
© 2022 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics.

Event-Based Near-Eye Gaze Tracking Beyond 10,000 Hz

Anastasios N. Angelopoulos*, Julien N.P. Martel*, Amit P. Kohli, Jörg Conradt, Gordon Wetzstein

Top ViewFrames

Front View
x

y
t

Frames & Events Pupil Fitting

Side View
x

y
t

A B C D

Fig. 1. Input and output of our system. The inputs, shown in plot A, are frames recorded at a fixed sampling rate and events,
asynchronously sampling the eye motion at high speed. Frames and events are captured by the same sensor, and event polarity is
color coded in blue (+) or red (-). We output a gaze point, computed from our estimate of the pupil, shown in yellow as seen from
several perspectives in plots B, C, and D (x and y are the columns and rows of the sensor, and t is time). Events continuously trigger
between frames, allowing pupil estimation much faster than the frame rate. Every pupil estimate yields a yellow circle. These estimates
are so frequent that they form an almost continuous tubular structure outlining the pupil’s movement through time in plots C and D.

Abstract—The cameras in modern gaze-tracking systems suffer from fundamental bandwidth and power limitations, constraining
data acquisition speed to 300 Hz realistically. This obstructs the use of mobile eye trackers to perform, e.g., low latency predictive
rendering, or to study quick and subtle eye motions like microsaccades using head-mounted devices in the wild. Here, we propose a
hybrid frame-event-based near-eye gaze tracking system offering update rates beyond 10,000 Hz with an accuracy that matches that of
high-end desktop-mounted commercial trackers when evaluated in the same conditions. Our system, previewed in Figure 1, builds on
emerging event cameras that simultaneously acquire regularly sampled frames and adaptively sampled events. We develop an online
2D pupil fitting method that updates a parametric model every one or few events. Moreover, we propose a polynomial regressor for
estimating the point of gaze from the parametric pupil model in real time. Using the first event-based gaze dataset, we demonstrate
that our system achieves accuracies of 0.45◦–1.75◦ for fields of view from 45◦ to 98◦. With this technology, we hope to enable a new
generation of ultra-low-latency gaze-contingent rendering and display techniques for virtual and augmented reality.

Index Terms—Event-based camera, Eye tracking, Augmented and virtual reality.

1 INTRODUCTION

Gaze tracking is the process of estimating where a person is looking,
usually with a camera. It enables dozens of applications in augmented
and virtual reality (AR/VR), such as foveated or physiologically ac-
curate rendering [22, 29], interactive programs that respond to eye
movement by allowing the user to select a target with their eyes [32],
and so forth. Such applications, and others like laser eye surgery [48],
benefit from fast and accurate tracking of an eye that essentially fills the
sensor field of view (’near-eye’ tracking). Ideally, to meet the battery
and processing constraints of mobile headsets, eye trackers should also
conserve power and compute.

However, cameras force a tradeoff between resolution, framerate,
and power, since every pixel costs energy and bandwidth to acquire,
communicate, and process. Thus, the accuracy and latency of an eye
tracking system are often in tension. High-end eye tracking systems re-
solve this using high-speed cameras, bespoke protocols, and customized

• Anastasios N. Angelopoulos and Amit P. Kohli are with the University of
California Berkeley. E-mail: {angelopoulos,apkohli}@berkeley.edu,

• Julien N.P. Martel and Gordon Wetzstein are with Stanford University,
E-mail: {jnmartel,gordonwz}@stanford.edu,

• Jörg Conradt is with the KTH Royal Institute of Technology. E-mail:
jconradt@kth.se.

• * denotes equal contribution
• Project website: http://angelopoulos.ai/blog/posts/ebv-eye

readout interfaces to maximize bandwidth. Consequently, they are large
and power hungry. These complexities are unavoidable because of the
sheer volume of data generated by high-speed, high-resolution cameras.
But in near-eye gaze tracking, most of this data is redundant. Only the
pupil moves, while most of the image does not change.

Dynamic vision sensors (DVS) overcome these limitations by adap-
tively sampling when the eye moves. DVS pixels separately sample
when the instantaneous change in their incident irradiance exceeds a
threshold. The result is a stream of pixel-by-pixel timestamped packets
signaling changes, called events. Events contain the pixel location, the
time of sampling, as well as the sign of the change. In near-eye tracking,
motion is sparse in time and space. Events thus use bandwidth more
efficiently than frames, because only relevant information is sampled
and processed. This improves speed and power consumption.

Here, we report the first real-time event-based eye tracking system,
described in Figure 2. The sensor is placed close to the user’s eye such
that the eye nearly covers its field of view. For this reason, we refer
to this system as being “near-eye”, although our data is collected in
a desktop setting. We discuss a miniature prototype in Section 6. At
the core of our system is the update of a parametric representation of
the pupil at the event rate. This is fed to a polynomial regressor, also
evaluated on an event-by-event basis, that maps this internal parametric
representation to a gaze vector (the 3D direction of gaze). Along with
events, we also use frames captured at low rates (15-20Hz) by the same
sensor. The frames anchor our pupil tracking system with traditional
pupil-detection algorithms, while the events allow it to update the

1

http://angelopoulos.ai/blog/posts/ebv-eye

Online ellipse fitting Pupil

Online parabola fitting Eyelashes

Glint

Online fittingFrame processing

event

Polynomial regressor training

Threshold

Morphology

labels for screen
coordinates

Polynomial regressor
mapping

frame

Online circle fitting

Fig. 2. A flow diagram of our system. Both frames and events are inputs to our system. A first stage preprocesses them separately before both
streams are combined to update the eye model M = {E ,P,C }. Here, E and P are tuples of the parameters of quadratic functions defining the
limbus and eyelid, and C is a tuple of the two center coordinates (see Section 3 for further details). The model fitting is performed online, in real-time
at the arrival rate of frames (low, 25 Hz) and events (high, up to 100 kHz). To output a gaze vector, M is fed to a 5th-order polynomial regressor that
can be evaluated at event rate. This regressor is trained via a calibration procedure similar to EyeLink’s.

pupil’s location at high-speed. In our system, gaze vectors can be
queried at an estimated rate equivalent to 10,000 Hz or more. This
is an improvement of >10× over high-end, desktop-mounted devices
(see Table 1)using a small, low power sensor1. The following list
summarizes our contributions.

• We introduce the first hybrid event-based eye tracking system and
demonstrate a binocular prototype.

• We develop a model-based eye tracking algorithm, functioning at
the event rate and implement it in a real-time system.

• We capture a binocular dataset of events and frames from 24
subjects performing saccadic motions and smooth pursuits.

1.1 Is 10kHz gaze tracking useful?
The extreme speed of the eye tracking technology we introduce raises
a natural question: why should we care about an extremely fast eye-
tracking system? The answer has several layers. Firstly, the human eye
moves quickly during certain motions, at speeds sometimes exceeding
300◦/s [58]. This fact justifies the use of very fast sampling, in the
kHz range, in order to capture small, fast eye movements as they
initiate and track their trajectories. Furthermore, the eye’s acceleration
regularly reaches astronomical values—e.g. 24,000◦/s2—meaning
the eye muscles are capable of making forceful and high frequency
movements [4]. A simple Nyquist argument then motivates sampling
in the 10 kHz range to fully capture the eye’s motion. In particular,
a sensor with a high peak sampling rate could detect when the eye
is moving more quickly, characterize that motion with higher fidelity,
and perhaps even enable predictive approaches to eye tracking. For
applications like e-sports, where latency has a pernicious negative
impact [26, 27], fast event-based predictive rendering could be a game-
changer.

The adaptive sampling inherent to event-based cameras also helps
speak to the utility of speed. Our system does not always run at 10 kHz,
although it is capable of sustaining that rate. It only does so when
the underlying motion of the eye generates many events. Rather than
deciding a-priori to sample at 10 kHz, this rate emerged from the motion
of the eye, a natural justification that this speed may be useful. This
sampling approach allows the sensor to be much more power efficient
than a bespoke camera system like the EyeLink 1000, which may not
be suitable for an AR/VR headset due to power constraints.

1A Pregius line 40FPS SONY sensor consumes 300mW–2W [54] vs. 50mW–
0.9W for a DAVIS-346 [25].

system update rate (Hz) accuracy (◦)
Pupil Labs [1] 200 ∼ 1
Tobii [3] 120 0.5–1.1
EyeLink [2, 16] 1,000 ∼ 0.5
Ours > 10,000 0.45–1.75

Table 1. Overview of existing eye tracking systems. Our results can
be directly compared with EyeLink because we use the same protocol
[17]. Our system’s accuracy is 0.45◦ within the same field of view as
EyeLink, and speed is 10× faster.

2 RELATED WORK

Event cameras date back to the neuromorphic Silicon Retina intro-
duced by the seminal works of Mahowald and Mead [41, 43], and have
since advanced to a mature technology [12,13,38,50]. In the intervening
time, the utility of these high-speed sensors has been successfully ex-
ploited in a variety of application scenarios, including object and action
tracking [44], combined frame and event based object tracking [39], vi-
sual odometry [52], 6-DOF pose tracking [46], 3D reconstruction [42],
SLAM [11, 61], and hand tracking [33]. See the review by Gallego et
al. for a dedicated overview of the diverse work in the event-based vi-
sion community [20]. Hybrid frame-event approaches The fusion of
events and frames has been explored in different works such as [21,40].
In those approaches, direct, absolute photometric correlates acquired at
low rate (the frames) initialize or enhance the estimation of a quantity
tracked at high update rates (by the events). Similarly to visual–inertial
odometry in which a high-rate, potentially drifting, sensor such as an
inertial measurement unit (IMU) is corrected by a lower rate sensor that
provides absolute anchor points (such as visual features), these fusion
approaches are potentially more robust [35].

Early approaches to eye tracking include electro-oculography,
search coils, and other invasive methods [64]. Camera-based eye
tracking has evolved from tracking Purkinje reflections [8, 9] to
model-based approaches that extract parameterizations of the eye from
frames [37,56,60]. The model extraction, or pupil fitting, can be decou-
pled from regressing the point of gaze. Algorithms for pupil fitting and
gaze estimation are reviewed by Morimoto et al. [45] and Duchowski
et al. [15]. However, unlike in event-based vision, these methods are
rate-limited by camera frames. A number of eye tracking strategies do
not involve cameras, including photodiode base limbus trackers [57],
display embedded trackers for near-eye displays [59], and LED based
trackers [5, 36]. We do not focus our attention on these strategies,
although they are promising.

Appearance-based trackers directly estimate points of gaze from
camera frames, often using neural networks [6, 31, 51, 66]. A number
of datasets have emerged over the past five years, many of which

2

© 2022 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics.

Fig. 3. Events are generated by the pupil as it moves. The events on
the right are generated by the eye milliseconds after the frame shown
on the left, during a downward saccadic eye movement. The bottom
generates negative (red) events and the top generates positive (blue)
ones, since the pupil induces a negative contrast change in its direction
of motion. Each event in the right panel is received sequentially as a
separate packet.

leverage synthetic data, including: GazeCapture [31], UT Multi-view
[55], SynthesEyes [63], UnityEyes [62], MPIIGaze [65], and, most
recently, NVGaze [28]. These datasets comprise millions of synthesized
and real eye images. However, there is no dataset for event-based eye
tracking.

More recent gaze-tracking literature generally focuses on one of two
problems: gaze-tracking in the wild, i.e. on full-face images of users
without infrared (IR) illumination, such as from a laptop webcam [24];
or near-eye IR-illuminated gaze-tracking for use in controlled environ-
ments like an AR/VR headset. The review by Koulieris et al. details
these modern topics [30]. Note that we do not focus on eye-tracking
in the wild, although a deep learning model like NVGaze [28] used
in the frame-based portion of our system might enable us to do so.
Hence, our work falls in the second category, and we focus on eye
tracking in controlled, near-eye settings. We evaluate against com-
mercial eye-tracking systems in Table 1 using similar conditions and
protocols. Our eye tracker, like all other infrared near-eye trackers, is
not meant to be used where there will be large variations in head pose,
reflections, or background. It is geared towards AR/VR or biomedical
settings where high framerates are desirable (hence why the EyeLink
1000 samples at 1-2 kHz). Consequently, the accuracy and update rate
of our near-eye tracker with respect to controlled data is the proper
evaluation metric. No portable eye tracker achieves a framerate over
roughly 200 Hz; but using event-cameras, we achieve >10,000 Hz with
comparable accuracy to the gold standard, desktop mounted EyeLink
device. Compared to the EyeLink, our system is similarly accurate and
an order of magnitude faster. Compared to mobile systems, our system
is similarly accurate and two orders of magnitude faster.

The work closest to ours is the course project by Gisler [10], who
suggests the idea of using a DVS for eye-tracking. However, the
accuracy of their system is limited to “a third of the size of a 1024×768
screen” and they did not demonstrate real-time performance. To the
best of our knowledge, our work is the first to implement such a system,
to develop a practical algorithmic framework that includes an online
pupil fitting procedure, and to capture an event-based eye tracking
dataset, which will be released to the public.

3 SYSTEM AND METHODS

A DVS pixel triggers independently from its neighbors when it sees
a contrast change. This is called an event. Events are like pixels in a
difference image, except they are received separately at the time they
were generated. They carry no notion of a frame; events arrive as a
sparse stream of data, as illustrated in Figure 4. This stream consists
only of the timestamps, signs (±1 for positive or negative contrast
changes), and locations of the triggered pixels. Sparsity comes with
many benefits, like speed and processing efficiency. However, previ-
ously developed frame-based eye tracking methods like binarization
and dark/bright pupil tracking cannot be used on such data. Our goal in
this section is to develop a technique which can efficiently process this
new data stream while still leveraging the large body of existing work
in frame-based tracking.

To be precise, we built a hybrid event-frame-based gaze tracker
combining the low latency of events with the proven robustness of
frame-based methods. Our system consists of two distinct, concurrent
processing stages. First, it fits a 2D eye model from the event and frame
data. Second, it maps the estimated eye model parameters to a 3D gaze
vector representing the direction the user is looking, or alternatively, a
pixel on a screen at fixed distance (both representations have two free
parameters). An overview of our algorithmic framework is illustrated
in Figure 2.

3.1 2D Model Fitting
We start by defining a parametric eye model, with parameters M .
Whenever a frame or event is received from the sensor, these parameters
are updated. Since frames are produced at a constant rate, they update
the model independent of scene dynamics. But events only occur during
eye motion, and update it at high frequency. Our method fuses these
synchronous and asynchronous streams.

Eye model Motivated by Tian et al. [56], our eye model consists of
an ellipse representing the pupil with parameters E = (a,h,b,g, f) ∈
R5, a parabola representing the eyelid with parameters P = (u,v,w) ∈
R3, and a circle representing the glint (the reflection of the IR light
source off of the user’s eyeball) with parameters C = (r,c) ∈ R2.
The eye is thus fully parameterized by the 11 coefficients in M =
{E ,P,C }.

The parameters E ,P,C are fit separately. Ellipses, parabolas, and
circles are expressed canonically as quadrics, so they can be asyn-
chronously estimated using the same method. In the following, we
detail the updates for the fitting of E (see supplement for P and C).
The task ahead is to estimate E from a set of “candidate ellipse points”
D in the image plane that we believe lie on the edge of the pupil.

Parameterizing the pupil with an ellipse The locations (x,y) of
points on the ellipse representing the pupil in the image plane satisfy
the quadric equation:

EE (x,y) = 0 (1)

with EE (x,y) = ax2 +hxy+by2 +gx+ f y+d

We set d = −1 for convenience as it is an arbitrary scaling factor
corresponding to the offset of the plane intersecting the conic defined
by E = (a,h,b,g, f).

For each frame, we classify pixels near the edge of the pupil in an
image as candidate points Dimg.. Events near the edge of the pupil are
considered candidate points Devt.. Thus, the model of the ellipse is
ultimately updated by the set of points D = Devt.∪Dimg..

Receiving a frame Under off-axis IR illumination, the pupil appears
as a dark blob in the frame (see Fig. 5). By binarizing the greyscale
frame I using a constant threshold θ , removing noise on the resulting
image using morphological opening, and applying an edge detector, we
identified the candidate points:

Dimg. =
{
(x,y) |K

(
Hθ (I)◦Sσ

)
(x,y) = 1

}
, (2)

where Hθ is the unit step function shifted by θ used for thresholding;
◦ denotes morphological opening; Sσ is its structuring element, a
discretized circle parameterized by its radius σ ; and K is a binary edge
detection function. We found that recovering candidate ellipse points
with these simple operations worked sufficiently well. However, one
could use any state-of-the-art frame-based pupil tracking algorithm
outputting a set of candidate points to replace this stage of our system,
such as PuReST [53], ExCuSe [18], and Else [19].

Receiving an event Events only contribute to the fitting of E when
they are δ -close to the border of the last estimated ellipse,

Devt. =
{
(x,y) | ‖PE

(
(x,y)

)
− (x,y)‖2 < δ

}
, (3)

where PE

(
(x,y)

)
is the projection of (x,y) onto the ellipse — this is

step 8 of Algorithm 1.
The projection operator PE can be computed by solving a system of

two equations (one linear and one quadratic) in the specific case of the
ellipse parameterization.

3

Update
(event)

Evaluate
regressor

Process
event

time

:

:

Frame

Event

Legend

Between two events:

Between two frames:

Process frame Update (frame)

Fig. 4. The processing flow and time taken by the different stages
in our system. Our system allows events and frames to be processed
concurrently and update the same underlying model. Events and frames
are shown in time (top row). We also illustrate the operations happening
sequentially and concurrently on events (middle) and frames (bottom).

Our method can perform updates of M on an event-by-event basis,
in which case Devt. is a singleton containing a single event. As we
shall see in the experiments, the robustness of our method benefits
from considering more than one event per update, in which case Devt.
contains more than one event.

Fitting the ellipse from images and events We fit the ellipse model
(and similarly the parabola and circle models) using least squares. The
data points Dimg. coming from the same frame can be thought of as
having been generated synchronously, allowing us to fit the model to
the data as a batch:

E ∗ = argmin
E∈R5

∑
(x,y)∈Dimg.

EE (x,y)
2 (4)

whose solution is simply E ∗ = A−1 b with

A = ∑
(x,y)∈Dimg.

vx,y vᵀx,y, b = ∑
(x,y)∈Dimg.

vx,y (5)

and
vx,y = (x2,xy,y2,x,y)ᵀ (6)

Generally, we start with an initial estimate of the ellipse’s parameters
and then wish to update it with new sensor information (such as a
received frame or event). We can do so because in Equation (11), A
and b are sums and can thus be updated “online.” Practically, we store
a matrix Ā and a vector b̄, that are both updated upon the reception of
new candidate points by “summing them in.” More formally, when a set
of candidate points D t arrives at time t, it is used to produce a matrix
At and a vector bt according to Equation (11). At and bt can then be
blended with a matrix Āt and a vector b̄t representing and storing the
“current” state of the fit.

Āt+1 = γ Āt +(1− γ)At , (7)

b̄t+1 = γ b̄t +(1− γ)bt , withγ ∈ [0,1]

This method has the advantage of storing a single small 5×5 matrix
and a 5-dimensional vector, and blends information in time in a prin-
cipled way. Our method is reminiscent of reweighted least-squares
(RLS) with the loss of each candidate-point geometrically decayed by
γ . However, it is not equivalent due to the thresholding operation. To
prove this fact, in the setting of Equations 4–7, number v(1)x,y , ...,v

(t+1)
x,y .

RLS has a solution of the form R−1
t rt where: Rt = Σt

i=1aiv
(i)
x,yv(i) T

x,y ,
rt = Σt

i=1a(i)v(i) and a(i) are constant discount factors. Given Āt and
b̄t , we want Āt+1 and b̄t+1 to have the RWLS form. But At+1 =

1(PEt ((xt+1,yt+1))≤ t)(1− γ)(v(t+1)
x,y v(t+1) T

x,y − Āt)+ Āt , since vt+1
x,y is

only included if it is close enough to the last ellipse. The definition
of b̄t+1 is analogous. Therefore Algorithm 1 is RLS if and only if
1(PEt ((xt+1,yt+1))≤ T is constant. One can interpret δ and γ as spatio-
temporal regularization of our method; for example setting γ = 0 will
throw out all old candidate points (leading to degenerate ellipses be-
cause A becomes rank-1) while setting γ = 1 will stop all updates.

Algorithm 1 Online fitting of E from events and images

1: Ā = Id5×5, b̄ =~05 . Init. Ā and b̄
2: Āinv. = Ā−1 = Id5×5 . If using SMW init. Āinv.
3: while we are receiving data d do
4: Dimg.,Devt.← /0
5: if d contains a frame It then
6: Dimg.←

{
(x,y) |K

(
Hθ (It)◦Sρ

)
(x,y) = 1

}
7: if d contains events with coordinates (x1,y1), ...,(xN ,yN) then

8:
Devt.←

{
(x j,y j) | ‖PE

(
(x j,y j)

)
− (x j,y j)‖2 < δ ,

j ∈ {1, ...,N}
}

9: for all (x,y) ∈D = Devt.∪Dimg. do
10: vᵀx,y← (x2,xy,y2,x,y) . Eq. (13)
11: A← ∑(x,y)∈D vx,y vᵀx,y . Eq. (11)
12: b← ∑(x,y)∈D vx,y

13: if |D |> 1 then . Batch update (frame/multiple evts.)
14: Ā← γ Ā+(1− γ)A . Eq. (7)
15: b̄← γ b̄+(1− γ)b
16: Āinv.← Ā−1 . Full-rank inversion
17: E ← Āinv. b̄
18: else . (Event-based update)
19: Āinv.← 1

γ ′ Āinv.− 1−γ ′

γ ′
Āinv. AĀinv.

γ ′+(1−γ ′)vᵀx,y Āinv. vx,y
. SMW

20: b̄← γ ′ b̄+(1− γ ′)b
21: E ← Āinv. b̄

In the case that D t comes from a frame, At and bt can be directly
calculated from (11) since At is usually full rank. In contrast, events
arrive one at a time and asynchronously. Since our goal is to take
advantage of the low-latency and high-time resolution of the event
generation process, we should update Ā and b̄ from Devt., as often as
every event. An event generates a single candidate point, but vxt ,yt

can nonetheless be computed using Equation (13). The corresponding
At and bt for that event are computed using Equation (11). Note that
because At is rank-1, it is not invertible. This is not surprising, since E
has 5 parameters, therefore one needs 5 independent points to fit them.
In case one aims at performing an update every N events, |Devt.|= N,
and we can update E batch-wise, similarly to a frame.

Again, applying Equation (7), we can update Ā as Āt+1 = γ ′At +
(1− γ ′) Āt , with γ ′ ∈ [0,1]. After the reception of the first 5 events in
a non-degenerate configuration, Āt is rank-5 and can thus be inverted
(given we keep blending in new information, it is generally invertible
for the rest of time). Since vx,y and the blending of A and b are both
easy to compute, these updates can be performed at the event rate in
practice. But, updating E ∗ eventwise (typically up to 200 times per
millisecond during a saccade) also entails computing (Āt)−1 eventwise,
which might be computationally infeasible to perform in real time.
However, because every event generates an At that is rank-1, one can
store (Āt)−1 and use the Sherman-Morrison-Woodbury (SMW) identity
[23] to update it directly, online, after applying a small decay term to
downweight old data in time. The fitting of the ellipse is summarized
in Algorithm 1. Again, the fitting of P and C is analogous. This
formulation and implementation of least squares is well suited for the
fusion of both the event and frame streams: it is a natural online method
that is agnostic to the synchronicity of the data.

3.2 Mapping the eye-model to a point of gaze
The output of the gaze tracker is the 2D screen coordinate the user is
looking at, which we call the point of gaze. In the first stage of our
system (Sec. 3.1), we fit the parameters M = {E ,P,C } of an eye
model given incoming events and frames. We now discuss how we
associate a point of gaze to those parameters.

The 2D screen coordinate position a user is looking at is denoted
(xs,ys). The problem is to find a mapping from M to (xs,ys). We
could explicitly model and fit the relative poses of the camera, user eye,

4

© 2022 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics.

Fig. 5. The binocular eye tracking system setup used for evaluation.
We collected a dataset with binocular saccadic and smooth-pursuit data
on 24 subjects looking at an 11x11 grid of fixation points over a 64×96◦

FoV. Altogether, we collected ∼ 30 million events per subject per eye.
Two DAVIS sensors and a near-infrared illumination source are mounted
close to the user’s head. The head is fixed by a head rest and the user
observes a stimulus on the screen.

and screen along with the projection of the camera and transformation
between screen and world coordinates. However, we adopt another
approach, common in the gaze mapping literature [45] that consists of
phenomenologically regressing the output (xs,ys) from the pupil center
(xc,yc) using two 5th order polynomial functions Gθ 1 |x and Gθ 2 |y (one
for each coordinate):

Gθ (xc,yc) =

(
xs
ys

)
=

(
Gθ 1 |x(xc,yc)
Gθ 2 |y(xc,yc)

)
(8)

The simplicity of the model and polynomial regressor is a strength
of our system. An advantage of using such a polynomial Gθ to map
an eye model to screen coordinates is that it requires virtually no com-
putation to evaluate: a few additions and multiplications. Hence, it is
particularly well suited for event updates, even at high rates. Regressing
the parameters θ of Gθ requires ((xc,yc),(xs,ys)) input-output training
pairs (the exact number depending on the exact degree of the polyno-
mial) which are generally obtained during calibration by extracting the
pupil center as in Section 3.1 and regressing against the known gaze
point. Other simple regression strategies that we did not attempt, like
Gaussian processes and random forests, may provide further benefits
like uncertainty quantification. Although a more complex model such
as NVGaze [28] may improve robustness and generalization, it requires
orders of magnitude more computation and power and does not provide
an accuracy advantage (see discussion).

4 DATASET

Data Acquisition Our setup is shown in Figure 5. It consists of two
DAVIS346b (iniVation) sensors, imaging the right and left eye of a user
placed at about 25 cm from each camera center. The user’s head is
fixed on an ophthalmic head rest and strapped during the experiment
to prevent excessive slippage. The sensors are mounted with two
25 mm f/1.4 VIS-NIR C-mount lenses (EO-#67-715) equipped with
two UV/VIS cut-off filters (EO-#89-834). The eyes are illuminated
using the NIR illuminators of the Eye Tribe tracker. Both sensors are
synchronized (their timestamps are aligned), and the 8-bit 346×260 px
greyscale frames and events of both DAVIS346b sensors are recorded
simultaneously. The exposure is set so as to maximize contrast in
the frame, resulting in a frame rate of about 25 FPS. The stimuli are
displayed on a 40 in diagonal, 1920×1080 px monitor (Sceptre 1080p
X415BV FSR), placed 40 cm away (standard reading distance) from
the user [14, 34]. It is horizontally centered and vertically aligned so
that a user looking straight roughly gazes at a point placed at a third
from the top.

Dataset Characteristics Our dataset is, to the best of our knowl-
edge, the first collected for gaze-tracking using event-based vision
sensors. It was recorded on 24 subjects and consists of two experiments
corresponding to two different types of eye-motion: random saccades
and smooth pursuit. The stimulus is a 40×40 px green cross centered
on a 20 px diameter disk presented against a black background. In our
setup the monitor spans a field of view (FoV) of 64×96°.

In the first experiment, users were asked to fixate on the stimulus
randomly displayed at one of 121 different locations (corresponding
to an 11× 11 grid on the monitor) for 1.5 s each. All locations are
presented once, and the random sequence was the same for all users.
The grid is visualized in the bottom row of Figure 6. In the second
experiment, users were asked to fixate on the stimulus, which moved
smoothly along a predictable square-wave trajectory starting at the top
of the screen and moving towards the bottom while spanning the whole
screen horizontally with a vertical period of 150 px. This trajectory
is the black dotted line in the top row of Figure 6. Although we only
explicitly induced saccadic and smooth pursuit motions, our dataset
contains rich eye motions including microsaccades and tremor. As one
example, carefully parse the top row of Figure 7, and notice that after
every saccade (large spike in events) there is a corrective microsaccade
(small spike in events). Careful inspection of our public dataset will
reveal detailed information about such subtle eye motions (e.g., the
time between a saccade and the subsequent microsaccade).

5 RESULTS

Calibration (i.e. defining Gθ and estimating θ) is addressed in Sec-
tion 3 and with more details in Supplement S2 and S4. Before using
our eye tracker, a user looks at a set of “calibration points” whose
coordinates in screen space are known. The pupil position in camera
space is then extracted for each point, and a second-order polynomial
is regressed mapping the pupil center to the screen coordinates: this
is the gaze point. Anytime we report accuracy or precision results for
a particular FoV, we only calibrate on half the points in that FoV (e.g.
odd indexes). Then, we report results on the full set of points. For a
similar FoV to EyeLink’s, the center 20◦× 40◦ FoV, this means we
are testing on 16 points and calibrating on 8. Eyelink uses a 12 point
calibration procedure [17] which supposedly enhances accuracy. Our
results can thus be readily compared to the commercial gold standard.

Assessing Update Rates Our system can operate in real-time and
update the pupil fit on an event-per-event basis; a conservative estimate
of the peak update rate of our system is 10,000 Hz. We can achieve
such a rate because saccadic motions induce hundreds of thousands
of events due to the high-contrast edge between the pupil and the iris.
These events can thus be used to “track” the pupil between two frames
(see Figs. 1,7). In contrast, when the eye is still, very few events are
produced.

We calculate the update rate as follows: we first estimate, in a conser-
vative way, the amount of events per second for a saccade ρ . Figure 7
shows a saccade typically induces more than ρ = 200 evts.ms−1. Sec-
ond, we calculate the optimal number of events per fit N to produce
a robust (smooth) pupil position estimate: this is N∗ = 20 according
to Figure 8 in which we have performed an experiment varying the
number of events per fit. This yields the conservative update rate of
our system, R = ρ

N∗ which is R = 200·10−3

20 = 10 kHz. Our system can
sustain an update rate of 10,000 Hz or above indefinitely, but this is
not desirable because when the eye is still, no updating is required.
Our event-driven update rate therefore only samples quickly when the
motion of the eye requires it. In other words, there would be no speed
advantage to using a frame-based system running at = 10 kHz.

The number of events used to perform a fit is the number of events
accumulated in D before solving for E (in Algorithm 1). Figure 7
illustrates the use of different values of N: we plot the fitted pupil
center coordinates in image space for a random subject performing the
random saccade experiment. As expected, when every event is used to
update E , the update rate is very high (N = 1, ρ = 200 evts.s−1 thus
R = 200 kHz) but the algorithm is not robust to series of noisy events
which cause the fit to change drastically and reach an unrecoverable
state until the next frame corrects it. Moreover, fitting for every event

5

R
an

do
m

 S
ac

ca
de

s

50 100 150 200 250 300
160

180

200

220

240

260

280

300

Sm
oo

th
 P

ur
su

it

140

160

180

200

220

240

260

0 50 100 150 200 250 300
Pixel Coordinate

Pi
xe

l C
oo

rd
in

at
e

Pupil in Camera Space Gaze Point in Screen Space Gaze Point in Screen Space

20° 63°

20°
63°

40°

95°

95°95°

Pixel Coordinate

Pi
xe

l C
oo

rd
in

at
e

Fig. 6. Fitted pupil locations and gaze point estimates for smooth pursuit motion and random saccadic motion are shown for four different
users in different colors. The figure is organized into grids; the first row plots smooth pursuit data and the second row plots random saccadic data.
The first column shows the extracted pupil center in camera image space, and the second/third columns shows the gaze point in screen space for a
small/large field of view, with the ground truth locations indicated in black. The average visual angle accuracy in a 47° FoV for smooth pursuit data is
1° (top center) and it is 3.9° for the entire 113° FoV (top right).

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1

1

20

255

= frame

0

50

100

150

200

250

300

0 0.02 0.04 0.06 0.08 0.1

0.01s

10
0

ev
en

ts

2

50

864 10 12 14 16 18

100
150
200
250
300

0
0

2

50

864 10 12 14 16 18

100
150
200
250
300

0
0

2

50

864 10 12 14 16 18

100
150
200
250
300

0
0

Estimated Pupil Column (Y) in Image Space
Estimated Pupil Column (X) in Image Space

#events
ms

seconds

#events
fit

ev
en

ts

seconds

seconds

seconds

2 864 10 12 14 16 1800

200

400

Fig. 7. The X-Y coordinates of the fitted pupil over time. Our system can update the pupil’s location as fast as every event (row 2), but by
considering more events, we can improve robustness and sparsity (row 3). Updating too slowly, however, harms robustness again (row 4). In the top
row, a plot of the number of events per millisecond is shown for one user. Then, from top to bottom, different plots of the X (in red) and Y (blue)
coordinates of the pupil position tracks are shown with an increasing the number of events used for each fit. One pupil position is obtained per
fit. Hence, fewer fits are produced in the lower plot (as more events are used per fit) than in the upper plots. The number of fits also varies with
the number of events produced per millisecond (top plot). We find 20 events per fit to give a good trade-off between the speed of our system (the
maximal number of fits per second we can obtain) and the robustness of the fit. The 10 kHz peak update rate we report is calculated for 20 events
and based on the typical 200 events we observe per millisecond during a saccade. The “glitches” at 3 and 7 seconds are blinks, from which the
system recovers at the next frame.

causes us to make wasteful updates to E even when the eye is not
really moving and events are just noise. In the opposite case, where we
consider N to be hundreds, our data is desirably sparse and very robust
(even to large perturbations such as blinks), but it does not smoothly
follow a saccade between frames. This exposes an inherent tradeoff in
our system between the smoothness, sparsity, and update rate.

In order to find an optimal value for this tradeoff, Figure 8 plots
a measure of smoothness against the number of events per fit for a
given subject. The quantitative measure of smoothness we use is the
inverse norm of the concatenated 1-forward differences of the X and Y

coordinates. It shows that a clear optimal is obtained for this measure of
smoothness using N = 20 events per fit. Indeed, this is also confirmed
visually in the middle row of Figure 7: this parameter has a good
balance between sparsity, robustness, and speed.

Pupil Tracking Evaluations To assess the effectiveness of event-
based pupil tracking, we plot the intersection over union (IOU) and
error in center estimation as histograms in Figure 9 over our entire
dataset. For two binary matrices x and y, IOU can be expressed as

IOU(x,y) =
∑x∨ y
∑x∧ y

,

6

© 2022 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics.

A B

C D

Fig. 8. Precision and accuracy of our system depend on the target field of view. The circle diameters in plots A and B represent the precision,
defined as the trimmed standard deviation of estimated gaze points centered at their ground truth label, averaged across all subjects. Plot A is a
restricted field of view from plot B. The average precision is 1.6◦ in the smaller field of view and 3◦ in the larger. Calibration is performed using only
half the points within the evaluated field of view. The black circles in the center represent the stimulus size, 1.3◦. Plot C shows the best accuracy of
a single subject, which ranges from 0.45–1.75◦ for diagonal fields of view between 45–98◦. Plot D illustrates the empirical smoothness (see the
Appendix for rigorous definition), against the number of events per fit for our method. The plot shows a clear optimum at around 20 events per fit,
indicating that the robustness is highest for this setting

0.0 0.5 1.0
IOU

10 1

lo
g

P

0 10 20
error in center (px)

10 1

lo
g

P

Fig. 9. The error in center estimation and intersection over union
(IOU) of our method over the full field of view and all subjects are plotted
as normalized histograms. Notice the log scale on the y axis.

where the logical operations are performed elementwise. In our case,
xi, j = 1 if the pixel (i, j) lies within the event-based pupil estimate. The
matrix yi, j corresponds similarly to the ground truth pupil extracted
from a frame. IOU measures the quality of the pupil estimate x an IOU
of 1 implies perfect overlap of x and the ground truth y. We compared
the event-based pupil estimate obtained immediately before every frame
in our dataset and compared it to the the pupil estimate from the frame.
The IOU almost never falls below 0.8 and the pupil center almost never
deviates by more than 3 pixels. These results inspire confidence that our
method tracks the true underlying motion of the eye, since the events
agree with an independently estimated pupil from the future frame.

Gaze Mapping Accuracy Accuracy represents the closeness of the
pupil estimates to ground truth. Specifically, we calculate it as the
average absolute deviation of the pupil estimates from the labelled
gaze points in the random saccade experiment. Our system achieves
an accuracy comparable with commercial frame-based eye tracking
systems, < 0.5◦ [16], within a standard field of view, which degrades
to 2◦ on a larger field (see bottom row of Figure 8). A purely frame-
based eye-tracking system provides a lower-bound on our accuracy
since events add information during fast motions of the eye that frames
cannot sample. However, there is no way to evaluate the accuracy of
event-wise updates of the pupil’s position with a traditional camera
and monitor. Hence, we performed our own experiments, in which we

compared our frame-based algorithm’s estimated gaze-locations with
the ground truth point a user was looking at on a screen during saccadic
motions.

Although we cannot directly evaluate the accuracy in-between
frames, using the assumption that eye motion is continuous in camera-
space at a very small timescale (this is why we optimized for smooth-
ness of the trace in Figure 7), we can indirectly assess accuracy at event
rate. If our event-based updates did not match the motion of the pupil,
then, when a frame was received, the X and Y pupil center traces in
Figure 7 would have a “glitch” corresponding to the correction of the
bad estimate (as in the case of the blink at roughly the 7 seconds mark).
This does not occur, so our system must at least match the accuracy of
our frame-based method.

Gaze Mapping Precision We calculate precision as the empirical
standard deviation, in visual angle, of the estimated pupil centers and
plot it in Figure 8A and B across all subjects. The blue circles in the
plot are thus a measure of the statistical spread, while the accuracy
is reported as a line in the Figure 8C. We assess precision by fitting
a polynomial on a subset of points and evaluating on a held-out set.
Specifically we train on all the “even” positions on the grid and evaluate
on the “odd” ones, do the opposite and average the numbers. We
obtain 1.6° of visual angle precision on the smaller field of view. This
precision decreases on the larger field to 3°. Precision can also be
visually assessed in Figure 6. In Figure 8, only the last half second (out
of a 1.5 s stimulus presentation) is used for each saccade, as we assume
the user’s gaze might have changed in the first second (due to the large
FoV, some subjects had to search for the stimulus). Blinks are removed
using an automated blink detector which is part of our pipeline (see
supplement). The top and bottom center plots are obtained by fitting a
second-degree polynomial regressor on a smaller FoV, while the right
plots are obtained by fitting a second-degree polynomial on a larger
FoV. Notice that at the edges of the top right and bottom left displays of
Figure 8, we can clearly observe that the accuracy and precision both

7

DVS chip M12 Lens

A B

Fig. 10. Our miniature prototype streams events in real time (A) and mounts on a pair of glasses (B), shown here with a M12 lens. Data is
streamed out of the prototype using less than 12Mbits/s of bandwidth.

worsen in the edges of the field of view, both because of occlusion and
also because a small change in pupil center can have a large effect on
gaze location when viewed at that angle.

We quantitatively assess the precision of our system in Figure 8. A
second-degree polynomial is fit on the best-subject for both a small
20×40° (top left) and larger 63×95° (top right) field of view. The total
FoV 64×96° spanned by the screen in our experiments is comparatively
much larger (and harder to regress) than previously reported in the
literature (26×40° etc.) [16], explaining why we report results for two
regressors fitted on two FoV. Precision in visual angle averaged for all
the points in the small FoV is 1.6°.

6 DISCUSSION

We presented a system and a method for near-eye gaze tracking using
a vision sensor that can produce both conventional images and event
data. Our system inherits the capabilities of frame-based sensors: we
demonstrated state-of-the-art precision of 0.5° of visual angle error in
a 121 fixation point task, in addition to the advantages of event-based
data. Specifically, we obtain a conservative peak rate of 200 events per
millisecond in a 2 px radius around the pupil and showed our method
can achieve a robust fit performed every 20 events. Hence we claim
a conservative peak update rate of 10 kHz. Our method can sustain
the real-time processing of those 200 evts.ms−1. A method that could
reliably estimate the pupil position every single event, or would be able
to generate/consider an even higher event rate, would theoretically yield
even higher update rates. The update rate we demonstrate is about 10×
higher than the fastest commercial systems we surveyed, and such can-
not be envisioned, even with a modest resolution conventional camera,
due to the bandwidth required to output frames at those frequencies.

Limitations of our work, as well as most other existing eye trackers,
include susceptibility to slippage and unavailability of ground truth.
Specifically, Gθ is not robust to slippage of the cameras with respect
to the face. This is an open challenge that, for now, requires peri-
odic recalibration. Ground truth is unavailable for all eye-trackers; the
standard method of evaluation is to assess both against one-another
with the same methodology [17]. A final limitation is that we do not
report the time between the true movement of the human eye and the
time we register an update, otherwise known as latency. Latency is
heavily dependent on the hardware details of the processor and the
communication channel with the camera. Therefore, reporting latency
is outside the scope of our work, since we did not attempt to build a
custom embedded system. However, due to our extremely fast update
rate, our software would surely not limit the speed of a commercial
system, and optimizing the hardware would ensure fast operation. We
estimate each event based update to require, in worst case, about 300
FLOPS. This means our algorithm lends itself to dedicated implemen-
tations that are likely to be very efficient on most modern low-power
embedded-processors. Additionally, although it was not the focus of
our work, there is the possibility of using a deep convolutional neural

network to output a pupil center estimate in our gaze tracking pipeline
(see Figure 2, top). This may improve the robustness of our system
and allow generalization to different subjects, like NVGaze [28]. It
is worth noting, however, that the best-case accuracy NVGaze reports
when trained and evaluated on a single subject in a near-eye scenario is
0.5◦, the same as ours. Additionally, using such models in a compute-
constrained setting may bottleneck tracking speed or consume too much
power. Finally, our choices of the tuning parameters γ , δ , and # of
events per fit (see Figure 8) depend on assumptions about the true
Lipschitz parameter of the eye’s motion. Partially because the true
Lipschitz parameter is unknown, changing, and perhaps unknowable,
the user of our system will need to hand tune these parameters to strike
a balance between the sensitivity of the method to jerky eye motions
and its susceptibility to noise. Because our dataset consists mostly of
smooth motions like fixation, saccades, and smooth pursuit, we just
chose the parameters that maximized the smoothness. However, a vi-
sion scientist may find it interesting to experiment with other parameter
choices when studying subtler eye motions. Indeed, one can imagine a
future system that dynamically adjusts the tuning parameters over time
based on the motion of the eye as it is being tracked.

6.1 Towards a mobile, event-based tracker for AR/VR

We built a head-mounted prototype of our eye tracking system to demon-
strate its potential for miniaturization. We designed a custom mount
that sits on a user’s head and holds a 22×22 mm DVS and lens con-
nected to a battery-powered Raspberry Pi. Figure 10 shows our setup.
It is slightly different from the one we used in our main experiments,
since the sensor is lower resolution (128×128 pixels) and does not out-
put frames. However, the DAVIS346 chip used in our desktop mounted
experiments is already small enough (25×25 mm) to fit on the same
mount; this would require a custom PCB, which we will soon be able to
demonstrate, along with recorded data from our setup and our custom
3D mount2.

Particularly given the relative ease of building a miniature event-
based near-eye gaze tracker, we believe the technology could benefit the
AR/VR community. We discussed the speed advantage in Section 1.1,
but there are further benefits. For example, AR/VR systems must
conserve power to extend battery life, and event-based eye tracking
consumes less power. To see why, notice that during fixation and small
eye motions, the sensor induces fewer events and incurs less processing,
whereas each pixel in a frame must always be acquired and processed
in a traditional system. Furthermore, AR systems should perform well
in a variety of indoor and outdoor lighting conditions; event-based
cameras have a dynamic range of ≈ 130dB, much more robust than the
traditional camera. The future of eye-tracking undoubtedly involves
mobile, untethered, always-on AR/VR glasses, so the efficiency of
event-based sensors makes them a natural choice. As a starting direction

2See project webpage: http://angelopoulos.ai/blog/posts/ebv-eye/

8

http://angelopoulos.ai/blog/posts/ebv-eye

© 2022 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics.

for interested future researchers, we note that the high update rate of
our system would likely enable prediction of saccadic landing zones
and durations, with AR/VR applications in efficient predictive foveated
rendering [22,29] and autofocal AR [7,49]. The most notable remaining
challenge is slippage: head-mounted eye tracking systems often require
3D modeling of the user’s head and face pose or recalibration to account
for relative movement between the eye tracker and the head during use.
Our evaluations in Section 5 do not account for slippage, which is
often the primary driver of error in head-mounted eye tracking products.
However, given the longstanding work on event-driven 3D algorithms
like SLAM [47], we are optimistic that future researchers will user
our platform as a starting point to build event-based slip compensation
algorithms too. As a parting conjecture, since the polynomial mapping
between the pupil center and gaze point is quite simple, an automatic
calibration scheme may be possible by selecting an appropriate nearest-
neighbor from a bank of users; the neighbor might be chosen based on
the glint and ellipse parameters, for example.

ACKNOWLEDGMENTS

A.N.A. was supported by a National Science Foundation (NSF) Fellow-
ship and a Berkeley Fellowship. J.N.P.M. was supported by a Swiss
National Foundation (SNF) Fellowship (P2EZP2 181817), G.W. was
supported by an NSF CAREER Award (IIS 1553333), a Sloan Fellow-
ship, by the KAUST Office of Sponsored Research through the Visual
Computing Center CCF grant, and a PECASE by the ARL. Thanks to
Stephen Boyd and Mert Pilanci for helpful conversations.

REFERENCES

[1] Pupil labs website. https://pupil-labs.com/products/
vr-ar/tech-specs. Accessed: 2019-08-14.

[2] Sr research website. https://www.sr-research.com/
products/eyelink-1000-plus/. Accessed: 2019-11-12.

[3] Tobii website. https://vr.tobii.com/products/
htc-vive-pro-eye/. Accessed: 2019-11-12.

[4] R. A. Abrams, D. E. Meyer, and S. Kornblum. Speed and accuracy of
saccadic eye movements: characteristics of impulse variability in the ocu-
lomotor system. Journal of Experimental Psychology: Human Perception
and Performance, 15(3):529, 1989.

[5] K. Akşit, J. Kautz, and D. Luebke. Gaze-sensing leds for head mounted
displays. arXiv preprint arXiv:2003.08499, 2020.

[6] S. Baluja and D. Pomerleau. Non-intrusive gaze tracking using artificial
neural networks. In Advances in Neural Information Processing Systems,
pp. 753–760, 1994.

[7] P. Chakravarthula, D. Dunn, K. Akşit, and H. Fuchs. Focusar: Auto-focus
augmented reality eyeglasses for both real world and virtual imagery. IEEE
transactions on visualization and computer graphics, 24(11):2906–2916,
2018.

[8] T. N. Cornsweet and H. D. Crane. Accurate two-dimensional eye tracker
using first and fourth purkinje images. JOSA, 63(8):921–928, 1973.

[9] H. D. Crane and C. M. Steele. Generation-v dual-purkinje-image eye-
tracker. Applied Optics, 24(4):527–537, 1985.

[10] G. Damian. Eye tracking using event-based silicon retina, 2007.
[11] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam:

Real-time single camera slam. IEEE Transactions on Pattern Analysis &
Machine Intelligence, (6):1052–1067, 2007.

[12] T. Delbruck. Silicon retina with correlation-based, velocity-tuned pixels.
IEEE Transactions on Neural Networks, 4(3):529–541, 1993.

[13] T. Delbrück, B. Linares-Barranco, E. Culurciello, and C. Posch. Activity-
driven, event-based vision sensors. In Proceedings of 2010 IEEE In-
ternational Symposium on Circuits and Systems, pp. 2426–2429. IEEE,
2010.

[14] A. K. Dexl, H. Schlögel, M. Wolfbauer, and G. Grabner. Device for
improving quantification of reading acuity and reading speed. Journal of
Refractive Surgery, 26(9):682–688, 2010.

[15] A. T. Duchowski. Eye tracking methodology. Theory and practice,
328(614):2–3, 2007.

[16] B. V. Ehinger, K. Gross, I. Ibs, and P. Koenig. A new comprehensive
eye-tracking test battery concurrently evaluating the pupil labs glasses and
the eyelink 1000. BioRxiv, p. 536243, 2019.

[17] Eyelink Support Staff. Private Communication, 2019. To understand how
EyeLink arrived at their accuracy and speed claims we corresponded with
them. The correspondence is anonymized and attached in the supplement.

[18] W. Fuhl, T. Kübler, K. Sippel, W. Rosenstiel, and E. Kasneci. Excuse:
Robust pupil detection in real-world scenarios. In International Conference
on Computer Analysis of Images and Patterns, pp. 39–51. Springer, 2015.

[19] W. Fuhl, T. C. Santini, T. Kübler, and E. Kasneci. Else: Ellipse selection
for robust pupil detection in real-world environments. In Proceedings
of the Ninth Biennial ACM Symposium on Eye Tracking Research &
Applications, pp. 123–130. ACM, 2016.

[20] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis, et al. Event-based
vision: A survey. arXiv preprint arXiv:1904.08405, 2019.

[21] D. Gehrig, H. Rebecq, G. Gallego, and D. Scaramuzza. Asyn-
chronous, photometric feature tracking using events and frames. CoRR,
abs/1807.09713, 2018.

[22] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. Foveated 3d
graphics. ACM Transactions on Graphics (TOG), 31(6):164, 2012.

[23] W. W. Hager. Updating the inverse of a matrix. SIAM review, 31(2):221–
239, 1989.

[24] D. W. Hansen and A. E. Pece. Eye tracking in the wild. Computer Vision
and Image Understanding, 98(1):155–181, 2005.

[25] iniVation. Datasheet, 2020. DAVIS346 Sensor, maximal value reported in
the datasheet.

[26] J. Kim, P. Knowles, J. Spjut, B. Boudaoud, and M. Mcguire. Post-render
warp with late input sampling improves aiming under high latency con-
ditions. Proceedings of the ACM on Computer Graphics and Interactive
Techniques, 3(2):1–18, 2020.

[27] J. Kim, J. Spjut, M. McGuire, A. Majercik, B. Boudaoud, R. Albert, and
D. Luebke. Esports arms race: Latency and refresh rate for competitive
gaming tasks. Journal of Vision, 19(10):218c, 2019.

[28] J. Kim, M. Stengel, A. Majercik, S. De Mello, D. Dunn, S. Laine,
M. McGuire, and D. Luebke. Nvgaze: An anatomically-informed dataset
for low-latency, near-eye gaze estimation. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, p. 550. ACM, 2019.

[29] R. Konrad, A. Angelopoulos, and G. Wetzstein. Gaze-contingent ocular
parallax rendering for virtual reality. ACM Trans. Graph., 39, 2020.

[30] G. A. Koulieris, K. Akşit, M. Stengel, R. K. Mantiuk, K. Mania, and
C. Richardt. Near-eye display and tracking technologies for virtual and
augmented reality. In Computer Graphics Forum, vol. 38, pp. 493–519.
Wiley Online Library, 2019.

[31] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Ma-
tusik, and A. Torralba. Eye tracking for everyone. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp.
2176–2184, 2016.

[32] M. Kytö, B. Ens, T. Piumsomboon, G. A. Lee, and M. Billinghurst. Pin-
pointing: Precise head-and eye-based target selection for augmented re-
ality. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, p. 81. ACM, 2018.

[33] J. H. Lee, P. K. Park, C.-W. Shin, H. Ryu, B. C. Kang, and T. Delbruck.
Touchless hand gesture ui with instantaneous responses. In 2012 19th
IEEE International Conference on Image Processing, pp. 1957–1960.
IEEE, 2012.

[34] G. E. Legge, C. M. Madison, and J. S. Mansfield. Measuring braille
reading speed with the mnread test. Visual Impairment Research, 1(3):131–
145, 1999.

[35] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale.
Keyframe-based visual–inertial odometry using nonlinear optimization.
The International Journal of Robotics Research, 34(3):314–334, 2015.

[36] R. Li, E. Whitmire, M. Stengel, B. Boudaoud, J. Kautz, D. Luebke, S. Patel,
and K. Akşit. Optical gaze tracking with spatially-sparse single-pixel
detectors. arXiv preprint arXiv:2009.06875, 2020.

[37] Y. Li, S. Wang, and X. Ding. Eye/eyes tracking based on a unified
deformable template and particle filtering. Pattern Recognition Letters,
31(11):1377–1387, 2010.

[38] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128x128 120 db 15us latency
asynchronous temporal contrast vision sensor. IEEE journal of solid-state
circuits, 43(2):566–576, 2008.

[39] H. Liu, D. P. Moeys, G. Das, D. Neil, S.-C. Liu, and T. Delbrück. Com-
bined frame-and event-based detection and tracking. In 2016 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS), pp. 2511–2514.
IEEE, 2016.

[40] H. Liu, D. P. Moeys, G. Das, D. Neil, S.-C. Liu, and T. Delbrück. Com-

9

https://pupil-labs.com/products/vr-ar/tech-specs
https://pupil-labs.com/products/vr-ar/tech-specs
https://www.sr-research.com/products/eyelink-1000-plus/
https://www.sr-research.com/products/eyelink-1000-plus/
https://vr.tobii.com/products/htc-vive-pro-eye/
https://vr.tobii.com/products/htc-vive-pro-eye/

bined frame-and event-based detection and tracking. In 2016 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS), pp. 2511–2514.
IEEE, 2016.

[41] M. Mahowald. The silicon retina. In An Analog VLSI System for Stereo-
scopic Vision, pp. 4–65. Springer, 1994.

[42] J. N. Martel, J. Müller, J. Conradt, and Y. Sandamirskaya. An active
approach to solving the stereo matching problem using event-based sensors.
In 2018 IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1–5. IEEE, 2018.

[43] C. A. Mead and M. A. Mahowald. A silicon model of early visual process-
ing. Neural networks, 1(1):91–97, 1988.

[44] A. Mitrokhin, C. Fermüller, C. Parameshwara, and Y. Aloimonos. Event-
based moving object detection and tracking. In 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 1–9.
IEEE, 2018.

[45] C. H. Morimoto and M. R. Mimica. Eye gaze tracking techniques for in-
teractive applications. Computer vision and image understanding, 98(1):4–
24, 2005.

[46] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza. The
event-camera dataset and simulator: Event-based data for pose estimation,
visual odometry, and slam. The International Journal of Robotics Research,
36(2):142–149, 2017.

[47] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza. The
event-camera dataset and simulator: Event-based data for pose estimation,
visual odometry, and slam. The International Journal of Robotics Research,
36(2):142–149, 2017.

[48] I. M. Neuhann, B. A. Lege, M. Bauer, J. M. Hassel, A. Hilger, and T. F.
Neuhann. Static and dynamic rotational eye tracking during lasik treat-
ment of myopicastigmatism with the zyoptix laser platform and advanced
control eye tracker. Journal of Refractive Surgery, 26(1):17–27, 2010.

[49] N. Padmanaban, R. Konrad, and G. Wetzstein. Autofocals: Evalu-
ating gaze-contingent eyeglasses for presbyopes. Science advances,
5(6):eaav6187, 2019.

[50] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Delbruck.
Retinomorphic event-based vision sensors: bioinspired cameras with spik-
ing output. Proceedings of the IEEE, 102(10):1470–1484, 2014.

[51] R. Ranjan, S. De Mello, and J. Kautz. Light-weight head pose invariant
gaze tracking. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 2156–2164, 2018.

[52] H. Rebecq, T. Horstschaefer, and D. Scaramuzza. Real-time visual-inertial
odometry for event cameras using keyframe-based nonlinear optimization.
In BMVC, 2017.

[53] T. Santini, W. Fuhl, and E. Kasneci. Purest: robust pupil tracking for real-
time pervasive eye tracking. In Proceedings of the 2018 ACM Symposium
on Eye Tracking Research & Applications, p. 61. ACM, 2018.

[54] SONY. Datasheet, 2019. IMX387 Pregius sensor, SLVS – EC 8 Lane 12
bit 40.4 FPS, operating in typical conditions.

[55] Y. Sugano, Y. Matsushita, and Y. Sato. Learning-by-synthesis for
appearance-based 3d gaze estimation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1821–1828,
2014.

[56] Y.-l. Tian, T. Kanade, and J. F. Cohn. Dual-state parametric eye tracking.
In Proceedings Fourth IEEE International Conference on Automatic Face
and Gesture Recognition (Cat. No. PR00580), pp. 110–115. IEEE, 2000.

[57] C. Topal, Ö. N. Gerek, and A. Doǧan. A head-mounted sensor-based eye
tracking device: eye touch system. In Proceedings of the 2008 symposium
on Eye tracking research & applications, pp. 87–90, 2008.

[58] P. Verghese and B. R. Beutter. Motion processing. In V. Ramachandran,
ed., Encyclopedia of the Human Brain, pp. 117 – 135. Academic Press,
New York, 2002. doi: 10.1016/B0-12-227210-2/00215-6

[59] U. Vogel, D. Kreye, B. Richter, G. Bunk, S. Reckziegel, R. Herold,
M. Scholles, M. Törker, C. Grillberger, J. Amelung, et al. Bi-directional
oled microdisplay for interactive see-through hmds: Study toward integra-
tion of eye-tracking and informational facilities. Journal of the Society for
Information Display, 17(3):175–184, 2009.

[60] K. Wang and Q. Ji. Real time eye gaze tracking with 3d deformable
eye-face model. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 1003–1011, 2017.

[61] D. Weikersdorfer, D. B. Adrian, D. Cremers, and J. Conradt. Event-
based 3d slam with a depth-augmented dynamic vision sensor. In 2014
IEEE International Conference on Robotics and Automation (ICRA), pp.
359–364. IEEE, 2014.

[62] E. Wood, T. Baltrušaitis, L.-P. Morency, P. Robinson, and A. Bulling.

Learning an appearance-based gaze estimator from one million synthesised
images. In Proceedings of the Ninth Biennial ACM Symposium on Eye
Tracking Research & Applications, pp. 131–138. ACM, 2016.

[63] E. Wood, T. Baltrusaitis, X. Zhang, Y. Sugano, P. Robinson, and A. Bulling.
Rendering of eyes for eye-shape registration and gaze estimation. In
Proceedings of the IEEE International Conference on Computer Vision,
pp. 3756–3764, 2015.

[64] L. R. Young and D. Sheena. Survey of eye movement recording methods.
Behavior research methods & instrumentation, 7(5):397–429, 1975.

[65] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling. Mpiigaze: Real-world
dataset and deep appearance-based gaze estimation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 41(1):162–175, Jan 2019.
doi: 10.1109/TPAMI.2017.2778103

[66] W. Zhu and H. Deng. Monocular free-head 3d gaze tracking with deep
learning and geometry constraints. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 3143–3152, 2017.

10

© 2022 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics.

A FORMULATION OF THE PROBLEM FOR P AND C

A.1 Updating and fitting the parabola P

The location of points on the parabola representing the eyelash in the
image plane satisfy the quadric equation:

EP (x,y) = 0 (9)

with EP (x,y) = a′ y2 +g′ y+d′− x

Here, we assume the parabola can be written with y as a function of
x. This assumption is valid as long as the eye is “upright”, that is, it
is not excessively rotated in the image-space. The parabola is thus
parameterized as P = (a′,g′,d′) and it can be fitted similarly to the
ellipses representing the pupils by solving:

P∗ = argmin
P∈R3

∑
(x,y)∈D ′

EP (x,y)2 (10)

In which D ′ is the set of points belonging to the parabola, which is
analogous to the set D for the ellipse representing the pupil. Again, the
solution is simply P∗ = A′−1 b′ with

A′ = ∑
(x,y)∈Dimg.

v′1x,y v′1x,y ᵀ, b′ = ∑
(x,y)∈Dimg.

v′2x,y (11)

in which v′1x,y is now:
v′1x,y = (y2,y,1) (12)

and v′2x,y is different (due to the asymmetry in x and y):

v′2x,y = xv′1 ᵀ
x,y = (xy2,xy,x) (13)

Lastly, we need to describe how the points are selected in D ′. Similarly
to D = Devt. ∪Dimg., we define D ′ = D ′evt. ∪D ′img.. We detect the
points belonging to the eyelash in an image by running a Harris corner
detector on an image in which all greay values outside of [t1, t2] have
been clipped. Then all the candidate Harris corners further than a certain
radius ρ ′ from the currently estimated pupil center are discarded, and
all the points in the lower half of the image are also discarded. This is:

D ′img. =
{
(x,y) | (x,y) ∈ HarrisCorner◦ clip(I, t1, t2),

and ‖(x,y)− (xe,ye)‖2 < ρ
′,

and y <
rows

2

} (14)

The events considered in the fit for the parabola are also those falling
with a radius δ of the currently estimated parabola.

D ′evt. =
{
(x,y) | |EP

(
(x,y)

)
|< δ

}
(15)

A.2 Updating and fitting the circle for the glint C

Regressing the glint is a subcase of regressing the ellipse in which
one can choose the scaling a = b = 1, and has h = 0. The location of
points on the circle representing the glint in the image plane satisfy the
quadric equation:

EC (x,y) = 0 (16)

with EC (x,y) = x2−2xcx−2ycy +(c2
x + c2

y − r2)

Hence we have to fit the parameters C = (cx,cy,r). The points in an
image to be selected to update the fit of the glint are those that exceed a
certain threshold t3 and that are less than a certain distance ρ ′′ from the
current pupil center estimate.

D ′′img. =
{
(x,y) | (x,y) ∈ Ht3(I(x,y))

and ‖(x,y)− (xe,ye)‖2 < ρ
′′
} (17)

Events are those falling less than δ away from the currently estimated
glint:

D ′′evt. =
{
(x,y) | |EC (x,y)|< δ

}
(18)

B ADDITIONAL DETAILS ABOUT THE FITTING OF θ FOR THE
REGRESSOR

The regressor maps parameters of M to screen coordinates xs,ys. In
its simplest form, also yielding the lowest computational load, our
regressor is a second order polynomial that takes as input, the pupil
center (xe,ye) extracted from the parameters E , and outputs the point
(xs,ys) in screen coordinates that the user is supposed to look at. Thus,
our regressor is a multivariate vector-valued function:

Gθ (E) =

(
xs
ys

)
=

(
Gθ 1 |x(E)
Gθ 2 |y(E)

)
(19)

In which the coordinate functions Gθ 1 |x(E) (on x) and Gθ 2 |y(E) (on
y) are second order polynomials with parameters θ 1 and θ 2:

Gθ i |x/y(xe,ye) = αi x2
e + γixe ye +βi y2

e + εi xe +ζiye +ηi (20)

The parameters θ 1 and θ 2 are fitted solving the following linear least
squares (G’s are linear in their coefficients):

arg minθ 1 ‖Gθ 1 |x(xe,ye)− xs‖2 (21)

arg minθ 2 ‖Gθ 2 |y(xe,ye)− ys‖2 (22)

The regression is supervised by pairs {
(
(xe,ye),(xs,ys)

)
} produced

during the calibration procedure in which (xs,ys) points are presented
to the user, and (xe,ye) are obtained from the ellipse fit in image space:

xe =
2bg−h f
h2−4ab

, and ye =
2a f −hg
h2−4ab

(23)

From the parameters E = (a,h,b,g, f ,d)

C DEFINITIONS USED FOR ACCURACY AND PRECISION IN OUR
EXPERIMENT

In the main text, our “accuracy” results are calculated using the ISO
5725 definition of “trueness”: the closeness of agreement between
the arithmetic mean of a large number of test results and the true or
accepted reference value, this is:

Accuracy =
1
n

n

∑
i=1

li (24)

where n is the total number of estimates, and li is the L2 norm of the
difference between our estimated gaze direction d̂i = (φ̂i, θ̂i) and the
true gaze angle di = (φi,θi):

li = ‖d̂i−di‖2 (25)

Precision is defined by ISO 5725 as: “the closeness of agreement
between test results”. We quantify this by computing the empirical
standard deviation of the d̂i’s:

Precision =

√
1

n−1

n

∑
i=1

(d̂i− ¯̂d)2 (26)

With ¯̂d being the empirical mean of all d̂i.

D CALCULATING θ AND φ FROM xs AND ys

The relationship between the horizontal angle θ , the vertical angle φ ,
and the screen coordinates which a user looks at, (xs,ys), is trigono-
metric because the screen is at a fixed distance. Although the gaze
vector seemingly gives information about 3D space, it is in fact only
a two-dimensional quantity, because it has no (or unit) magnitude.
With (cx,cy) being the center of the screen at a fixed distance D, The
conversion is calculated simply as:

θ =
180
π

tan−1(|xs− cx|/D)

φ =
180
π

tan−1(|ys− cy|/D)

11

20 15 10 5 0 5 10 15 20
Difference in center errors (px)

0.0

0.1
lo

g
P

Fig. 11. The difference in pupil center error of the frame-only abla-
tion is plotted as a histogram. See Appendix G for details.

E BLINK DETECTOR

We use a blink detector to classify which frames are likely to be blinks
and remove them from our accuracy and precision calculations. The
blink detector operates on a simple principle: during a blink, our fitted
ellipse to the pupil will deform drastically in shape, often becoming
long and thin to fit the dark line of the eyelashes. This blink detector
uses changes in eccentricity, or the ratio between the major and minor
radius of the fitted ellipse, to identify blinks. However, raw changes in
eccentricity can vary widely when the eye is looking at different areas
on the screen; so, an adaptive threshold must be computed to identify
relatively large changes in eccentricity. Specifically, the eccentricities
r1:n of the last n fitted ellipses are stored in a vector, Rn. The sample
mean µn and sample standard deviation σn of Rn are calculated. Then,
when a new frame comes in at time n+1, the eccentricity of the fitted
ellipse from that frame, rn+1, is compared to µn +λσn, with λ > 0
being a tunable parameter. If rn+1 > µn +λσn, then that frame will be
classified as a blink, and is not considered in accuracy and precision
calculations. In addition, a small number k of following frames are
also classified as blinks, since a blink takes on average 3− 4 frames
to complete. Then, r2:n+1 is assigned to Rn+1 to preserve a constant
buffer length, and the blink detector considers the next frame (rn+2).
Finally, we trim the data at the 2.5% level to remove outliers. This blink
detection method is advantageous in that it adaptively computes how
large of an eccentricity change constitutes a blink based on statistics of
our ellipse data; it is also conservative, in that if eccentricity changes in
a certain region of gaze directions are high on average, they will not be
classified as blinks.

F EMPIRICAL SMOOTHNESS

Consider a sequence of gaze estimates
{(

x(t)s ,y(t)s

)}T

t=1
at evenly

spaced times t = 1, ...,T . We quantify the empirical smoothness of
the eye as

smoothness =
1

T −1

T

∑
t=2

1∣∣∣∣∣∣(x(t)s ,y(t)s

)
−
(

x(t−1)
s ,y(t−1)

s

)∣∣∣∣∣∣
2

.

When the eye center does not change much between increments,
the smoothness value is high. The smoothness value is dependent on
the time scale; we would expect that at our high update rate, the eye’s
motion should be smooth because the increments of time are small.
However, we would not expect smooth motion at the 30Hz rate of
frames. Nonetheless, because we cannot know the true physiological
smoothness of the eye’s motion, optimizing parameters based on the
empirical smoothness is an assumption. We discuss the limitations of
this assumption in Section 6 and suggest how future work may lift it.

G FRAME ONLY ABLATION

We consider the relative error our system would incur if events were not
used. In particular, we define a simple frame-only ablation: rather than
track the pupil between frames, we assume it does not change position
between frames. This frame-only ablation is equivalent to traditional
(non-predictive) eye tracking. For the majority of frames in our dataset,
the eye is fixated, and in that case, there is not much difference between
our system and the frame-only ablation. Quantitatively, we confirm
this: the mean IOUs of our system and the frame-only ablation are
identical on such frames. It is more informative to discuss the relative

performance of the frame-only ablation on saccadic motions. For every
frame taken during a saccade, we calculate d f rame as the error of the
pupil center estimate of the frame-only ablation, and devent as the error
of the pupil center estimate of the full system. Then, in Figure 11, we
plot a histogram of d f rame−devent . Most of the histogram’s mass is on
positive numbers, illustrating the degradation in performance caused
by the frame-only ablation.

Although we do not implement it here, one might also consider an
event-only baseline. An event-only ablation of our Algorithm 1 would
need to be re-initialized after every blink, since the event-based estimate
cannot recover from bad prior estimates of the pupil. However, one
can imagine an event-only baseline where events are stored and, for
example, a Hough transform is performed to identify the pupil from the
pooled event data only. Various tricks could be performed to improve
the performance and efficiency of such an algorithm; instead of storing
a ring buffer of events, for example, they could be used in an online
Hough-transform much like Algorithm 1. Furthermore, the fact that
the pupil and iris are concentric could increase the method’s robustness
(since there would be two nearby peaks in Hough space). We hope
these ideas might be useful to a future researcher working with an
event-only sensor.

12

