
CS281A/Stat241A Homework Assignment 3 (due 5pm October 14, 2009)

1. (Logistic regression)
Suppose that we wish to model an unordered discrete response variable Y (such as the outcome
of a potential customer’s visit to a website), conditioned on a vector X of real variables (such as
characteristics of the advertisements presented to the potential customer). We could model this kind
of relationship using

Pr(Y = y|X = x) =
exp(−β′yx)

1 +
∑k−1

i=1 exp(−β′ix)
, (1)

where y ∈ {1, . . . , k − 1}, x ∈ Rd, βi ∈ Rd and k is the number of distinct responses.

Suppose that we have data (x1, y1), . . . , (xn, yn) generated i.i.d. from the model (1).

(a) Write down the log likelihood and its first and second derivatives.

(b) Describe (in pseudocode) a Newton-Raphson algorithm for maximizing the log likelihood.

(c) Suppose that the dimension d of the data is so large that it is impractical to store more than a
constant number of vectors in Rd, let alone manipulate second derivative matrices. Suggest an
online steepest ascent algorithm.

2. (ML Estimation)
On the course website, there is a data set (hw3-2.data), consisting of 100 pairs, (v1, y1), . . . , (v100, y100).
Each vi is a vector in R2, and each yi is a number in {1, . . . , 4}. Line i of the file contains the two
components of vi, followed by yi. Using the algorithm that you proposed in question 1b, calculate the
maximum likelihood estimate for the parameters of the model (1) for this data, with xi = (1, vi1, vi2)′.
Plot the data (with four different symbols for the y values) and the contours

Cy =
{
v ∈ R2 : Pr

(
Y = y

∣∣∣∣X =
(

1
v

))
= 1/2

}
for y = {1, . . . , 4}.

3. (IPF) Consider the undirected graphical model

p(x) =
1
Z

∏
(i,j)∈E

ψi,j(xi, xj),

with binary variables x1, . . . , xk, where the ψi,j are non-negative functions. The data in the file
hw3-3.data on the course website consists of n binary vectors of length k = 5. Implement the IPF
algorithm, and use your implementation on this data to estimate the model parameters for the following
graphs:

(a) E = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)},
(b) E = {(1, 2), (2, 3), (3, 4), (4, 1), (2, 5)},
(c) E = {(1, 2), (2, 3), (3, 4), (2, 5)}.

Which model fits the data best?
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