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Abstract

The regulatory approval and broad clinical deployment of medical AI
have been hampered by the perception that deep learning models fail in
unpredictable and possibly catastrophic ways. A lack of statistically rigor-
ous uncertainty quantification is a significant factor undermining trust in
AI results. Recent developments in distribution-free uncertainty quantifi-
cation present practical solutions for these issues by providing reliability
guarantees for black-box models on arbitrary data distributions as for-
mally valid finite-sample prediction intervals. Our work applies these new
uncertainty quantification methods — specifically conformal prediction
— to a deep-learning model for grading the severity of spinal stenosis
in lumbar spine MRI. We demonstrate a technique for forming ordinal
prediction sets that are guaranteed to contain the correct stenosis sever-
ity within a user-defined probability (confidence interval). On a dataset
of 409 MRI exams processed by the deep-learning model, the conformal
method provides tight coverage with small prediction set sizes. Further-
more, we explore the potential clinical applicability of flagging cases with
high uncertainty predictions (large prediction sets) by quantifying an in-
crease in the prevalence of significant imaging abnormalities (e.g. motion
artifacts, metallic artifacts, and tumors) that could degrade confidence in
predictive performance when compared to a random sample of cases.

1 Introduction

Although many studies have demonstrated high overall accuracy in automating
medical imaging diagnosis with deep-learning AI models, translation to actual
clinical deployment has proved difficult. It is widely observed that deep learning
algorithms can fail in bizarre ways and with misplaced confidence [23, 14]. A core
problem is a lack of trust — a survey of radiologists found they that although
they thought AI tools add value to their clinical practice, they would not trust
AI for autonomous clinical use due to perceived and experienced unreliability [1].
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Herein, we present methods for endowing arbitrary AI systems with formal
mathematical guarantees that give clinicians explicit assurances about an al-
gorithm’s overall performance and most importantly for a given study. These
guarantees are distribution-free—they work for any (pre-trained) model, any
(possibly unknown) data distribution, and in finite samples. Although such
guarantees do not solve the issue of trust entirely, the precise and formal under-
standing of their model’s predictive uncertainty enables a clinician to potentially
work more assuredly in concert with AI assistance.

We demonstrate the utility of our methods using an AI system developed to
assist radiologists in the grading of spinal stenosis in lumbar MRI. Degenerative
spinal stenosis is the abnormal narrowing of the spinal canal that compresses the
spinal cord or nerve roots, often resulting in debility from pain, limb weakness,
and other neurological disorders. It is a highly prevalent condition that affects
working-age and elderly populations and constitutes a heavy societal burden
not only in the form of costly medical care but from decreased workplace pro-
ductivity, disability, and lowered quality of life. The formal interpretation of
spinal stenosis imaging remains a challenging and time-consuming task even for
experienced subspecialty radiologists due to the complexity of spinal anatomy,
pathology, and the MR imaging modality. Using a highly accurate AI model to
help assess the severity of spinal stenosis on MRI could lower interpretation time
and improve the consistency of grading. [12] Yet, given the practical challenges
of medical imaging that can degrade model performance in any given exam, the
adoption of such tools will be low if clinicians encounter poor quality predic-
tions without a sense of when the model is more or less reliable. To bolster such
trust, we apply conformal prediction to algorithmic disease severity classifica-
tion sets in order to identify higher uncertainty predictions that might merit
special attention by the radiologist. Our main contributions are the following:

1. We develop new distribution-free uncertainty quantification methods for
ordinal labels.

2. To our knowledge, we are the first to apply distribution-free uncertainty
quantification to the results of an AI model for automated stenosis grading
of lumbar spinal MRI.

3. We identify a correlation between high prediction uncertainty in individ-
ual cases and the presence of potentially contributory imaging features
as evaluated by a neuroradiologist such as tumors, orthopedic hardware
artifacts, and motion artifacts.

2 Methods

To formally describe the problem, let the input Xtest ∈ X , X = RH×W×D be
an MR image and the ground truth label Ytest ∈ Y, Y = {0, ...,K − 1} be an
ordinal value representing the severity of the disease (higher values indicating

greater severity). We are given a pre-trained model, f̂ , that takes in images and
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Figure 1: The output of our conformal procedure on a lumbar spine MRI.

outputs a probability distribution over severities; for example, f̂ may be a 3D
convolutional neural network with a softmax function. Assume we also have a
calibration dataset,

{
(Xi, Yi)

}n
i=1

, of data points that the model has not seen
before. This calibration data should be composed of pairs of MR images and
their associated disease severity labels drawn i.i.d. Given a new MR image Xtest,
the task is to predict the (unobserved) severity, Ytest. In the usual multi-class
classification setting, the output is the label with the highest estimated proba-
bility, Ŷ (x) = arg max

y∈{1,...,K}
f̂(x)y. However, Ŷ (Xtest) may be wrong, either because

the learned model f̂ does not learn the relationship between MR images and
severities properly or because there is intrinsic randomness in this relationship
that cannot be accounted for by any algorithm (i.e. aleatoric uncertainty).

Our goal is to rigorously quantify this uncertainty by outputting a set of
probable disease severities that is guaranteed to contain the ground truth sever-
ity on average. These prediction sets will provide distribution-free probabilistic
guarantees, i.e. ones that do not depend on the model or distribution of the
data.

Ordinal Adaptive Prediction Sets (Ordinal APS)

Our approach uses conformal prediction with a novel score function designed for
ordinal labels. In particular, each prediction set will always be a contiguous set
of severities, and for any user-specified error rate α, prediction sets will contain
the true label with probability 1 − α. The reader can refer to [25] and [27] for
similar algorithms and exposition.

An Oracle Method

Imagine we had oracle access to the true probability distribution over severities
P
(
Ytest | Xtest

)
with associated density function f(x)y. A reasonable goal might

then be to pick the set with the smallest size while still achieving conditional
coverage.

Definition 1 (conditional coverage). A predicted set of severities T (Xtest) has
conditional coverage if it contains the true severity with 1 − α probability no
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Figure 2: Comparison of an example prediction set chosen by naive least-
ambiguous set-valued (LAC) classifiers [26] and Ordinal APS methods; notice
that LAC does not respect ordinality, which may result in an incongruous pre-
diction set.

matter what MR image is input, i.e.,

P (Ytest ∈ T (x) | Xtest = x) ≥ 1− α, for all x ∈ X . (1)

The clinical benefit of conditional coverage is that it essentially achieves a
per-patient guarantee as opposed to one that is averaged across patients. Under
conditional coverage, the uncertainty sets will work equally well for all possible
subgroups such as subpopulations from different patient demographics.

Ignoring tie-breaking, we can succinctly describe the oracle prediction set as
follows:

T (optimal)(x) = [l∗(x), u∗(x)] , where(
l∗(x), u∗(x)

)
= arg min

(l,u)∈Y2

l≤u

{
u− l :

u∑
j=l

f(x)j ≥ 1− α

}
.

(2)

This set, T (optimal), is the smallest that satisfies (1). Ideally, we would compute

T (optimal) exactly, but we do not have access to f , only its estimator f̂ , which
may be arbitrarily bad.

Ordinal Adaptive Prediction Sets

Naturally, the next step is to plug in our estimate of the probabilities, f̂ , to (2).

However, because f̂ may be wrong, we must calibrate the resulting set with
conformal prediction, yielding a marginal coverage guarantee. Our procedure
is illustrated graphically in the right plot of Figure 2; it corresponds to greed-
ily growing the set outwards from the maximally likely predicted severity (i.e.
“mild” stenosis in this example).

Definition 2 (marginal coverage). A predicted set of severities T has marginal
coverage if it contains the true severity on average over new MRIs, i.e.,

P (Ytest ∈ T (Xtest)) ≥ 1− α. (3)

Marginal coverage is weaker than conditional coverage since it holds only on
average over the entire population, so coverage may be worse or better for some
subgroups. While conditional coverage is, in general, impossible [7], we can
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hope to approximate conditional coverage by defining a set similar to T (optimal)

that uses f̂ . To that end, define a sequence of sets indexed by a threshold λ,

Tλ(x) = [l̂∗(x), û∗(x)], where(
l̂∗(x), û∗(x)

)
= arg min

(l, u) ∈ Y2

l ≤ u

{
u− l :

u∑
j=l

f̂(j|x) ≥ λ

}
.

Notice that as λ grows, the sets grow, meaning they are nested in λ:

λ1 ≤ λ2 =⇒ ∀x, Tλ1(x) ⊆ Tλ2(x).

The key is to pick a value of λ such that the resulting set satisfies (3). The
following algorithm takes as input Tλ and outputs our choice of λ:

A(Tλ; α) = inf

{
λ :

n∑
i=1

1 {Yi ∈ Tλ(Xi)} ≥ d(n+ 1)(1− α)e

}
.

The key to our guarantee is the quantity d(n+ 1)(1− α)e, which is slightly
larger than the naive choice n(1 − α) and helps us correct for the model’s de-
ficiencies; see [2] for details on this statistical argument. Using this algorithm,
approximated in Algorithm 1, results in a marginal coverage guarantee.

Theorem 1 (Conformal coverage guarantee). Let (X1, Y1), (X2, Y2), ..., (Xn, Yn)

and (Xtest, Ytest) be an i.i.d. sequence of MRIs and paired severities and let λ̂ =
A(Tλ, α). Then Tλ̂ satisfies (3), i.e., it contains the true label with probability 1− α.

This theorem holds for any data distribution or machine learning model, any
number of calibration data points n, and any possible sequence of nested sets
that includes Y (see the formal version and proof in Appendix A).

Implementing Ordinal Adaptive Prediction Sets

In practice, Ordinal APS has two undesirable properties: computing Tλ(x) re-
quires a combinatorial search of the set of possible severities, and Tλ(x) may not
include the point prediction Ŷ . In practice, we therefore approximate Ordinal
APS greedily as described below in Algorithm 1.

The algorithm always contains Ŷ and requires only O(n) computations; fur-
thermore, it usually results in exactly the same sets as the exact method in our
experiments, which have a small value of K.

Note that the approximate choice of Tλ(x) described in Algorithm 1 is still
nested, and thus we can still guarantee coverage (see Corollary A.1 for a formal
statement and proof).

3 Experiments

We compare Ordinal Adaptive Prediction Sets to two other conformal methods:
Least Ambiguous set-valued Classifier (LAC) [26] and Ordinal Cumulative Dis-
tribution Function (CDF). LAC uses the softmax score of the true class as the
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Algorithm 1 Pseudocode for approximately computing Tλ(x)

Input: Parameter λ; underlying predictor f̂ ; input x ∈ X .
Output: Tλ(x).

1: Tλ(x)← arg max f̂(x)
2: q ← 0
3: while q ≤ λ do
4: S ← {min Tλ(x)− 1, max Tλ(x) + 1}
5: y ← arg max

y′∈S
f̂(x)1 {y′ ∈ {1, ...,K}}

6: q ← q + f̂(x)y
7: Tλ(x)← Tλ(x) ∪ {y}

no stenosis severe stenosis severe stenosis
(zoomed-in view)

Figure 3: Example of a case without lumbar spinal stenosis and with severe
lumbar spinal stenosis.

conformal score function. LAC theoretically gives the smallest average set size
but sacrifices conditional coverage to achieve this. Additionally, LAC does not
respect ordinality and thus may output non-contiguous prediction sets, which
are inappropriate in an ordinal setting such as disease severity rating. The Or-
dinal CDF method starts at the highest prediction score and then inflates the
intervals by λ in quantile-space; in that sense, it is similar to a discrete version
of conformalized quantile regression [15, 24]. We only use the non-randomized
versions of these methods.

We evaluate these three conformal methods on a deep learning system pre-
viously developed for automated lumbar spine stenosis grading in MRI, Deep-
SPINE [21]. The deep learning system consists of two convolutional neural net-
works – one to segment out and label each vertebral body and disc-interspace
and the other to perform multi-class ordinal stenosis classification for three dif-
ferent anatomical sites (the central canal and right and left neuroforamina) at
each intervertebral disc level for a total of up to 18 gradings per patient.

For each MRI exam, the associated radiology report was automatically
parsed for keywords indicative of the presence and severity of stenosis for each
of the 6 vertebral disc levels (T12-L1 through L5-S1) to extract ground truth
labels for a total of 6,093 gradings. Each grading was assigned to a value on a
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Figure 4: Empirical coverage and set size for three conformal prediction methods
for α ∈ {0.2, 0.15, 0.1, 0.05, 0.01} (averaged over 100 trials and shown with ± 1
standard deviation).

four-point ordinal scale of stenosis severity: 0 (no stenosis), 1 (mild stenosis),
2 (moderate stenosis), and 3 (severe stenosis). Examples of patients with and
without stenosis are shown in Figure 3.

For our experiments, we treat the stenosis grading model as a static model
and only use it for inference to make predictions. We then process these pre-
dicted scores with the split-conformal techniques described in Section 2. This
scenario would most closely reflect the clinical reality of incorporating regu-
lated, third-party AI software medical devices, which would likely not permit
users access to the AI model beyond the ability to make predictions.

Our code and analysis used in the quantitative experiments are made avail-
able here: https://github.com/clu5/lumbar-conformal.

3.1 Quantitative Experiments

We use the predicted softmax scores from a held-out set of MRI exams from
409 patients, comprising 6,093 disc level stenosis severity predictions to cali-
brate and evaluate each conformal methods. We randomly include 5% of pa-
tients in the calibration set and reserve the remainder for evaluating cover-
age and set size. We evaluate performance at several different α thresholds,
α ∈ {0.2, 0.15, 0.1, 0.05, 0.01}, and average results over 100 random trials.

As expected, all three conformal methods empirically achieve the desired
marginal coverage as guaranteed by Theorem 1. However, Ordinal CDF requires
a much larger set size to attain proper coverage than either Naive LAC or
Ordinal APS for all values of α (shown in Figure 4).

In addition, while aggregate coverage is satisfied for each method, we find
significant differences in class-conditional coverage (i.e. prediction sets strati-
fied by the true stenosis severity label), which is shown in Figure 5. We see
that prediction sets for “mild stenosis” and “moderate stenosis” grades have
lower average coverage and larger set sizes than prediction sets for “no steno-
sis” and “severe stenosis” grades. These differences may be partly attributed
to the fact that the “no stenosis” class constitutes the majority of the label
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Figure 5: Comparing coverage and set size when stratified by ground-truth
stenosis severity grading.

distribution (67%) and so may be easier for a model trained on this distribution
to classify. Additionally, “mild stenosis” and “moderate stenosis” grades may
be more challenging to differentiate than “no stenosis” and “severe stenosis”
grades, reflecting the greater inherent variability and uncertainty in the ground
truth ratings.

We also compare coverage and distribution stratified by set size in Figure 6.
Stratifying by set size reveals that most predictions with Ordinal APS and
Naive LAC contain only one or two grading predictions while Ordinal CDF
mainly predicts a set of all four possible gradings (which always trivially satisfies
coverage).

Lastly, we compare coverage and set size at the disc level in Table 1 at
α = 0.1. We find that coverage was inversely correlated to the prevalence of
severe stenosis, which is most often found in the lower lumbar disc levels.

Overall, we conclude that Ordinal APS performs similarly to LAC in both
coverage and set size, and both Ordinal APS and Naive LAC outperform Ordinal
CDF. The similarities between LAC and Ordinal APS are notable — they almost
always result in the same sets, although the algorithms are quite different. This
is unsurprising given that in our setting |Y| = 4 and the model’s accuracy is high,
so bimodal softmax scores almost never happen. Therefore LAC and Ordinal
APS do the same thing. This observation does not generalize; other ordinal
prediction problems with more categories will have bimodal distributions and
thus LAC and Ordinal APS will differ.

3.2 Clinical Review of High Uncertainty Predictions

To investigate the clinical utility of Ordinal APS to enhance AI-augmented work-
flows, we evaluate one possible clinical integration use case: flagging low confi-
dence predictions (i.e. ones with a large set size). The radiologist’s performance
and user experience of the model may be improved by raising their awareness
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motion artifact
tumor

(likely schwannoma) metal artifact

Figure 7: Three anomalies found in high uncertainty predictions; the anomalous
areas are boxed in red.

of those instances in which the model performance may be degraded by scan
anomalies or when uncertainty quantification is very high, excluding such po-
tentially poor quality results from their review responsibilities altogether. We
define an uncertainty score for each patient by taking the average set size for
all disc levels and grading tasks. An neuroradiologist with > 20 years of expe-
rience determined what constituted a “significant imaging anomaly” within the
context of spinal stenosis interpretation.

As a statistical validation of these results, we examined the report of 70
cases with the highest uncertainty and found 17 such anomalies: 11 cases with
artifacts from metallic orthopedic hardware, four cases with motion artifacts,
one case with a large tumor occupying the spinal canal, and one case with a se-
vere congenital abnormality (achondroplastic dwarfism). In contrast, a random
sample of 70 cases from the dataset only demonstrated five cases with significant
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Table 1: Coverage and set size stratified by intervertebral disc level at α = 0.1.

disc level average severity method coverage set size

T12-L1 0.04
Ordinal CDF 99.7%± 0.3% 3.97± 0.02
Naive LAC 98.6%± 0.4% 1.04± 0.02

Ordinal APS 98.6%± 0.3% 1.04± 0.01

L1-L2 0.18
Ordinal CDF 97.5%± 1.1% 3.84± 0.06
Naive LAC 95.4%± 1.0% 1.12± 0.04

Ordinal APS 95.4%± 1.0% 1.12± 0.04

L2-L3 0.48
Ordinal CDF 90.4%± 2.1% 3.50± 0.11
Naive LAC 90.0%± 3.0% 1.25± 0.09

Ordinal APS 90.1%± 3.0% 1.26± 0.09

L3-L4 0.75
Ordinal CDF 84.3%± 4.0% 3.17± 0.19
Naive LAC 86.0%± 4.0% 1.42± 0.12

Ordinal APS 85.7%± 4.2% 1.42± 0.13

L4-L5 1.06
Ordinal CDF 81.7%± 4.2% 2.86± 0.21
Naive LAC 83.2%± 4.6% 1.48± 0.15

Ordinal APS 83.2%± 4.8% 1.48± 0.15

L5-S1 0.71
Ordinal CDF 84.4%± 4.1 3.20± 0.17
Naive LAC 85.3%± 3.2 1.39± 0.12

Ordinal APS 85.7%± 3.0 1.41± 0.11

Total 0.54
Ordinal CDF 90.0%± 2.5% 3.44± 0.12
Naive LAC 90.0%± 2.6% 1.28± 0.09

Ordinal APS 90.1%± 2.7% 1.28± 0.09

anomalies which were all orthopedic hardware artifacts. This difference is sig-
nificant with p < 0.05 by Fisher’s exact test, and qualitatively the abnormalities
found in the filtered samples were more extreme.

Our manual review of high uncertainty cases shows promise for improving the
clinician experience with AI-assisted medical software tools using distribution-
free uncertainty quantification. Rather than presenting all AI predictions as
equally trustworthy, cases with higher uncertainty can be flagged to prompt
additional scrutiny or hidden from the user altogether to maximize efficiency.
While prospective evaluation of this use of conformal prediction in more clini-
cally realistic settings will be needed to validate general feasibility and utility,
our preliminary experiments are a step towards demonstrating the clinical ap-
plicability of conformal prediction.

4 Related Work

Conformal Prediction and Distribution-Free Uncertainty Quantifica-
tion

Conformal prediction is a flexible technique for generating prediction intervals
from arbitrary models. It was first developed by Vladimir Vovk and collabo-
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rators in the late 1990s [32, 31, 17, 18, 16, 26]. We build most directly on the
work of Yaniv Romano and collaborators, who developed the Adaptive Predic-
tion Sets method studied in [25, 6] and the histogram binning method in [27].
The latter work is the most relevant, and it proposes an algorithm very similar
to Algorithm 1 in a continuous setting with histogram regression. Our work
also relies on the nested set outlook on conformal prediction [13]. We also build
directly on existing work involving distribution-free risk-controlling prediction
sets and Learn then Test [8, 3]. The LAC baseline is taken from [26], and the
ordinal CDF baseline is similar to the softmax method in [5], which is in turn
motivated by [15, 24]. A gentle introduction to these topics and their history is
available in [2], or alternatively, in [28].

Uncertainty Quantification for Critical Applications

Recently, uncertainty quantification has been promoted to facilitate trustworthi-
ness and transparency in black-box algorithms, such as deep learning, for critical
decision-making [10]. In particular, conformal prediction methods have been ap-
plied to a wide range of safety-critical applications – from reducing false alarms
in the detection of sepsis risk [29] to end-to-end autonomous driving control [22].
Distribution-free uncertainty quantification techniques such as conformal pre-
diction sets have emerged as an essential tool for rigorous statistical guarantees
in medical decision-making [9, 20, 4, 30, 11, 19].

5 Conclusion

We show how conformal prediction sets can complement existing AI systems
without further modification to the model to provide distribution-free reliabil-
ity guarantees. We demonstrate its clinically utility in the application of flagging
high uncertainty cases in automated stenosis severity grading for followup re-
view. We hope this work promotes further studies on the trustworthiness and
usability of uncertainty-aware machine learning systems for clinical applications.
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A Formal Theorem Statements and Proofs

Theorem 1 (Formal conformal coverage guarantee). Let (X1, Y1), (X2, Y2), ...,
(Xn, Yn) and (Xtest, Ytest) be drawn independently and identically distributed from dis-
tribution P, and let Cλ be any sequence of sets nested in λ such that lim

λ→∞
Cλ = Y.

Finally, let λ̂ = A(Cλ, α). Then Cλ̂ satisfies (3).

Theorem 1. This is a standard result in the conformal literature [32]. A stripped
down proof appears in [2]. The nested set version appears in [13].

The informal version of Theorem 1 in the main text is simply a corollary of
the above when applied to the specific sequence of nested sets Tλ.

Corollary 1. Pick λ(1) ≤ λ(2). It is clear that f̂(j|x) ≥ λ(2) implies f̂(j|x) ≥
λ(1). Therefore Tλ(2)(x) ⊆ Tλ(1)(x). Applying Theorem 1 completes the proof.

Corollary A.1. In the setting of Theorem 1, let T̃λ be the sequence of nested sets

computed using Algorithm 1, and let λ̂ = A
(
T̃λ, α

)
. Then T̃λ̂ satisfies 3.

Corollary A.1. Pick λ(1) ≤ λ(2). Examining Algorithm 1, q ≤ λ(1) implies
q ≤ λ(2) . Therefore T̃λ(1)(x) ⊆ T̃λ(2)(x). Applying Theorem 1 completes the
proof.
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