CS281A/Stat241A Homework Assignment 1 (due September 15, 2009)

1. (Directed graphical models and conditional probabilities)

A standard test for prostate cancer, the prostate specific antigen (PSA) test, has a sensitivity of around 95% and a specificity of around 55%. (The sensitivity is the conditional probability of a positive test result given that the disease is present; the specificity is the conditional probability of a negative test result given that the disease is absent.) The probability of developing prostate cancer is age-dependent. Suppose that:

- The probability that a sixty-year-old patient has prostate cancer is 2%, and this probability increases with age.
- The probability that a sixty-year-old patient has a more benign prostate disease, BPH, is 8%, and this probability increases with age.
- Given the patient's age the event that he has BPH is conditionally independent of the event that he has prostate cancer.
- Age and presence or absence of BPH do not affect the sensitivity or specificity of the PSA test.
- Independent of age, the probability of an enlarged prostate is 10% for healthy patients, 85% for patients with BPH, 60% for patients with prostate cancer, and 85% for patients with both diseases.
- (a) Draw the graph of a directed graphical model that describes the joint probability distribution. List the constraints on entries in the conditional probability tables that have been specified in the information presented above.
- (b) If a sixty-year-old patient tests positive on the PSA test, what is the probability that he has prostate cancer?
- (c) If the patient also has an enlarged prostate, what is the probability that he has prostate cancer?
- (d) If a sixty-year-old patient has an enlarged prostate, what is the probability that he has BPH?

2. (Directed versus undirected graphical models)

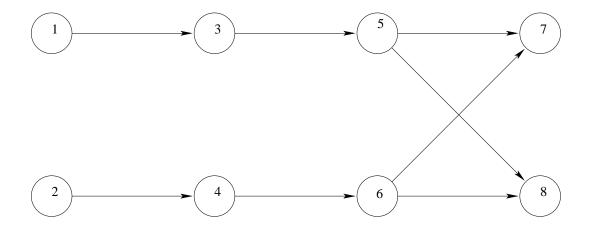
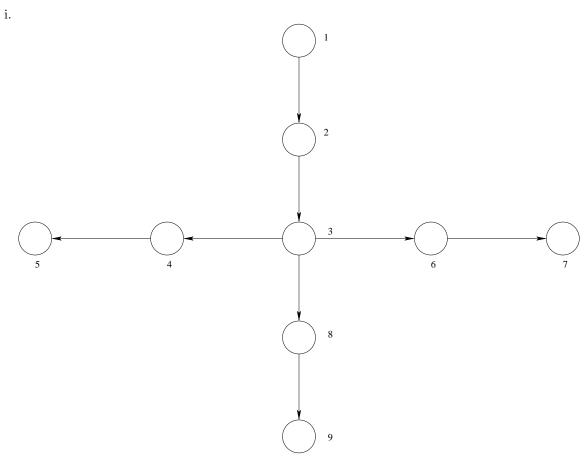
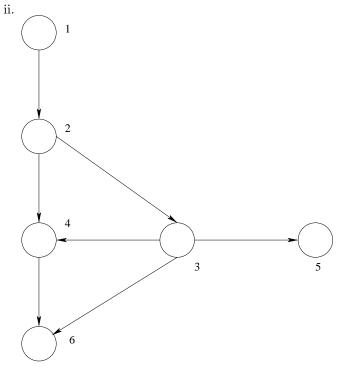
Consider the following random variables. X_1 , X_2 and X_3 represent the outcomes of three (independent) fair coin tosses. X_4 is the indicator function of the event that $X_1 = X_2$, and X_5 is the indicator function of the event that $X_2 = X_3$.

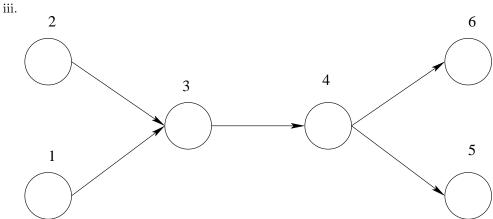
- (a) Specify a directed graphical model (give the directed acyclic graph and local conditionals) that describes the joint probability distribution.
- (b) Specify an undirected graphical model (give the graph and clique potentials) that describes the joint probability distribution.
- (c) In both cases, list any conditional independencies that are displayed by this probability distribution but are not implied by the graph.
- (d) If the coins were biased, would your answer to (2c) change?

3. (ELIMINATE algorithm)

Consider the directed graph G_1 of Figure 1.

- (a) What is the corresponding moral graph?
- (b) What is the reconstituted graph that results from invoking the UNDIRECTEDGRAPHELIMINATE algorithm on the moral graph with the ordering (8,7,2,4,6,5,3,1)?
- (c) What is the reconstituted graph that results from invoking the UNDIRECTEDGRAPHELIMINATE algorithm on the moral graph with the ordering (8, 5, 6, 7, 4, 3, 2, 1)?
- (d) Suppose you wish to use the ELIMINATE algorithm to calculate $p(x_1|x_8)$. (Suppose that each $X_i \in \{0,1\}$ and that the local conditionals do not exhibit any special symmetries.) Which of the orderings listed in (3b) and (3c) is preferable? Why?


Figure 1: A directed graph, G_1

4. (Conditional independence and DAGs)

(a) For some DAGs, we can reverse an edge to give a DAG that gives identical conditional independence assertions. Consider the following DAGs. In each case, find a maximal sequence of edges to reverse so that the corresponding sequence of DAGs are all distinct and imply the same conditional independence assertions.

- (b) Say that an edge e in a DAG G is reversible if, when we reverse its orientation, we obtain a DAG G' with identical conditional independence properties. Show that reversibility of an edge e = (i, j) is equivalent to a simple property of the parents π_i, π_j of the vertices incident to the edge.
- (c) Show that two DAGs G, G' imply the same conditional independence assertions iff there is a sequence of DAGs $G = G_0, G_1, \ldots, G_n = G'$ so that G_t and G_{t+1} differ only in the reversal of one reversible edge.
- (d) Suppose we have two DAGs G, G' that imply the same conditional independence assertions. Write (as pseudocode) an algorithm that takes as input G, G' and produces a sequence of edges e_1, \ldots, e_n so that
 - $G_0 = G$.
 - G_{t+1} is obtained from G_t by reversing e_{t+1} .
 - \bullet $G_n = G'$
 - Each e_{t+1} is reversible in G_t , and hence all of the DAGs G_0, G_1, \ldots, G_n imply the same conditional independence assertions.

Show that your algorithm works correctly.