
CS281A/Stat241A Homework Assignment 4 (due 5pm, October 28, 2009)

1. (HMMs with mixtures of Poissons) Suppose we wish to model traffic in a network using an HMM.
Consider an HMM with discrete states qt (from a set of size m) and non-negative discrete observations
yt, where the conditional distribution of yt given qt is a mixture of k Poisson distributions.

(a) Draw a graphical model for this HMM, representing the observation distributions using an addi-
tional latent variable.

(b) Write the expected complete log likelihood for the model and identify the expectations that you
need to compute in the E step of the EM algorithm.

(c) Outline an algorithm for the E step, based on the standard alpha-beta recursion.

(d) Write the equations for the M step.

2. (EM for HMMs)

(a) Implement the EM algorithm for HMMs with the observation model of Question 2, where m = 3
and k = 2.

(b) Use your implementation with the data on the course web site (in the file hw4-2.data) to find
maximum likelihood parameter estimates. The data file contains a single sample path of the pro-
cess; do not attempt to estimate the initial state distribution. For initial values of the parameter
estimates, set the Poisson parameter λs,i for state s and mixture component i as

λ1,1 = 1, λ2,1 = 50, λ3,1 = 200,
λ1,2 = 5, λ2,2 = 100, λ3,2 = 300.

and set all of the other initial distributions to be uniform.
What are the estimated parameters?
Evaluate the log likelihood on the training (hw4-2.data) and test (hw4-2.test) data.
Explain how you compute the log likelihood.

(c) Fit a mixture of Poissons with km = 6 components to the same data.
What are the parameter estimates?
Compare its performance on the training and test data with that of the HMM.

3. (EM for hidden trees) Suppose that we wish to model the distribution of pollutants in a large river
system, using measurements taken at a set of 2n+ 1 locations. For each location i, there is a (hidden)
binary state variable xi ∈ {0, 1}, and an observed real-valued measurement yi. Suppose that yi is
conditionally independent of all other measurements yj and states xj , given the state xi, and that, for
all locations, this conditional distribution is Gaussian with parameters (µ0, σ

2
0) and (µ1, σ

2
1) for state

0 and 1, respectively. Suppose also that we model the distribution of the state variables xi using a
directed graphical model, where the graph is a directed tree with node set V = {1, . . . , 2n + 1} and
edge set E consisting of (i, 2i), (i, 2i+ 1) for i = 1, . . . , n. Define the local conditionals as

p(x1) =
1
2

for x1 ∈ {0, 1},

p(xj |xi) =

{
α if xi 6= xj ,
1− α if xi = xj ,

for (i, j) ∈ E and xj ∈ {0, 1}.

(a) Show how to calculate the conditional probabilities p(xi|y) using a generalization of the HMM
α-β recursion: work with the conditional probabilities p(xi|yDi

) and p(yDc
i
|xi), where Di denotes

the descendants of i, that is, the nodes in the subtree rooted at i, and Dc
i denotes the set of all

other nodes.

(b) Derive EM updates to estimate the parameters
(
µ0, σ

2
0 , µ1, σ

2
1 , α
)
.

(c) Use these updates for the data on the course web site (line i = 1, . . . , 2n+1 in the file hw4-3.data
is measurement yi) to estimate parameters of the model.
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(d) Explain how to compute a maximum likelihood configuration for the hidden states.

(e) For the data used to estimate the parameters, draw the tree (for example, by plotting node i at
location

(
i− 3 · 2blog2 ic−1 + 1/2,−blog2 ic

)
in the plane) and indicate which nodes have the same

most likely hidden state.
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