministic system, the rank of O_p characterizes whether the initial state can be inferred from subsequent observations.) Consider what happens when we start the system in two different initial states, x_1 and \tilde{x}_1 . Give an upper bound on the KL-divergence between $p(y_T|x_1)$ and $p(y_T|\tilde{x}_1)$ as a function of $||x_1 - \tilde{x}_1||$, α , T, σ^2 , and $\operatorname{tr}(O_T Q O'_T)$.