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Abstract

Meaningful uncertainty quantification in computer vision requires reasoning about semantic information—
say, the hair color of the person in a photo or the location of a car on the street. To this end, recent
breakthroughs in generative modeling allow us to represent semantic information in disentangled latent
spaces, but providing uncertainties on the semantic latent variables has remained challenging. In this work,
we provide principled uncertainty intervals that are guaranteed to contain the true semantic factors for
any underlying generative model. The method does the following: (1) it uses quantile regression to output
a heuristic uncertainty interval for each element in the latent space (2) calibrates these uncertainties such
that they contain the true value of the latent for a new, unseen input. The endpoints of these calibrated
intervals can then be propagated through the generator to produce interpretable uncertainty visualizations
for each semantic factor. This technique reliably communicates semantically meaningful, principled, and
instance-adaptive uncertainty in inverse problems like image super-resolution and image completion.

1 Introduction
When making decisions with visual data, such as automated vehicle navigation with blurry images, uncertainty
quantification is critical. The relevant uncertainty pertains to a low-dimensional set of semantic properties,
such as the locations of objects. However, there is a wide class of image-valued estimation problems—from
super-resolution to inpainting—for which there does not currently exist a method of producing semantically
meaningful uncertainties. Many methods exist for getting per-pixel intervals [15, 37, 4], but directly giving
uncertainty on semantically meaningful image properties has remained challenging.

We make progress on this problem by bringing techniques from quantile regression and distribution-free
uncertainty quantification together with a disentangled latent space learned by a generative adversarial
network (GAN). We call the coordinates of this latent space semantic factors, as each controls one meaningful
aspect of the image, like age or hair color. Our method takes a corrupted image input and predicts each
semantic factor along with an uncertainty interval that is guaranteed to contain the true semantic factor.
When the model is unsure, the intervals are large, and vice-versa. By propagating these intervals through the
GAN coordinate-wise, we can visualize uncertainty directly in image-space without resorting to per-pixel
intervals—see Figure 1. The result of our procedure is a rich form of uncertainty quantification directly on
the estimates of semantic properties of the image.

More concretely, we receive input images X and then predict an uncertainty interval for each of D
semantic factors Zd, d = 1, ..., D, which are the elements of a disentangled latent space. The method involves
training an encoder (a neural network that takes images as input and produces outputs in the latent space of
the GAN) on (X,Z) pairs to give us three different outputs:

1. The point prediction, f(X). This is the encoder’s best guess at the semantic factors Z.

2. The estimated lower conditional quantile, qα
2
(X). The encoder believes that qα

2
(X) is a lower

bound on the value of Z given X.
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Figure 1: Uncertainty intervals over semantic factors produced by our method. We express the
intervals in a disentangled latent space that allows us to factorize the uncertainty into meaningful components.

3. The estimated upper conditional quantile, q1−α
2
(X). The encoder believes that q1−α

2
(X) is an

upper bound on the value of Z given X.

Once the above encoder is trained, as described in Section 2.2, we use it to form an uncertainty interval for
each semantic factor. However, for the dth element of the latent code, the naive interval (qα

2
(X)d, q1−α

2
(X)d)

is not guaranteed to contain the ground truth value in finite samples. We propose to perform a calibration
procedure to fix this problem, yielding the sets

T (X)d =
[
qcalα

2
(X)d, q

cal
1−α

2
(X)d

]
, (1)

where qcal is a calibrated version of q constructed using the tools in Section 2.3. Once we have done so,
the intervals will contain α fraction of the true latent codes with high probability. In other words, for any
user-chosen levels α and δ, we can output intervals that with probability 1− δ satisfy

E
[
1

D

∣∣∣{d : Zd ∈ T (X)d
}∣∣∣] ≥ 1− α, (2)

for a new test point (X,Z), regardless of the distribution of the data, the encoder used, and the number of
data points used in the calibration procedure. This guarantee, described more carefully in Definition 2.1, says
that the intervals cover 1− α fraction of the semantic factors unless our calibration data is not representative
of our test data (which only happens with a probability δ which goes to 0 as the number of calibration data
points grows). We visualize each of the d ∈ {1, ..., D} intervals in latent space by propagating the dth lower
and upper endpoints through the generator with all other entries in the latent fixed to the point prediction
(see Section 2.3 for a formal explanation).

1.1 Central Contribution
To our knowledge, this is the first algorithm for uncertainty intervals on a learned semantic representation
with formal statistical guarantees. By propagating these intervals through the generator, we are able to
visualize uncertainty in an intuitive new way that directly encodes semantic meaning. This is an important
step towards interpretable uncertainties in general image-valued estimation problems.

2 Method

2.1 Notation and goal
Our data consist of pairs (X,Z)—the corrupted image X in X = [0, 1]H×W , and the latent code Z ∈ Z,
where Z = RD. As mentioned in the introduction, we think of Z as a disentangled representation with d
semantic factors—i.e.factors of variation corresponding to interpretable features in an image, such as hair
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color and expression. For simplicity, assume each of the d dimensions controls a single semantic factor; in
practice, we ignore those that do not.

In our sampling model, X is generated from Z by composing two functions. The first function is a fixed
generator G : Z → Y, where Y = [0, 1]H×W , which takes the latent vector Z and produces the ground truth
image Y ∈ Y (for ease of notation, we assume X and Y have the same shape). The second function is a
corruption model, F : Y → X , which degrades the ground truth image Y to produce the corrupted image X,
for example by randomly masking out part of the image. To summarize our data-generating process, we have

Y = G(Z) and X = F (Y ); (3)

Goal #1. Our first goal is to train an encoder E to recover Z from X—in other words, to invert the
mapping F ◦G—with a heuristic notion of uncertainty. The encoder’s point prediction will be a function
f : X → Z. The uncertainty will be parameterized by two functions, q1−α

2
: X → Z and qα

2
: X → Z,

denoting our estimates of the 1− α
2 and α

2 conditional quantiles, respectively. These conditional quantiles are
potentially bad estimates; they do not natively possess the statistical guarantee we desire.

Goal #2. Having trained the encoder and the conditional quantile estimates, we will output uncertainty
intervals in the disentangled latent space. Each dimension will get its own interval, which has the form in (2).
Ultimately, our uncertainty intervals will come with the following statistical guarantee:

Definition 2.1 (Risk-Controlling Prediction Set (RCPS)). A set-valued function T : X → 2Z is an (α, δ)
risk-controlling prediction set if (α,δ)-Risk-Controlling Prediction Set if

P
(
E
[
L(T (X), Z)

]
> α

)
≤ δ, (4)

where

L(T (X), Y ) = 1−

∣∣∣{d : Zd ∈ T (X)d
}∣∣∣

HW
. (5)

The reader should note here that the function T depends on the calibration data. The outer probability
in (4) is over the randomness in this calibration procedure; the inner expectation is over the new test point,
(X,Y ).

The reader should note that in our setting, because we can generate infinite data from the GAN, it
is always possible to drive δ arbitrarily close to 0, effectively making T nonrandom. In the two following
subsections, we address each of our goals separately.

2.2 Goal #1: Training the encoder for quantile regression
Our job in this subsection is to learn the three functions f , qα

2
, and q1−α

2
. We do so by training a neural

network with three different loss functions, one for each of three linear heads on top of the same feature
extractor—see Figure 2 for the training protocol.

Loss function for point prediction. We supervise the point prediction with two loss functions. The
first is an L1 loss directly in the latent space, and encourages f(X) to be close to Z.

L1

(
f(x), z

)
=
∣∣∣∣f(x)− z∣∣∣∣

1
(6)

The second is an identity loss on the generated image G(f(X)), which encourages G(f(X)) to contain objects
that have the same “identity” — or semantic meaning — as those in Y . We calculate the identity loss using a
pretrained embedding function, ID : Y → Rd′ for some d′, which projects Y to an embedding space where
images with different identities land far away from one another. Finally, we calculate our loss using cosine
similarity,

LID

(
x, y
)
=

〈ID(x), ID(y)〉
||ID(x)|| · ||ID(y)||

, (7)

Finally, we combine these two loss functions to form the loss function for the prediction f ,

Lpred

(
f(x), z

)
= L1

(
f(x), z

)
+ cLID

(
G(f(x)), G(z)

)
, (8)
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Figure 2: Our training pipeline, visualized above, shows our training process for the prediction f̂ , lower
quantile qα

2
and the upper quantile q1−α

2
.

where c = 0.7 was chosen to balance the two losses.
Loss function for quantile regression. Quantile regression [27, 12, 29, 24, 25, 26, 28] is a statistical

method for estimating the conditional quantiles of a distribution. The key idea of quantile regression is to
supervise the regressor using a quantile loss,

Lβq (qβ(x), z) =
(
z − qβ(x)

)
β1 {z > qβ(x)}+

(
qβ(x)− z

)
(1− β)1 {z ≤ qβ(x)} . (9)

The minimizer of the quantile risk is the true β conditional quantile of Z|X. We supervise our conditional
quantile estimates qα

2
and q1−α

2
with two separate instances of the quantile loss, L

α
2
q and L1−α

2
q respectively.

This concludes our explanation of the model training procedure, summarized in Algorithm 1. Experimental
details, such as the particular model architecture we use, are available in Section 3.

Algorithm 1 Quantile GAN encoder training
Input: training dataset D, risk level α, number of epochs E, fixed generator G
Output: trained functions f, qα

2
, and q1−α

2
.

f, qα
2
, and q1−α

2
← random model initialization

for e = 1 to E do
loss ← 0
for (Xtrain, Ztrain) in D do
L1 ← Lpred

(
f(Xtrain

)
, Ztrain)

L2 ← L
α
2
q

(
qα

2
(Xtrain

)
, Ztrain)

L3 ← L1−α
2

q

(
q1−α

2
(Xtrain

)
, Ztrain)

loss += L1 + L2 + L3
end for
loss.backward()

end for

2.3 Goal #2: Calibration
Having trained the model, we now calibrate it to achieve the statistical guarantee in Definition 2.1 using a
set of calibration data

{
(Xi, Zi)

}n
i=1

generated from the model and the upper-confidence bound procedure
from [7]. The output of the procedure will be the function T from (2); specifically, we will learn the calibrated
conditional quantiles qcalα

2
and qcal1−α

2
.

Our procedure will calibrate the conditional quantiles by rescaling their size multiplicatively. We will
ultimately choose a multiplicative factor λ̂ that gives us the desired guarantee. Towards that end, we index a
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family of uncertainty intervals scaled by a free parameter λ for each semantic factor,

Tλ(X)d =

[
f(X)d − λ

(
f(X)d − qα

2
(X)d

)
+
, f(X)d + λ

(
q1−α

2
(X)d − f(X)d

)
+

]
. (10)

When λ grows, the interval Tλ(X)d also grows, and thus, the loss function L(Tλ(X), Y ) shrinks. Therefore,
by taking λ large enough, we can always ensure the loss is zero. The challenge ahead is to pick λ̂ to be the
smallest value such that Tλ̂ is an RCPS as in (4).

The algorithm for selecting λ̂ involves forming an upper confidence bound (UCB) for the risk, then picking
the smallest value of λ such that the upper confidence bound falls below α. We give Hoeffding’s UCB below,
although we use the stronger Hoeffding-Bentkus bound from [7] in practice:

R̂+(λ) =
1

n

n∑
i=1

L (Tλ(Xi), Yi) +

√
1

2n
log

1

δ
. (11)

Note that in our setting, we can always generate enough samples to drive δ → 0; however, if we only had a
finite sample from some population, this would not be the case. We can then select λ̂ by scanning from large
to small values, λ̂ = min

{
λ : R̂+(λ′) ≤ α, ∀α′ ≥ α

}
.

Proposition 2.2 (Tλ̂ is an RCPS [7]). With λ̂ selected as above, Tλ̂ satisfies Definition 2.1.

For the proof of this fact, along with a discussion the tighter confidence bounds used in our experiments
and extensions to the underlying theory, see [7] and [2].

Having proven that Tλ̂ is an RCPS, we can simply set T (X) = Tλ̂(X) in (2); in other words, we set
qcalα

2
(X)d = f(X)d − λ̂

(
f(X)d − qα

2
(X)d

)
+
and qcal1−α

2
(X)d = f(X)d + λ̂

(
q1−α

2
(X)d − f(X)d

)
+
.

Visualizing uncertainty intervals in image space

We briefly describe our method for visualizing latent-space uncertainty intervals. In order to see the effect of
a single semantic factor, we set it to either the lower or upper quantile and hold the other factors fixed to the
point prediction. More specifically, for a particular dimension d ∈ {1, ..., D}, define the following vector:

Ẑdk =
(
f(X)1, ..., f(X)d−1, qcalk (X)d, f(X)d+1, ..., f(X)D

)
. (12)

We visualize the lower and upper quantiles in image space as G(Ẑdα
2
) and G(Ẑd1−α

2
) respectively. Since

each semantic factor corresponds to an attribute, visualizing the lower and upper quantiles per-factor gives
interpretable meaning to the latent-space intervals. For example, in Figure 1, the images of the child smiling
give a range of possible expressions the model believes are consistent with the underlying image.

3 Experiments

3.1 Dataset descriptions
FFHQ We use the StyleGAN framework pretrained using the Flickr-Faces-HQ (FFHQ) dataset [22]. FFHQ
is a publicly available dataset consisting of 70,000 high-quality images at 1024 × 1024 resolution. FFHQ
has significant variation among age, ethnicity and image backgrounds. The data used to train the quantile
encoder and for the experiments in this section is sampled from the generator pretrained on FFHQ.

CLEVR. In order to have a controlled setup where we can easily identify disentangled factors of variation,
we generate synthetic images of objects based on the CLEVR dataset [20]. This dataset provides a
programmatic way of generating synthetic data by explicitly varying specific semantic factors. We create a
synthetic dataset by varying {color, shape} and fixing the other factors such as lighting, material and camera
jitter.
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Figure 3: Semantically meaningful uncertainty intervals produced by our method on example images
sampled from the generator trained on the FFHQ dataset (left) and CLEVR dataset (right). The corrupt
image is provided as input to the encoder which outputs a pointwise prediction and quantile predictions for
each style dimension. We plot the calibrated and uncalibrated intervals as well as their visualizations in
image-space. [Best viewed in color, zoom in for detail.]
3.2 Experimental setup
Model architectures In all our experiments, we use the StyleGAN2 [21] framework for the generator
architecture G. For the experiments involving faces, we use the pretrained model available from the official
repository. For the CLEVR-2D experiments, we train a simpler variant of StyleGAN2 generator from scratch.
For the quantile regression, we use a standard architecture: the encoder network consists of a ResNet-50
backbone [17] with the final layer branching into the point prediction and conditional quantiles. The branching
module is a standard combination of convolution and activation blocks followed by a fully connected layer of
the expected output dimension; we call these the heads of the model. Specific details of the model architecture
are provided in the supplementary material.

Model training We start by pretraining the generative model or acquiring an off-the-shelf pretrained
generative model for the task at hand. In generative models such as StyleGAN, the style space that offers fine
grained control over image attributes, is very high dimensional. From this high dimensional space, we extract
only the disentangled dimensions following previous work on style space analysis [39]. In order to better
focus the encoder’s capacity only on the disentangled dimensions, we mask out the irrelevant dimensions for
applying the quantile loss. However, the pointwise loss in (6) is applied to the full style vector to ensure
that the pointwise prediction is able to match the true latents accurately, while the quantile heads focus on
learning variablity only in the disentangled dimensions.

During the encoder training 2.2, the generative model G is held frozen and only the parameters of the
encoder E are updated. The point prediction and conditional quantile heads are trained jointly with the
Ranger optimizer [39] and a flat learning rate of 0.001 for all our experiments.

For the image super-resolution training, we augment the input dataset by using different levels of
downsampled inputs, i.e., we take the raw input and apply a random downsampling factor from {1, 4, 8, 16, 32}
and resize it to the original dimensions. For the image inpainting task, we vary the difficulty by choosing
a random threshold to create the mask – lower thresholds implies fewer pixels are masked and vice-versa.
The mask is concatenated to the image resulting in a C + 1-channel input to the encoder, where C is the
number of image channels. The detailed description of the mask generation procedure can be found in the
supplementary material.

Calibration and Evaluation For both the synthetic object experiments with CLEVR and face ex-
periments with FFHQ, we train the quantile encoder on data points sampled from the latent space of the
pretrained generative model. This ensures that we have access to the true latents that resulted in each image.
We generate 100k samples per model and generate a random 80-10-10 split for training, calibration and
validation.
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Figure 4: Visualizing adaptivity [Left] A random mask is applied to the same input image in each row.
When there is no mask (1st row), the lower and upper quantiles are extremely close to the pointwise prediction.
As we increase the regions that are being masked, the intervals predicted by the quantile encoder expand, as
indicated by the variability on the lower and upper quantile predictions. [Right] We show the results of the
encoder on two sets of images. The corruption intensity is varied across each set, the input image in the
top row is not corrupted while the input in the bottom row is under-sampled by 16x. In both case, we can
observe that the most diverse prediction is in the bottom row where the input is corrupted the most. [Best
viewed in color. Zoom in for detail]

3.3 Findings
In the following experiments, we explore different properties of our intervals. The problem types include
image super-resolution and image inpainting. The risk level α and the user-specified error threshold δ are
fixed to 0.1, unless specified otherwise.

3.3.1 Producing semantic uncertainties

Goal. We qualitatively verify that the proposed approach outlined in Section 2 produces visually meaningful
uncertainties.

Description. We train a quantile encoder with Algorithm 1. Then we generate n = 5000 images by
sampling latents and propagating them through the encoder-generator combination. We use these n images
as calibration data for the procedure in 2.3. Finally, we randomly sample a new test point, pass it through
the calibrated encoder, and form the uncertainty intervals in image space as in Section 2.3.

Results. The results are illustrated in Figure 3 on images sampled from the generator trained on FFHQ
(left) and CLEVR (right). In case of the FFHQ image, the the person is wearing glasses in the lower quantile
image and not in the upper; hence, the model is not certain that the person is wearing glasses. The model
also expresses some uncertainty about the amount of gray versus brown hair. This outcome was predictable
from the input image, where the fact that the person is wearing glasses is not obvious, and there is some hair
color ambiguity. The results on the CLEVR dataset are analogous. The lower and upper quantile images
yield similar colors, which is predictable from the blurry input. The model predicts that both a cylinder and
sphere would be consistent with this blurry input. The calibrated quantiles cover the ground truth color
value while the uncalibrated ones do not.
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3.3.2 Exploratory results with purposeful corruptions

Goal. We probe the uncertainty quantification procedure to see if it will have the expected qualitative
behavior.

Description of experiment. We sampled images from the held out set of the FFHQ pretrained GAN
and applied purposeful corruptions to check if the resulting quantile estimates had semantic meaning. Both
image resolution and image masking were used as corruption models. We qualitatively analyze the results
by visualizing the predictions and perform a quantitative measurement as well by computing image based
metrics. For the qualitative analysis, we use 500 images at each difficulty level as inputs to our encoder.

Qualitative results. Figure 4 shows the results of this experiment for Image inpainting (left) and
super-resolution (right). In the inpainting case, when nothing is masked, the quantiles are roughly identical.
When the eyes are masked, the quantiles indicate the model does not know if the person was wearing glasses.
When the mouth is masked, the model expresses uncertainty as to whether the woman is showing her teeth
in the smile. Finally, when almost everything is masked, the quantile images are very different, representing
individuals with entirely different identities. Similar behavior can be observed in the super-resolution case.
The results are shown for two separate inputs; in both cases, the input in the top row is uncorrupted while in
the bottom row, it is undersampled by 16x. The model is able to predict almost perfectly in the absence of
corruption. The quantile predictions are extremely close as well. In the presence of corruption, both the
pointwise prediction is off (as expected) and the quantile edges display much higher variability including
in attributes such as hair shape, glasses, facial hair and perceived gender. The results from both these
experiments point to an expected qualitative behavior of our proposed approach: the model exhibits more
uncertainty with increased information loss at the input.

Quantitative results. For each input, we compute the calibrated uncertainty interval using our approach
and compute the identity loss specified in Equation 7, and perceptual loss between the upper and lower edges.
We repeat the procedure for each image by varying the input difficulty, similar to 3.3.3. It can be observed
from Table 1 that both perceptual and ID losses increase with increasing perceived input difficulty. This
substantiates our claim that the calibrated quantiles display more variability as we increase the difficulty of
the task. Note that most of the style dimensions only affect attributes like hair color/glasses/facial hair that
do not necessarily change the identity of the individual. Given this observation, the change in ID loss is very
much indicative of the variability of the quantile predictions.

Table 1: Measuring variability over quantiles: Perceptual loss (L-PIPS) and ID Loss between the upper
and lower calibrated quantiles.

Metric Easy Medium Hard
ID Loss 0.04 0.06 0.09
Perceptual Loss 0.16 0.23 0.28

3.3.3 Interval sizes as a function of problem difficulty

Goal. We seek to construct intervals that adapt to the uncertainty of the input, i.e., result in lower values
for easier inputs and higher values for harder inputs. This experiment tells us how informative our intervals
are about when the model makes an error.

Description of experiment. For the image super-resolution case, we create the difficulty levels
{easy,medium,hard} that correspond to {1x, 8x, 32x} downsampled versions. All downsampled versions are
resized to the same dimensions before presenting to the encoder. For image inpainting, we vary the masking
threshold to create {easy,medium, hard} difficulty levels which indicate the fraction of the image being
masked, with {easy,medium, hard} corresponding to {10-15%, 40-50%, 90-95%}. The results are computed
on held out set sampled from the StyleGAN generative model pretrained on the FFHQ dataset. In order to
obtain the set size for each input, we scale the quantile width using the threshold obtained after the RCPS
calibration procedure.

Results. Figure 5 shows the set sizes for the super-resolution corruption model as a function of problem
difficulty on two datasets, FFHQ and CLEVR. As expected, the set sizes increase with increasing problem
difficulty indicating increasing uncertainty as corruption level increases.
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Figure 5: Adapting to varying corruption levels: Distribution of set-sizes for different input corruption
levels for super-resolution on FFHQ and CLEVR. More results in supplementary material.

4 Related Work
GANs for Inverse problems. The remarkable image generation properties of recent approaches such as
BigGAN [10] and StyleGAN [21] has led to the increasing use of these models to solve inverse problems
relating to image restoration such as image super-resolution and completion. All prior methods that use GANs
for inverse problems such as the ones that use the pretrained generative model as an image prior [43, 8, 35, 33]
or the ones that train an encoder model to project the input into the generator’s latent space [47, 39, 42, 38]
focus on the accuracy of the point estimate but not on the uncertainty level of the input.

GANs for Interpretability. Despite providing no guarantees of image likelihood, unlike others such as
Normalized Flow [23] or Score-based models [48], GANs have been used to develop interpretable approaches to
image generation. The widespread use of GANs as opposed to other generative models in the interpretability
is done due to the availability of an disentangled latent space [16, 46], which is a property we utilize in our
work.

Quantile Regression. Quantile regression was first proposed in [27]. Since then, many papers have
used the technique, applying it to machine learning [19, 34, 36], medical research [6], and more. Most relevant
to us is conformalized quantile regression [40], which gives quantile regression a marginal coverage guarantee
using conformal prediction. Our work instead uses risk-controlling prediction sets, a different distribution-free
uncertainty quantification technique.

Conformal prediction and distribution-free uncertainty quantification. At the core of our
proposed method is the distribution-free, marginal risk-control technique studied in [7] and [2]. These ideas have
their roots in the distribution-free marginal guarantees of conformal prediction, proposed in [45]. Conformal
prediction is a flexible method for forming prediction sets that satisfy a marginal coverage guarantee, under
no assumptions besides the exchangeability of the test point with the calibration data [45, 44, 31, 32, 30, 1].
Conformal prediction has been studied in computer vision [18, 11, 5, 41, 3], natural language [13], drug
discovery [14], criminal justice [9], and more.

We are not aware of work applying the notions of conformal prediction and quantile regression to the
latent space in generative models.

5 Conclusion
Experiments indicate the latent space uncertainty intervals express a useful semantic notion of uncertainty
previously unavailable in computer vision. The intervals contain most of the true semantic factors. These
intervals are useful for semantically explaining a model’s uncertainties in a way humans can understand—for
example, on high-level features in the image. Depending on the available disentangled latent space, this
notion of uncertainty can be quite rich. Limitations of our method include a) that we have only applied the
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technique to GAN generated data, b) that the calibration data must be reflective of the data distribution,
and c) that we assume access to a disentangled latent space. We see our work as part of a larger tapestry of
results in generative models, and our technique will remain applicable as progress gets made on real-data
backprojection, calibration under distribution shifts, and disentanglement.

6 Ethics
The ethics of generative modeling itself has been called into question given recent events, e.g., the development
of deep fakes. Nonetheless, we believe the downstream consequences of this work will likely be positive. The
techniques herein do not change the predictions of a generative model; they simply provide a calibrated notion
of its uncertainty in a relevant semantic space. Thus, the standard criticism of generative modeling—that it
will enable widespread deep fakes—is not applicable. Furthermore, we expect having a statistically valid and
semantically rich notion of uncertainty will provide a sobering reliability assessment of these models, perhaps
mitigating the chance of harmful failures. Finally, although we use face datasets due to their ubiquity in this
literature, we have attempted to ethically treat topics like gender and race where they arise.
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A Model architectures

A.1 Face experiments
For the encoder, we use a resnet-50 backbone followed by projection heads that output pointwise, lower and
upper quantile predictions. Each projection head consists of a convolution layer followed by a Leaky-Relu
activation and a global average pooling layer. The input to each projection head is the output of the backbone
network – a feature map of size 512× 4× 4 and the output dimension is the number of style dimensions – in
the case of the pretrained FFHQ styleGAN2 used in our experiments, this value is 9088.

For the generator, we use a FFHQ pretrained styleGAN2 trained to output faces of resolution 1024× 1024
obtained from the official implementation. No discriminator is used during training.

A.2 CLEVR experiments
For the encoder, we use a resnet-18 backbone followed by projection heads that output pointwise, lower and
upper quantile predictions. Each projection head consists of a convolution layer followed by a Leaky-Relu
activation and a global average pooling layer. The input to each projection head is the output of the backbone
network – a feature vector of size 512 and the output dimension is the number of style dimensions – in the
case of the pretrained CLEVR styleGAN2 used in our experiments, this value is 204.

For the generator, we use a modified version of styleGAN2 that is trained to output images of resolution
128× 128. In order to have a controlled latent space, we reduce the size of the style vectors from 512 in the
original model to 12. This was done to reduce the size of the resulting style dimension from 9088 to 204.
Since the model was trained on the CLEVR dataset which has less variability compared to other datasets
such as FFHQ, the model was able to converge successfully even at this reduced capacity.

B Training details

B.1 Input preprocessing
For the face experiments, the inputs to the encoder are resized to 256× 256 and are rescaled to [−1, 1] range.
For the super-resolution experiment, the original input is first downsampled as required (i.e. 8x/16x etc) and
is resized back to the input resolution 256× 256. For the image inpainting experiment, the corruption mask
is generated using the procedure outlined in Section B.2. The image input is then masked to only expose
the unmasked parts – hence the corruption; the mask is concatenated along with the image as an additional
input. Example of a masked image is shown the main manuscript in Figure 4.

The procedure described above is repeated for the CLEVR epxeriments with the exception that the input
size is 128× 128.

B.2 Mask generation procedure for image inpainting
For generating a corruption model for image completion, we generate a binary mask in a controlled manner.
For each input image of size H×W ×C, we start by generating a random mask of size H×W where each pixel
value in contained in the interval [0, 1]. For each difficulty level as mentioned in the manuscript (easy, medium,
hard), we activate only those pixels in the mask whose values lie less than a corresponding threshold. For eg:
for the easy level, we mask the pixels whose values are less than 0.3. By changing this threshold, we can vary
the difficulty level of the masked input. We use the following thresholds: {easy : 0.3,medium : 0.6, hard : 0.9}.
These thresholds were obtained by visual inspection. Intuitively, the threshold can be interpreted as the
fraction of pixels that are masked at a given difficulty level – 30% being the easier case and 90% being the
harder case.

B.3 Masking irrelevant style dimensions
In StyleGAN models, the style space vector is very high dimensional. However, previous work on style space
analysis [39] has shown that only few of those dimensions are reliably disentangled. In order to better focus
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Figure 6: Inpainting masks: Masked inputs at different difficulty levels.

the encoder’s capacity only on the disentangled dimensions, we mask out the irrelevant dimensions ensuring
that the quantile loss is only applied to the disentangled dimensions.

For instance, for a FFHQ pretrained model trained to produce an output of size 1024× 1024 has a style
space dimension of 9088. In order to better focus the encoder’s capacity only on the disentangled dimensions,
we mask out the irrelevant dimensions. More concretely, we apply the loss function described in (9) to the
masked latent, Lqβ (m� x,m� z), with m being the mask that contains ‘1’ for the disentangled dimensions
and ‘0’ otherwise and � indicating element-wise product. Note that the masking is applied only to the
quantile loss and not the pointwise loss in (6). This ensures that the pointwise prediction is able to match
the true latents accurately, while the quantile heads focus on learning variablity only in the disentangled
dimensions.

C Effect of calibration on coverage
The guarantee in Definition 2.1 tells us that the risk will always be controlled, but it does not tell us that our
control will be tight. This experiment tells us how conservative our procedure is, i.e., how closely we match
our desired risk and error levels.
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Figure 7: Calibration: Comparison of distribution of empirical risk for 100 calibration runs before and
after performing the RCPS calibration procedure. We show results on FFHQ and CLEVR for the Image
super-resolution and inpainting corruption models, calibrating for risk level α = 0.1.

Since we work in realm of generated data for model training and calibration, we have access to the true
latents Zd which ensures a precise measurement of the average risk. We do a random 50-50 split on the
calibration set, where we calibrate on one split and evaluate on the other. To validate the power of the
procedure, we repeat this process 100 times. For each run, we report the average risk incurred by our model
over the evaluation split.
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Figure 7 compares the average risk of the quantile encoder trained using the FFHQ-pretrained StyleGAN,
before and after calibration. The performance of the quantile encoder is problem dependent, i.e., the base
model has lower risk in the super-resolution problem compared to the inpainting problem. However, the
calibration procedure results in lower risk that satisfies the guarantee specified in Definition 2.1.
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