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Abstract

In many real-world deployments of machine learning, we use a prediction algorithm to choose what
data to test next. For example, in the protein design problem, we have a regression model that predicts
some real-valued property of a protein sequence, which we use to propose new sequences believed to
exhibit higher property values than observed in the training data. Since validating designed sequences
in the wet lab is typically costly, it is important to know how much we can trust the model’s predictions.
In such settings, however, there is a distinct type of distribution shift between the training and test data:
one where the training and test data are statistically dependent, as the latter is chosen based on the
former. Consequently, the model’s error on the test data—that is, the designed sequences—has some
non-trivial relationship with its error on the training data. Herein, we introduce a method to quantify
predictive uncertainty in such settings. We do so by constructing confidence sets for predictions that
account for the dependence between the training and test data. The confidence sets we construct have
finite-sample guarantees that hold for any prediction algorithm, even when a trained model chooses
the test-time input distribution. As a motivating use case, we demonstrate how our method quantifies
uncertainty for the predicted fitness of designed protein using several real data sets.

1 Introduction

Imagine you are a protein engineer. You are interested in designing a protein with high fitness—some real-
valued measure of its desirability, such as fluorescence or catalytic efficiency. You have a data set of different
protein sequences, denoted Xi, paired with experimental measurements of their fitnesses, denoted Yi, for
i = 1, . . . , n. The design problem is to propose a novel sequence, Xtest, that has higher fitness, Ytest, than
any of these. To this end, you train a regression model on the data set, then identify a novel sequence that
the model predicts to be more fit than the training sequences. Can you trust the model’s prediction for the
designed sequence?

This is an important question to answer, not just for the protein design problem just described, but
for any deployment of machine learning where the test data depends on the training data. More broadly,
settings ranging from Bayesian optimization to active learning to strategic classification involve feedback loops
in which the learned model and data influence each other in turn. As feedback loops violate the standard
assumptions of machine learning algorithms, we must be able to diagnose when a model’s predictions can
and cannot be trusted in their presence.

In this work, we make an important step toward this goal by enabling uncertainty quantification with
finite-sample statistical guarantees when the training and test data exhibit a type of dependence that we call
feedback covariate shift (FCS). A joint distribution of training and test data falls under FCS if it satisfies
two conditions. First, the test input, Xtest, is selected based on independently and identically distributed
(i.i.d.) training data, (X1, Y1), . . . , (Xn, Yn). That is, the distribution of Xtest is a function of the training
data. Second, PY |X , the ground-truth distribution of the label, Y , given any input, X, does not change
between the training and test data distributions. For example, returning to the example of protein design,
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Figure 1: Illustration of feedback covariate shift. In the left graph, the blue distribution represents the
training input distribution, PX . The dark gray line sandwiched by lighter gray lines represents the mean
± the standard deviation of PY |X , the conditional distribution of the label given the input, which does not
change between the training and test data distributions (left and right graphs, respectively). The blue dots
represent training data, Z1:n = {Z1, . . . , Zn} where Zi = (Xi, Yi), which is used to fit a regression model
(middle). Algorithms that use that trained model to make decisions, such as in design problems, adaptive
experimental design, and Bayesian optimization, then give rise to a new test-time input distribution, PX;Z1:n

(right graph, green distribution). The green dots represent test data.

the training data is used to select the designed protein, Xtest; the distribution of Xtest is determined by some
optimization algorithm that calls the regression model in order to design the protein. However, since the
fitness of any given sequence is some property dictated by nature, PY |X stays fixed. Representative examples
of FCS include:

• Algorithms that use predictive models to explicitly choose the test distribution, including
the design of desirable proteins, small molecules, and materials, and more generally machine learning-
guided scientific discovery; active learning, adaptive experimental design, and Bayesian optimization.

• Algorithms that use predictive models to perform actions that change a system’s state,
such as autonomous driving algorithms that use computer vision systems.

To make our exposition concrete, we will anchor our discussion and experiments in protein design problems.
However, the methods and insights developed herein are applicable to any of the listed examples.

1.1 Quantifying uncertainty with valid confidence sets

Given a regression model of interest, µ, we quantify its uncertainty on an input with a confidence set. A
confidence set is a function, C : X → 2R, that maps an input from some input space, X , to a set of real
values that the model considers to be plausible labels.1 Informally, we will examine the model’s error on the
training data in order to quantify its uncertainty about the label, Ytest, of an input, Xtest. Formally, using
the notation Zi = (Xi, Yi), i = 1, . . . , n and Ztest = (Xtest, Ytest), our goal is to construct confidence sets that
have a frequentist statistical property called coverage.

Definition 1. Consider data points from some joint distribution, (Z1, . . . , Zn, Ztest) ∼ P. Given a miscov-
erage level, α ∈ (0, 1), a confidence set, C : X → 2R, which may depend on Z1, . . . , Zn, provides coverage
under P if

P (Ytest ∈ C(Xtest)) ≥ 1− α, (1)

where the probability is over all n+ 1 data points, (Z1, . . . , Zn, Ztest) ∼ P.

There are three important parts of this definition we call attention to. First, coverage is with respect
to a particular joint distribution of the training and test data, P, as the probability statement in Eq. (1) is
over random draws of all n+ 1 data points. That is, if one draws (Z1, . . . , Zn, Ztest) ∼ P and constructs the
confidence set for Xtest based on a regression model fit to (Z1, . . . , Zn), then the confidence set contains the

1We will use the term confidence set to refer to both this function and the output of this function for a particular input; the
distinction will be clear from the context.
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true test label, Ytest, a fraction of 1 − α of the time. In this work, P can be any distribution captured by
FCS, as we describe later in more detail.

Second, note that Eq. (1) is a finite-sample statement: it holds for any number of training data points, n.
Finally, coverage is a marginal probability statement, which averages over all the randomness in the training
and test data; it is not a statement about conditional probabilities, such as P(Ytest ∈ C(Xtest) | Xtest = x) for
a particular value of interest, x ∈ X . We will call a family of confidence sets, Cα, indexed by the miscoverage
level, α ∈ (0, 1), valid if they provide coverage for all α ∈ (0, 1).

When the training and test data are independently and identically distributed from some distribution, P ,
conformal prediction provides valid confidence sets for any P and for any regression model class [63, 64, 34].
Though recent work has extended the methodology to certain forms of distribution shift [60, 15, 20, 43,
45], to our knowledge no existing approach can produce valid confidence sets when the test data depends
on the training data. Here, we generalize conformal prediction to the FCS setting, enabling uncertainty
quantification under this prevalent type of dependence between training and test data.

1.2 Our contributions

First, we formalize the concept of feedback covariate shift, which describes a type of distribution shift that
emerges under feedback loops between learned models and the data they operate on. Second, we introduce
a generalization of conformal prediction that produces valid confidence sets under feedback covariate shift
for arbitrary regression models. We also introduce randomized versions of these confidence sets that achieve
a stronger property called exact coverage. Finally, we demonstrate the use of our method to quantify
uncertainty for the predicted fitness of designed proteins, using several real data sets.

1.3 Prior work

Our study investigates uncertainty quantification in a setting that brings together the well-studied concept
of covariate shift [52, 58, 59, 49] with feedback between learned models and data distributions, a widespread
phenomenon in real-world deployments of machine learning [23, 44]. Indeed, beyond the design problem,
feedback covariate shift is one way of describing and generalizing the dependence between data at successive
iterations of active learning, adaptive experimental design, and Bayesian optimization.

Our work builds upon conformal prediction, a framework for constructing confidence sets that satisfy the
finite-sample coverage property in Eq. (1) for arbitrary model classes [19, 64, 3]. Though originally based
on the premise of independently and identically distributed (and more broadly, exchangeable) training and
test data, the framework has since been generalized to handle various forms of distribution shift, including
covariate shift [60, 43], label shift [45], arbitrary distribution shifts in an online setting [20], and test distri-
butions that are nearby the training distribution [15]. Conformal approaches have also been used to detect
distribution shift [62, 28, 38, 8, 4, 46, 30].

We call particular attention to the work of Tibshirani et al. [60] on conformal prediction in the context of
covariate shift, whose technical machinery we adapt to generalize conformal prediction to feedback covariate
shift. In covariate shift, the training and test input distributions differ, but, critically, the training and test
data are still independent; we henceforth refer to this setting as standard covariate shift to distinguish it from
our setting. The chief innovation of our work is to formalize and address a ubiquitous type of dependence
between training and test data that is absent from standard covariate shift, and, to the best of our knowledge,
absent from any other form of distribution shift to which conformal approaches have been generalized.

For the design problem, in which a regression model is used to propose new inputs—for example, a protein
with desired properties—it is important to consider the predictive uncertainty of the designed inputs, so
that we do not enter “pathological” regions of the input space where the model’s predictions are desirable
but untrustworthy [12, 17]. Gaussian process regression (GPR) models are consequently popular tools for
these problems, as algorithms leveraging their posterior predictive variance [6, 56] have been used to design
enzymes with enhanced thermostability and catalytic activity [50, 22], and to select chemical compounds with
increased binding affinity to a target [25]. Despite these successes, it is not clear how to obtain practically
meaningful theoretical guarantees for the posterior predictive variance, and consequently to understand in
what sense we can trust it. Similarly, ensembling strategies such as [33], which are increasingly being used
to quantify uncertainty for deep neural networks [12, 71, 17, 37], as well as uncertainty estimates that are
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explicitly learned by deep models [57] do not come with formal guarantees. A major advantage of conformal
prediction is that it can be applied to any modelling strategy, and can be used to calibrate any existing
uncertainty quantification approach, including those aforementioned.

2 Conformal prediction under feedback covariate shift

2.1 Feedback covariate shift

We begin by formalizing feedback covariate shift (FCS), which describes a setting where the test data depends
on the training data, but the relationship between inputs and labels remains fixed.

We first set up our notation. Recall that we let Zi = (Xi, Yi), i = 1, . . . , n, denote n independently and
identically distributed (i.i.d.) training data points comprising inputs, Xi ∈ X , and labels, Yi ∈ R. Similarly,
let Ztest = (Xtest, Ytest) denote the test data point. We use Z1:n = {Z1, . . . , Zn} to denote the multiset of
the training data, in which values are unordered but multiple instances of the same value appear according
to their multiplicity. We also use the shorthand Z−i = Z1:n \ {Zi}, which is a multiset of n− 1 values that
we refer to as the i-th leave-one-out training data set.

FCS describes a class of joint distributions over (Z1, . . . , Zn, Ztest) that have the dependency structure
described informally in the Introduction. Formally, we say that training and test data are under FCS when
it can be generated with the following three steps.

1. The training data, (Z1, . . . , Zn), are drawn i.i.d. from some distribution:

Xi
i.i.d∼ PX ,

Yi ∼ PY |Xi , i = 1, . . . , n.

2. The realized training data induces a new input distribution over X , denoted P̃X;Z1:n
to emphasize its

dependence on the training data, Z1:n.

3. The test input is drawn from this new input distribution, and its label is drawn from the unchanged
conditional distribution:

Xtest ∼ P̃X;Z1:n

Ytest ∼ PY |Xtest
.

The key object in this formulation is the test input distribution, P̃X;Z1:n
. Prior to collecting the training

data, Z1:n, the specific test input distribution is not yet known. After we have the training data in hand,
it induces the particular distribution of test inputs, P̃X;Z1:n , that the model will encounter at test time (for
example, through any of the mechanisms summarized in the Introduction).

This is an expressive framework: the object P̃X;Z1:n
can be an arbitrarily complicated mapping from a

data set of size n to an input distribution, so long as it is invariant to the order of the data points. There
are no other constraints on this mapping; it need not exhibit any smoothness properties, for example. In
particular, FCS encapsulates any design problem where we deploy an algorithm that calls a regression model
fit to the training data, Z1:n, in order to propose designed inputs.

2.2 Conformal prediction in the i.i.d. setting

To understand how we will construct valid confidence sets under FCS, we first walk through the intuition
behind conformal prediction in the setting of i.i.d. training and test data, then present the adaptation to
accommodate FCS.

Score function. First, we introduce the key concept of a score function, S : (X × R) × (X × R)m → R,
which is an engineering choice that ideally quantifies how well a given data point “conforms” to a multiset
of m data points, in the sense of evaluating whether the data point comes from the same conditional
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distribution, PY |X , as the data points in the multiset.2 A representative example is the residual score
function, S((X,Y ), D) = |Y −µD(X)|, where D is a multiset of m data points and µD is a regression model
trained on D. A large residual signifies a data point that the model could not easily predict, which suggests
it was was atypical with respect to the input-label relationship present in the training data.

More generally, we can choose the score to be any notion of uncertainty of a trained model on the point
(X,Y ), heuristic or otherwise, such as the posterior predictive variance of a Gaussian process regression
model [50, 25, 22], the variance of the predictions from an ensemble of neural networks [33, 71, 37, 3],
uncertainty estimates learned by deep models [2], or even the outputs of other calibration procedures [32].
Irrespective of the choice of the score function, conformal prediction will construct valid confidence sets;
however, the score function will determine the size, and therefore, informativeness, of the resulting sets.
Roughly speaking, a score function that better reflects the likelihood of observing the given point, (X,Y ),
under the true conditional distribution that governs D, PY |X , results in smaller valid confidence sets.

Imitating i.i.d scores. At a high level, the operating insight of conformal prediction is that when the
training and test data are i.i.d, their scores are also i.i.d. from some distribution. More concretely, assume we
use the residual score function, S((X,Y ), D) = |Y − µD(X)|, for some regression model class. Now imagine
that we know the label, Ytest, for the test input, Xtest. For each of the n+ 1 training and test data points,
(Z1, . . . , Zn, Ztest), we can then compute the score using a regression model trained on the remaining n data
points; the resulting n+ 1 scores are i.i.d.

In reality, of course, we do not know the true label of the test input. However, this key property—that
the scores of i.i.d. data yield i.i.d. scores—enables us to construct valid confidence sets by including all
“candidate” values of the test label, y ∈ R, that yield scores for the n + 1 data points (the training data
points along with the candidate test data point, (Xtest, y)) that appear to be i.i.d. For a given candidate
label, the conformal approach assesses whether or not this is true by comparing the score of the candidate
test data point to an appropriately chosen quantile of the training data scores.

2.3 Conformal prediction under FCS

Conformal prediction is based on the observation that the scores of i.i.d. training and test data points are
also i.i.d. When the training and test data are under FCS, the scores will no longer be i.i.d., because the
training and test inputs are neither independent nor from the same distribution. Intuitively, our solution
to this problem will be to weight each training and test data point to take into account these two factors.
Thereafter, we can proceed with the conformal approach of including all candidate labels such that the
(weighted) candidate test data point is sufficiently similar to the (weighted) training data points. Toward
this end, we now introduce two quantities: 1) a likelihood ratio function, which will be used to define the
weights, and 2) the quantile of a distribution, which will be used to assess whether a candidate test data
point sufficiently conforms to the training data.

The likelihood ratio function for an input, X, which depends on a multiset of data points, D, is given by

v(X;D) =
p̃X;D(X)

pX(X)
, (2)

where lowercase p̃X;D and pX denote the densities of the test and training input distributions, respectively,
where the test input distribution is the particular one indexed by the data set, D.

This quantity is the ratio of the likelihoods under these two distributions, and as such, is reminiscent of
weights used to adapt various statistical procedures to standard covariate shift [58, 59, 60]. However, what
distinguishes its use here will be that the particular likelihood ratio function that we call, which is indexed
by a multiset, will depend on which data point is being evaluated as well as the candidate label, as will
become clear shortly.

2Not to be confused with other uses of the term score function in statistics. Also note that, as the second argument is a
multiset of data points, the score function must be invariant to the order of these data points. For example, when using the
residual as the score, the regression model must be trained in a way that is agnostic to the order of the data points.
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Now consider a discrete distribution with probability masses p1, . . . , pn located at support points s1, . . . , sn,
respectively, where si ∈ R and pi ≥ 0,

∑
i pi = 1. We define the β-quantile of this distribution as

Quantileβ

(
n∑
i=1

pi δsi

)
= inf

s :
∑
i:si≤s

pi ≥ β

 ,

where δsi is a unit point mass at si.
Using these notions of a dataset-dependent likelihood ratio function and β-quantile, we now define a

confidence set. For any score function, S, any miscoverage level, α ∈ (0, 1), and any test input, Xtest ∈ X ,
define:

Cα(Xtest) =

{
y ∈ R : Sn+1(Xtest, y) ≤ Quantile1−α

( n+1∑
i=1

wyi (Xtest) δSi(Xtest,y)

)}
, (3)

where

Si(Xtest, y) = S(Zi, Z−i ∪ {(Xtest, y)}), i = 1, . . . , n,

Sn+1(Xtest, y) = S((Xtest, y), Z1:n),

which are the scores for each of the training and candidate test data points, when compared to the remaining
n data points, and weights for these scores are given by

wyi (Xtest) ∝ v(Xi;Z−i ∪ {(Xtest, y)}), i = 1, . . . , n,

wyn+1(Xtest) ∝ v(Xtest;Z1:n),
(4)

which are normalized such that
∑n+1
i=1 w

y
i (Xtest) = 1.

In words, the confidence set in Eq. (3) includes all real values, y ∈ R, such that the “candidate” test data
point, (Xtest, y), has a score that is sufficiently similar to the scores of the training data. Specifically, the
score of the candidate test data point needs to be smaller than the (1 − α)-quantile of the weighted scores
of all n+ 1 data points (the n training data points as well as the candidate test data point), where the i-th
data point is weighted by wyi (Xtest).

Our main result is that this confidence set, Cα, provides coverage under FCS (see Appendix A1.1 for the
proof).

Theorem 1. Suppose data are generated under feedback covariate shift and assume P̃X;D is absolutely
continuous with respect to PX for all possible values of D. Then, for any miscoverage level, α ∈ (0, 1), the
confidence set, Cα, in Eq. (3) satisfies the coverage property in Eq. (1), namely, P(Ytest ∈ Cα(Xtest)) ≥ 1−α.

Since we can supply any domain-specific notion of uncertainty as the score function, this result implies
we can interpret the condition in Eq. (3) as calibrating the provided score function in order to guarantee
coverage. That is, this conformal approach can complement any existing uncertainty quantification method
by endowing it with finite-sample coverage under FCS.

We note that although Theorem 1 provides a lower bound on the probability P(Ytest ∈ Cα(Xtest)), one
cannot establish a corresponding upper bound without further assumptions on the training and test input
distributions. However, by introducing randomization to the β-quantile, we can construct a randomized
version of the confidence set, Crand

α (Xtest), that is not conservative and satisfies P(Ytest ∈ Crand
α (Xtest)) =

1− α, a property called exact coverage. See Theorem 3 in the Appendix for details.

Estimating confidence sets in practice. In practice, it is not feasible to check all candidate labels,
y ∈ R, in order to construct a confidence set. Instead, as done in previous work on conformal prediction, we
estimate Cα(Xtest) by defining a finite grid of candidate labels, Y ⊂ R, and checking the condition in Eq. (3)
for all y ∈ Y. Algorithm 1 outlines a generic structure for computing Cα(Xtest) for a given test input; see
Section 2.4 for important special cases in which Cα(Xtest) can be computed more efficiently.
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Algorithm 1 Pseudocode for approximately computing Cα(Xtest)

Input: Training data, (Z1, . . . , Zn) where Zi = (Xi, Yi); test input, Xtest; finite grid of candidate labels,
Y ⊂ R; likelihood ratio function subroutine, v(· ; ·); and score function subroutine S(·, ·).
Output: Confidence set, Cα(Xtest) ⊂ Y.

1: Cα(Xtest)← ∅
2: Compute v(Xtest;Z1:n)
3: for y ∈ Y do
4: for i = 1, . . . , n do
5: Compute Si(Xtest, y) and v(Xi;Z−i ∪ {(Xtest, y)})
6: end for
7: Compute Sn+1(Xtest, y)
8: for i = 1, . . . , n+ 1 do
9: Compute wyi (Xtest) according to Eq. (4)

10: end for
11: qy ← Quantile1−α

(∑n+1
i=1 w

y
i (Xtest) δSi(Xtest,y)

)
12: if Sn+1(Xtest, y) ≤ qy then
13: Cα(Xtest)← Cα(Xtest) ∪ {y}
14: end if
15: end for

Relationship with i.i.d. and standard covariate shift settings. The weights assigned to each score,
wyi (Xtest) in Eq. (4), are the distinguishing factor between the confidence sets constructed by conformal
approaches for the i.i.d., standard covariate shift, and FCS settings. When the training and test data are
i.i.d., these weights are simply 1/n. To accommodate standard covariate shift, where the training and test
data are independent, these weights are also normalized likelihood ratios—but, importantly, the test input
distribution in the numerator is fixed, rather than data-dependent as in the FCS setting [60]. That is, the
weights are defined using one fixed likelihood ratio function, v(·) = p̃X(·)/pX(·), where p̃X is the density of
the single test input distribution under consideration.

In contrast, under FCS, observe that the likelihood ratio that is evaluated in Eq. (4), v(·;D), is different
for each of the n+ 1 training and candidate test data points and for each candidate label, y ∈ R: for Xi, we
evaluate the likelihood ratio where the test input distribution is the one induced by Z−i ∪ {(Xtest, y)}. That
is, the weights under FCS take into account not just a single test input distribution, but every test input
distribution that can be induced when we treat a leave-one-out training data set combined with a candidate
test data point, Z−i ∪ {(Xtest, y)}, as the training data.

To further appreciate the relationship between the standard and feedback covariate shift settings, consider
the weights used in the standard covariate shift approach where we treat PX;Z1:n

as the test input distribution.
The extent to which PX;Z1:n

differs from PX;Z−i∪{(Xtest,y)}, for any i = 1, . . . , n and y ∈ R, determines the
extent to which the weights used under standard covariate shift deviate from those used under FCS. In
other words, since Z1:n and Z−i ∪ {(Xtest, y} differ in exactly one data point, the similarity between the
standard covariate shift and FCS weights depends on the “smoothness” of the mapping from D to P̃X;D.

For example, the more algorithmically stable the learning algorithm through which P̃X;D depends on D is,
the more similar these weights will be. Similarly, as the number of training data points, n, grows, in general
the two types of weights should become more similar.

Input distributions are known in the design problem. The design problem is a unique setting in
which we have control over the test input distribution, since we choose the procedure used to design an
input. In the simplest case, some design procedures sample from a distribution whose form is explicitly
chosen, such as an energy-based model whose energy function is proportional to the trained regression model
[10], or whose parameters are set by solving an optimization problem (e.g., to train a generative model)
[48, 29, 12, 17, 51, 68, 24, 53, 72]. In either setting, we know the exact form of the test input distribution,
which also absolves the need for density estimation.

In other cases, the design procedure involves iteratively applying a gradient to, or otherwise locally
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modifying, an initial input in order to produce a designed input [31, 21, 36, 55, 7, 14]. Due to randomness in
either the initial input or the local modification rule, such procedures implicitly result in some distribution
of test inputs. Though we do not have access to its explicit form, knowledge of the design procedure can
enable us to estimate it much more readily than in a naive density estimation setting. For example, we
can simulate the design procedure as many times as is needed to sufficiently estimate the resulting density,
whereas in density estimation in general, we cannot control how many test inputs we can access.

The training input distribution is also often explicitly known. In protein design problems, for example,
training sequences are often generated by introducing random substitutions to a single wild type sequence [12,
10, 14], by recombining segments of several “parent” sequences [35, 50, 9, 22], or by independently sampling
the amino acid at each position from a known distribution [72, 65]. Conveniently, we can then compute the
weights in Eq. (4) exactly without introducing approximation error due to density ratio estimation.

Finally, we note that, by construction, the design problem tends to result in test input distributions that
place considerable probability mass on regions where the training input distribution does not. The further
the test distribution is from the training distribution in this regard, the larger the resulting weights on
candidate test points, and the larger the confidence set in Eq. (3) will tend to be. This phenomenon agrees
with our intuition about epistemic uncertainty: we should have more uncertainty—that is, larger confidence
sets—in regions of input space where there is less training data.

2.4 Efficient computation of confidence sets under feedback covariate shift

Using Algorithm 1 to construct the confidence set, Cα(Xtest), requires computing the scores and weights,
Si(Xtest, y) and wyi (Xtest), for all i = 1, . . . , n + 1 and all candidate labels, y ∈ Y. When the dependence
of P̃X;D on D arises from a model trained on D, then naively, we must train (n + 1) × |Y| models in
order to compute these quantities. However, we now describe two important, practical cases in which this
computational burden can be reduced to fitting n + 1 models, removing the dependence on the number
of candidate labels. In such cases, we can post-process the outputs of these n + 1 models to calculate all
(n + 1) × |Y| required scores and weights (see Alg. 3 in the Appendix for pseudocode); we refer to this as
computing the confidence set efficiently.

In the following two examples and in our experiments, we use the residual score function, S((X,Y ), D) =
|Y −µD(X)|, where µD is a regression model trained on the multiset D. To understand at a high level when
efficient computation is possible, first let µy−i denote the regression model trained on Zy−i = Z−i∪{(Xtest, y)},
the i-th leave-one-out training data set combined with a candidate test data point. The scores and weights
can be computed efficiently when µy−i(Xi) is a computationally simple function of the candidate value, y,
for all i—for example, a linear function of y. Next we describe two such cases in more detail.

Ridge regression. Suppose we fit a ridge regression model, with ridge regularization hyperparameter γ,
to the training data. Then, we draw the test input vector from a distribution which places more mass on
regions of X where the model predicts more desirable values, such as high fitness in protein design problems.
Recent studies have employed this relatively simple approach to successfully design novel enzymes with
greater catalytic efficiencies or thermostabilities than observed in the training data [10, 35, 18], using linear
models with one-hot encodings of the protein sequence [35, 18] or embeddings thereof [10].

In the ridge regression setting, the quantity µy−i(Xi)—the prediction for the i-th training input, using
the regression model fit to the remaining training data combined with the candidate test data point—can
be written in closed form as

µy−i(Xi) =
[(

XT
−iX−i + γI

)−1
XT
−iY

y
−i

]T
Xi (5)

=

n−1∑
j=1

Y−i;jA−i;j

T

Xi + (AT
−i;nXi)y,

where the rows of the matrix X−i ∈ Rn×p are the input vectors in Zy−i, Y
y
−i = (Y−i, y) ∈ Rn contains the

labels in Zy−i, the matrix A−i ∈ Rn×p is defined as A−i =
(
XT
−iX−i + γI

)−1
XT
−i, A−i;j denotes the j-th

column of A−i, and Y−i;j denotes the j-th element of Y−i.
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Note that the expression in Eq. (5) is a linear function of the candidate label, y. Consequently, Alg. 3 in
the Appendix details how we can first compute and store the slopes and intercepts of these linear functions for
all i, which can be calculated as byproducts of fitting n+ 1 ridge regression models. Using these parameters,
we can then compute µy−i(Xi) for all candidate labels, y ∈ Y, by simply evaluating a linear function of y
instead of retraining a regression model on Zy−i. Altogether, beyond fitting n + 1 ridge regression models,
Alg. 2 requires O(n · p · |Y|) additional floating point operations to compute the scores and weights for all
the candidate labels, the bulk of which can be implemented as one outer product between an n-vector and
a |Y|-vector, and one Kronecker product between an (n× p)-matrix and a |Y|-vector.

Gaussian process regression. Similarly, suppose we fit a Gaussian process regression model to the
training data. We then select a test input vector according to a likelihood that is a function of the mean and
variance of the model’s prediction, such as many of the acquisition functions used in Bayesian optimization.
Gaussian process regression has been used in this manner to design desirable proteins [50, 9, 22], small
molecules [25], and beyond.

For a linear kernel, the expression for the mean prediction, µy−i(Xi), is the same as for ridge regression
(Eq. (5)). For arbitrary kernels, the expression can be generalized and remains a linear function of y (see
Appendix A2.2 for details). We can therefore mimic the computations described for the ridge regression case
to compute the scores and weights efficiently.

2.5 Data splitting

For settings with abundant training data, or model classes that do not afford efficient computations of the
scores and weights, one can turn to data splitting to construct valid confidence sets in an practical manner.
To do so, we first randomly partition all of our labeled data into disjoint training and calibration sets. Next,
we use the training data to fit a regression model, which induces a test input distribution. If we condition on
the training data, thereby treating the regression model as fixed, we have a setting in which 1) the calibration
and test data are drawn from different input distributions, but 2) are independent (even though the test and
training data are not). That is, data splitting returns us to the setting of standard covariate shift, under
which we can use the data splitting approach in [60] to construct valid confidence intervals (Theorem 4 in
the Appendix).

We also observe that randomized data splitting approaches yield confidence sets with exact coverage; see
Appendix A1.4 for details.

3 Experiments on protein design

To demonstrate practical uses of our theoretical results and accompanying algorithms, we now use our
approach to quantify uncertainty for designed proteins. Given some fitness of interest, such as fluorescence,
a typical goal of protein design is to seek a protein with high fitness—in particular, higher than we have so far
observed in known proteins. Historically, this has been accomplished in the wet lab through several iterations
of expensive, time-consuming experiments. Recently, efforts have been made to augment such approaches
with machine learning-based strategies; see reviews by Yang et al. [70], Sinai and Kelsic [54], Hie and Yang
[26], and Wu et al. [69] and references therein. For example, one might train a regression model on protein
sequences with experimentally measured fitnesses, then use an optimization algorithm or fit a generative
model that leverages that regression model to propose new proteins [18, 12, 50, 9, 67, 5, 10, 36, 22, 66, 72].
Special attention has been given to the single-shot case, where the goal is to design fitter proteins given just
a single batch of training data, due to its obvious practical convenience.

The use of regression models for design involves balancing 1) the desire to explore regions of input space
far from the training inputs, in order to find new desirable inputs, with 2) the need to stay close enough to
the training inputs that we can trust the regression model. As such, estimating predictive uncertainty in this
setting is important. Furthermore, designing inputs based on a trained regression model creates statistical
dependence between the designed input and training data, leading to a distribution shift in which the training
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Figure 2: Single-shot protein design. The gray distribution represents the distribution of fitnesses under the
training sequence distribution. The blue circles represent the fitnesses of three sequences drawn from this
distribution, and the goal is to propose a sequence with higher fitness than any of these. To that end, we fit
a regression model to the training sequences paired with experimental measurements of their fitnesses, then
use some design procedure that leverages that trained model to propose a new sequence that we believe to
have a higher fitness (green circle).

and test data are no longer independent.3 Instead, the data fall under feedback covariate shift (FCS): since
the true fitness is always some quantity dictated by nature, the conditional distribution of fitness given any
sequence stays fixed, but the distribution of test sequences is chosen based on a trained regression model.

In the experiments presented here, our goal will be as follows. Given a training data set consisting of
protein sequences labeled with measurements of some fitness, we will fit a regression model, then sample test
sequences (representing designed proteins) according to design procedures used in recent work [10, 72] (Fig.
2). We will then construct confidence sets with guaranteed coverage for the designed proteins, and examine
various characteristics of those sets to understand the utility of our approach.

3.1 Design experiments using combinatorially complete fluorescence data sets

The challenge when evaluating in silico design approaches is that in general, we do not have labels for the
designed sequences. One workaround, which we take here, is to make use of combinatorially complete protein
data sets [47, 67, 66, 13], in which a small number of fixed positions (typically less than twenty) are selected
from some wild type sequence, and all possible variants of the wild type that vary in those selected positions
are experimentally measured. Such data sets enable us to simulate design problems in which we always have
labels for the designed sequences. In particular, we can use a small subset of the data for training, then run
a design procedure that proposes novel proteins (restricted to being variants of the wild type at the selected
positions), for which we always labels.

We use data of this kind from Poelwijk et al. [47], which focused on two “parent” fluorescent proteins
that differ at exactly thirteen positions in their sequences, and are identical at every other position. All
213 = 8, 192 sequences that have the amino acid of either parent at those thirteen sites (and whose re-
maining positions are identical to both parents) are experimentally measured for fluorescence at both a
“red” wavelength and a “blue” wavelength, resulting in combinatorially complete datasets for two different
fitnesses.

3.1.1 Design experiments

Our training data sets consist of n data points, Z1:n, sampled uniformly at random from a combinatorially
complete data set. We use n ∈ {96, 192, 384} as is typical of realistic scenarios [50, 9, 67, 10, 66]. We
represent each training sequence with indicator features for all first- and second-order interactions between
the thirteen variable sites, and fit a ridge regression model, µZ1:n

(x), to the training data. Linear models
of interaction features between sequence positions have been observed to be both theoretically justified and

3In this section, we will use “test” and “designed” interchangeably when describing data. We will also sometimes say
“sequence” instead of “input”, but this does not imply any constraints on how the protein is represented or featurized.
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empirically useful models of protein fitness [47, 27, 11] and thus may be particularly useful for protein design,
particularly with small amounts of training data. Furthermore, ridge regularization endows linear models
of interaction features with certain desirable properties when generalizing to amino acids not seen in the
training data [27].

Following ideas in [10, 72], we design a protein by sampling from a covariate distribution whose log-
likelihood is proportional to the prediction of the regression model:

p̃X;Z1:n
(Xtest) ∝ exp(λ · µZ1:n

(Xtest)), (6)

where λ > 0, or the inverse temperature, is a hyperparameter that controls the entropy of the distribution.
Larger values of λ result in lower-entropy distributions of designed sequences that are more likely to have
high predicted fitness according to the model, but are also, for this same reason, more likely to be in regions
of sequence space that are further from the training data and over which the model is more uncertain.
Analogous hyperparameters have been used in recent protein design work to control this trade-off between
exploration and exploitation [10, 51, 39, 72]. We take λ ∈ {0, 2, 4, 6} to investigate how the behavior of our
confidence sets varies along this trade-off.

For each setting of n and λ, we generate n training data points and one test data point, (Z1, . . . , Zn, Ztest),
as just described, T = 5000 times. For each of these T trials, we use Alg. 3 in the Appendix to construct a
confidence set, Cα(Xtest), using a grid of real values between 0 and 1.7 spaced ∆ = 0.01 apart as the set of
candidate labels, Y. This range contains the ranges of fitness values in both the blue and red combinatorially
complete data sets, [0.091, 1.608] and [0.025, 1.692], respectively. 4

We use α = 0.1 as a representative miscoverage value, corresponding to coverage of 1−α = 0.9. We then
compute the empirical coverage achieved by the confidence sets, defined as the fraction of the T trials where
the true fitness of the designed protein was within half a grid spacing from some value in the confidence
set, namely, min{|Ytest − y| : y ∈ Cα(Xtest)} ≤ ∆/2. Based on Theorem 1, assuming Y is both a large and
fine enough grid to encompass all possible fitness values, the expected empirical coverage is lower bounded
by 1 − α = 0.9. However, there is no corresponding upper bound, so it will be of interest to examine any
excess in the empirical coverage, which corresponds to the confidence sets being conservative (larger than
necessary). Ideally, the empirical coverage will be exactly 0.9, in which case the sizes of the confidence sets
reflect the minimal predictive uncertainty we can have about the designed proteins while achieving coverage.

In our experiments, the computed confidence sets tended to comprise grid-adjacent candidate labels,
suggestive of the intuitive notion of a confidence interval. As such, we hereafter refer to the width of
confidence intervals, defined as the grid spacing size times the number of values in the confidence set,
∆ · |Cα(Xtest)|.

3.1.2 Results

Here we discuss results for the blue fluorescence data set. Analogous results for the red fluorescence data set
are presented in Appendix A4.

Effect of inverse temperature. First we examined the effect of the inverse temperature, λ, on the
fitnesses of designed proteins (Fig. 3a). Note that λ = 0 corresponds to a uniform distribution over all
sequences in the combinatorially complete data set (i.e., the training distribution), which mostly yields low
label values less than 0.5. Recall that our goal is to find a protein with higher fitness than observed in the
training data. For λ ≥ 4, we observe a considerable mass of designed proteins attaining fitnesses around
1.5, so these values of λ represent settings where the designed proteins are more likely to be fitter than the
training proteins. This observation is consistent with the use of this and other analogous hyperparameters
to tune the outcomes of design procedures [51, 10, 39, 72], and is meant to provide an intuitive interpretation
of the hyperparameter to readers unfamiliar with its use in design problems.

4In general, a reasonable approach for constructing a finite grid of candidate labels, Y, is to span an interval beyond which
one knows label values are impossible in practice, based on prior knowledge about the measurement technology. The presence
or absence of any such value in a confidence set would not be informative to a practitioner. The size of the grid spacing, ∆,
determines the resolution at which we evaluate coverage; that is, in terms of coverage, including a candidate value is equivalent
to including the ∆-width interval centered at that value. Generally, one should therefore set ∆ as small as possible, or small
enough that the resolution of coverage is acceptable, subject to one’s computational budget.
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Figure 3: Quantifying the predictive uncertainty for designed proteins, using the blue fluorescence data set.
(a) Distributions of fitnesses of designed proteins, (b) empirical coverage, compared to the theoretical lower
bound of 1−α = 0.9 (dashed gray line), and (c) distributions of confidence interval widths for different values
of the inverse temperature, λ, and different amounts of training data, n, over T = 5000 trials. The interval
widths in (c) are reported as a fraction of the range of true fitness values in the combinatorially complete
data set, [0.091, 1.608]; widths reported as > 1 signify confidence intervals that contain [0.091, 1.608]. In (a),
and (c), the whiskers signify the minimum and maximum observed values.

Coverage and confidence interval widths. Despite the lack of a theoretical upper bound, the empirical
coverage does not tend to exceed the theoretical lower bound of 1−α = 0.9 by much (Fig. 3b), reaching up
to around 0.92 in some settings. Loosely speaking, this observation suggests that the confidence intervals
are nearly as small, and therefore as informative, as they can be while achieving coverage. In contrast,
deploying conformal prediction here with weights prescribed for standard covariate shift [60] results in overly
conservative confidence sets (see Fig. A3).

As for the widths of the confidence intervals, we observe that for any value of λ, the intervals tend to
be smaller for larger amounts of training data (Fig. 3c). Also, for any value of n, the intervals tend to get
larger as λ increases. The first phenomenon arises from the fact that the more training data points that
inform the model, the fewer the candidate labels, y ∈ Y, that seem plausible for the designed protein; this
agrees with the intuition that training a model on more data should generally reduce predictive uncertainty.
The second phenomenon arises because greater values of λ lead to designed sequences with higher predicted
fitnesses, which the model is more uncertain about. Indeed, for λ = 4, n = 96 and λ = 6, n ∈ {96, 192},
many confidence intervals contain the entire range of fitness values in the combinatorially complete data set.
In these regimes, the regression model cannot glean enough information from the training data to have much
certainty about the designed protein.

Using uncertainty quantification to set design procedure hyperparameters. As the inverse tem-
perature, λ, in Eq. (6) varies, there is a trade-off between the mean predicted fitness and predictive certainty
for designed proteins; both mean predicted fitness and mean confidence interval width grow as λ increases
(Fig. 3a, c). As an example of how our method might be used to inform the design procedure itself, one
can visualize this trade-off and use it to decide on a setting of λ that achieves both a mean predicted fitness
and degree of certainty that one finds acceptable, given, for example, some budget of experimental resources
for evaluating designed proteins in the wet lab. For data sets of different fitness functions, which may be
better or worse approximated by our chosen regression model class and may contain different amounts of
measurement noise, this trade-off (and therefore, the appropriate setting of λ) will look different (Fig. 4).

Protein design experiments on the red fluorescence data set, for example, result in a less favorable trade-
off between mean predicted fitness and predictive certainty than the blue fluorescence data set: the same
amount of increase in mean predicted fitness corresponds to a greater increase in mean interval width for
red compared to blue fluorescence (Fig. 4b). We might therefore choose a smaller value of λ for the former
than for the latter. Indeed, predictive uncertainty grows so quickly for red fluorescence that, for λ > 2, the
empirical probability that the smallest value in the confidence interval is greater than the true fitness of
one of the wild type parent sequences decreases rather than increases (Fig. 4a) which suggests we may not
want to set λ > 2. In contrast, if we had looked at the mean predicted fitness alone without assessing the
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Figure 4: Comparison of trade-off between predicted fitness and predictive certainty on the red and blue
fluorescence data sets. (a) Empirical probability that the smallest value in the confidence intervals of designed
proteins exceeds the true fitness of one of the wild-type parent sequences, mKate2. (b) Trade-off between
mean confidence interval width and mean predicted fitness for different values of the inverse temperature, λ,
and n = 384 training data points. (c) For n = 384 and λ = 6, the distributions of both confidence interval
width and predicted fitnesses of designed proteins. In (b) and (c), the widths are reported as a fraction of
the range of fitness values in the combinatorially complete data sets, [0.091, 1.608] and [0.025, 1.692] for blue
and red fluorescence, respectively.

uncertainty of those predictions, it may seem that we should set λ to a higher value.
For blue fluorescence, however, we have enough predictive certainty for designed proteins that we do

stand to gain from setting λ to high values, such as λ = 6. Though the mean interval width continues
to grow with λ, it does so at a much slower rate than for red fluorescence; correspondingly, the empirical
frequency at which the confidence interval surpasses the fitness of the wild type also continues to increase
(Fig. 4a, b).

We can observe these differences in the trade-off even for a given value of λ. For n = 384, λ = 6, proteins
designed for blue fluorescence with higher predicted fitness do not have much wider intervals than those with
lower predicted fitness; regardless of the predicted fitness, most intervals are between roughly 0.25 and 0.5
of the total fitness range (Fig. 4c). In contrast, for red fluorescence, designed proteins with higher predicted
fitness also tend to have wider confidence intervals.

3.2 Design experiments using a high-throughput fitness data set

In Section 3.1, we simulated design experiments using combinatorially comprehensive data sets so that we
always had the true label of designed sequences. As an alternative approach, here we circumvent the issue of
missing designed sequence labels by using a massively high-throughput data set in which not every possible
sequence is labeled, but the input space is sampled densely enough that we can perform rejection sampling
to sample designed sequences for which we have labels. Specifically, we use a data set with the fitnesses of
millions of sequences that vary at seven selected positions, and that otherwise match a wild type. We hold
out half a million of these sequences and use the remaining data for training and calibration, as detailed
shortly. The input space—all 217 sequences that vary at those positions—is sampled sufficiently densely and
uniformly by the held-out sequences that we can treat them as samples from a proposal distribution, and
perform rejection sampling to get designed sequences from the test input distribution.

We now describe the particular protein design problem in more detail.

3.2.1 Design of adeno-associated virus capsids with improved packaging ability

Adeno-associated viruses (AAVs) are a class of viruses whose capsid, the protein shell that encapsulates the
viral genome, holds great promise as a delivery vehicle for gene therapy. As such, the protein that constitutes
the capsid has been modified to enhance various fitnesses, such as the ability to enter specific tissues and
to not prompt an immune response [40, 16, 61]. Such efforts usually start by sampling millions of protein
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sequences from some distribution, called a library, then running an experiment that selects out the fittest
sequences. Standard libraries used today have relatively high entropy, resulting in a highly diverse set of
sequences that can yield successful outcomes for a myriad of downstream selection experiments.

However, most sequences sampled from standard libraries fail to assemble into a capsid that packages
the genetic payload [1, 61, 41]—an ability called packaging, which is the minimum requirement of a gene
therapy delivery mechanism, and therefore a prerequisite to any other desired fitness. If libraries could be
developed with higher expected packaging ability, without compromising sequence diversity, the success rate
of downstream selection experiments should improve. To this end, Zhu et al. [72] use regression models
trained on sequence-packaging data to solve for the parameters of a library that simultaneously has high
entropy and yields sequences with high predicted packaging ability.

Here, we replicate their methodology to set library parameters, then use the data splitting method
described in Section 2.5 to construct confidence sets for protein sequences sampled from that library. We
use the high-throughput data collected by Zhu et al. [72], which sampled millions of sequences from a
common baseline called the NNK library and measured their packaging abilities, resulting in 8, 552, 729
labeled sequences. We randomly select and hold out one million of these data points, for calibration and
test purposes we will describe shortly, then train an ensemble of five neural networks on the remaining data
to predict packaging ability from sequence.

3.2.2 Setting library parameters

In accordance with commonly used DNA synthesis protocols, the library parameters we can control are the
marginal probabilities of codons at each site of a protein sequence. Let {qθ : θ ∈ Θ} denote the set of all
sequence distributions that are a product of independent distributions over codons at each site, where the
library parameters, θ, contain the site-specific codon probabilities. Zhu et al. [72] set these parameters by
solving the following optimization problem, where µ denotes the trained regression model:

θτ = arg max
θ∈Θ

Eqθ(x) [µ(x)] + τ ·H(qθ), (7)

where H(·) denotes the entropy of a discrete distribution, and τ ≥ 0 is a regularization hyperparameter
called the temperature. As τ increases, the library parameters that solve Eq. (7) should exhibit greater
entropy, but at the cost of lower expected predicted fitness.

Following Zhu et al. [72], we solve Eq. (7) using stochastic gradient descent for a range of temperature
values between 0 and 1. We calculate the entropy of each of the resulting libraries in closed form, and
also use the neural network ensemble to predict the fitnesses of sequences sampled from them; refer to the
Supplementary Materials and Methods in the work by Zhu et al. [72] for the full methodological details. By
visualizing the trade-off between entropy and mean predicted fitness, we identify temperature values that
result in libraries with both higher expected predicted fitness than the NNK library, and negligible decrease
in entropy.

3.2.3 Sampling and constructing confidence sets for designed sequences

For each of these libraries, we sample designed sequences from the library using rejection sampling, where
we treat 500,000 of the held-out sequences as samples from a proposal distribution (i.e., the NNK library).
Then, using the remaining 500,000 held-out data points as calibration data, we employ the data splitting
method described in Section 2.5 to construct confidence sets for the test sequences.

3.2.4 Results

Varying the temperature hyperparameter exposes a trade-off between mean predicted fitness and entropy,
compared to which the NNK library, whose parameter values are intended to roughly maximize entropy while
minimizing the probability of generating a stop codon, exhibits the highest entropy but also the lowest mean
predicted fitness by a considerable margin (Fig. 5a). Temperature values roughly between 0.3 and 0.6 yield
libraries with similar entropy to the NNK library, but much higher mean predicted fitness. As expected, the
library parameters—site-specific probabilities of the twenty amino acids, as well as a stop codon—resulting
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Figure 5: Quantifying uncertainty of predicted fitness of designed adeno-associated viral capsid proteins. (a)
Trade-off curve between mean predicted fitness and entropy of the library that solves Eq. (7), for different
values of the temperature, τ . As a more interpretable proxy of entropy, we instead report the mean Hamming
distance between two sequences sampled from the library, where larger values correspond to greater entropy.
The + marker is the baseline NNK library, from which training sequences were sampled, and the open circles
demarcate the endpoints of the range of temperature values for which we perform uncertainty quantification,
τ ∈ [0.3, 0.6]. (b) Heatmaps depicting the library parameters corresponding to τ = 0.3 (top) and τ = 0.6
(bottom), namely, seven site-specific categorical distributions over the twenty amino acids plus the stop
codon. The color intensity depicts the probability of each amino acid at each site. (c) Empirical coverage
(top) and mean width (bottom) of confidence intervals constructed using the data splitting approach in
Appendix A1.3, for the range of of temperature values demarcated in the left subplot. The interval width is
reported as a fraction of the entire range of fitness values in the labeled data, [−7.32, 8.86], and the dashed
black line is the theoretical lower bound of 1− α = 0.9.

from τ = 0.6 appear more homogeneous, corresponding to a higher-entropy sequence distribution, than those
resulting from τ = 0.3 (Fig. 5b).

For seven libraries with temperature values ranging between 0.3 and 0.6, the empirical coverage resulting
from the confidence sets is very close to 1−α = 0.9, which indicates that the sets are not overly conservative
(Fig. 5c). The mean confidence interval widths are also a reasonably small fraction of the total range of
fitness values, [−7.32, 8.86] (Fig. 5c).

4 Discussion

The predictions made by machine learning models are increasingly being used to make consequential de-
cisions, which in turn influence the data that the models encounter. Our work marks an important step
toward enabling practitioners to trust the predictions of learned models in such settings. In particular,
we hope our examples of quantifying the predictive uncertainty of designed proteins demonstrate the broad
applicability of our approach in the context of design problems. Now that we have demonstrated the theoret-
ical and empirical validity of our uncertainty quantification approach, in terms of the frequentist statistical
notion of coverage, it will be of interest to investigate whether and how design procedures can leverage these
uncertainty estimates, as touched on in Section 3.1.2.

Looking beyond the design problem, the formalism of feedback covariate shift (FCS) introduced here
describes a myriad of settings pertinent to modern-day deployments of machine learning. In particular, FCS
often occurs at each iteration of a feedback loop—for example, at each iteration of active learning, adaptive
experimental design, and Bayesian optimization methods. Applications and extensions of our approach to
such settings are exciting directions for future investigation.
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A1 Proofs

A1.1 Proof of Theorem 1

Data from feedback covariate shift are a special case of what we call pseudo-exchangeable5 random variables.

Definition 2. Random variables V1, . . . , Vn+1 are pseudo-exchangeable with factor functions g1, . . . , gn+1

and exchangeable function h if the density, f , of their joint distribution can be factorized as

f(v1, . . . , vn+1) =

n+1∏
i=1

gi(vi; v−i) · h(v1, . . . , vn+1),

where v−i = v1:(n+1) \vi, each gi(·; v−i) is a function that depends on the multiset v−i (that is, on the values
in v−i but not on their ordering), and h is a function that does not depend on the ordering of its n+1 inputs.

The following lemma characterizes the distribution of the scores of pseudo-exchangeable random variables,
which allows for a pseudo-exchangeable generalization of conformal prediction in Theorem 2. Our technical
development here builds upon the work of Tibshirani et al. [60], who generalize conformal prediction to
handle “weighted exchangeable” random variables, including data under standard covariate shift. We further
generalize conformal prediction to account for pseudo-exchangeable random variables, and show that data
generated under feedback covariate shift are pseudo-exchangeable. A straightforward application of Theorem
2 then yields Theorem 1 in the main text as a corollary.

The key insight is that if we condition on the values, but not the ordering, of the scores, we can exactly
describe their distribution. The following proposition is a generalization of arguments found in the proof of
Lemma 3 in [60].

Proposition 1. Let Z1, . . . , Zn+1 be pseudo-exchangeable random variables with a joint density function,
f , that can be written with factor functions g1, . . . , gn+1 and exchangeable function h. Let S be any score
function and denote Si = S(Zi, Z−i) where Z−i = Z1:(n+1) \ {Zi} for i = 1, . . . , n+ 1. Define

wi(z1, . . . , zn+1) ≡
∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j))

, i = 1, . . . , n+ 1, (A1)

where the summations are taken over permutations, σ, of the integers 1, . . . , n+1. For values z = (z1, . . . , zn+1),
let si = S(zi, z−i) and let Ez be the event that {Z1, . . . , Zn+1} = {z1, . . . , zn+1} (that is, the multiset of values
taken on by Z1, . . . , Zn+1 equals the multiset of the values taken on in z). Then

Sn+1 | Ez ∼
n+1∑
i=1

wi(z1, . . . , zn+1) δsi .

Proof. For simplicity, we treat the case where S1, . . . , Sn+1 are distinct almost surely; the result also holds in

5The name pseudo-exchangeable hearkens to the similarity of the factorized form to the pseudo-likelihood approximation of
a joint density. Note, however, that each factor, gi(vi; v−i), can only depend on the values and not the ordering of the other
variables, v1, . . . , vi−1, vi+1, . . . , vn, whereas each factor in the pseudo-likelihood approximation also depends on the identities
(i.e., the ordering) of the other variables.
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the general case, but the notation that accommodates duplicate values is cumbersome. For i = 1, . . . , n+ 1,

P(Sn+1 = si | Ez) = P(Zn+1 = zi | Ez) =

∑
σ:σ(n+1)=i f(zσ(1), . . . , zσ(n+1))∑

σ f(zσ(1), . . . , zσ(n+1))

=

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(zσ(1), . . . , zσ(n+1))∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(zσ(1), . . . , zσ(n+1))

=

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(z1, . . . , zn+1)∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(z1, . . . , zn+1)

=

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j))

= wi(z1, . . . , zn+1).

Lemma 1. Let Z1, . . . , Zn+1 be pseudo-exchangeable random variables with a joint density function, f , that
can be written with factor functions g1, . . . , gn+1 and exchangeable function h. Let S be any score function
and denote Si = S(Zi, Z−i) where Z−i = Z1:(n+1) \ {Zi} for i = 1, . . . , n+ 1. For any β ∈ (0, 1),

P

{
Sn+1 ≤ Quantileβ

(
n+1∑
i=1

wi(Z1, . . . , Zn+1) δSi

)}
≥ β,

where wi(z1, . . . , zn+1) is defined in Eq. (A1).

Proof. Due to the invariance of the factor functions, g(·; s), to the ordering of the values in s, the arguments
that prove Lemma 3 in [60] also hold for pseudo-exchangeable random variables, as follows.

Assume for simplicity of notation that S1, . . . , Sn+1 are distinct almost surely (but the result holds
generally). For data point values z = (z1, . . . , zn+1), let si = S(zi, z−i) and let Ez be the event that
{Z1, . . . , Zn+1} = {z1, . . . , zn+1}. By Proposition 1,

Sn+1 | Ez ∼
n+1∑
i=1

wi(z1, . . . , zn+1) δsi ,

and consequently

P

(
Sn+1 ≤ Quantileβ

(
n+1∑
i=1

wi(z1, . . . , zn+1) δsi

)∣∣∣∣∣Ez
)
≥ β,

by definition of the β-quantile; equivalently, since we condition on Ez,

P

(
Sn+1 ≤ Quantileβ

(
n+1∑
i=1

wi(Z1, . . . , Zn+1) δSi

)∣∣∣∣∣Ez
)
≥ β.

Since this inequality holds for all events Ez, where z is a vector of n+ 1 data point values, smoothing gives

P

(
Sn+1 ≤ Quantileβ

(
n+1∑
i=1

wi(Z1, . . . , Zn+1) δSi

))
≥ β.

Lemma 1 yields the following theorem, which enables a generalization of conformal prediction to pseudo-
exchangeable random variables.
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Theorem 2. Suppose Zi = (Xi, Yi) ∈ X × R, i = 1, . . . , n + 1 are pseudo-exchangeable random variables
with factor functions g1, . . . , gn+1. For any score function S and any miscoverage level α ∈ (0, 1), define for
any point x ∈ X :

Cα(x) =

{
y ∈ R : Sn+1(x, y) ≤ Quantile1−α

(
n+1∑
i=1

wi(Z1, . . . , Zn, (x, y)) δSi(x,y)

)}
, (A2)

where Si(x, y) = S(Zi, Z−i ∪ {(x, y)}) and Z−i = Z1:n \Zi for i = 1, . . . , n, Sn+1(x, y) = S((x, y), Z1:n), and
the weight functions wi are as defined in Eq. (A1). Then Cα satisfies

P (Yn+1 ∈ Cα(Xn+1)) ≥ 1− α,

where the probability is over all n+ 1 data points, (X1, Y1), . . . , (Xn+1, Yn+1).

Proof. By construction, we have

Yn+1 ∈ Cα(Xn+1) ⇐⇒ Sn+1((Xn+1, Yn+1)) ≤ Quantile1−α

(
n+1∑
i=1

wi(Z1, . . . , Zn+1) δSi(Xn+1,Yn+1)

)
.

Applying Lemma 1 gives the result.

Finally, Theorem 1 in the main text follows as a corollary of Theorem 2. Denoting Zn+1 = Ztest and
Z−i = Z1:(n+1) \Zi, observe that data Z1, . . . , Zn+1 under feedback covariate shift are pseudo-exchangeable
with the exchangeable function

h(z1, . . . , zn+1) =

n+1∏
i=1

pX(xi) pY |X(yi | xi),

and factor functions gi(zi; z−i) = 1 for i = 1, . . . , n and

gn+1(zn+1; z1:n) =
p̃X;z1:n(xn+1) pY |X(yn+1 | xn+1)

pX(xn+1) pY |X(yn+1 | xn+1)
=
p̃X;z1:n(xn+1)

pX(xn+1)
= v(xn+1; z1:n)

for the likelihood ratio function, v(·; ·), defined in Eq. (2). The weights, wi(z1, . . . , zn+1), in Eq. (A1) then
simplify as

wi(z1, . . . , zn+1) =

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j))

=

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))∑n+1

k=1

∑
σ:σ(n+1)=k

∏n+1
j=1 gj(zσ(j); z−σ(j))

=

∑
σ:σ(n+1)=i gn+1(zσ(n+1); z−σ(n+1))∑n+1

k=1

∑
σ:σ(n+1)=k gn+1(zσ(n+1); z−σ(n+1))

=

∑
σ:σ(n+1)=i gn+1(zi; z−i)∑n+1

k=1

∑
σ:σ(n+1)=k gn+1(zk; z−k)

=
n! · gn+1(zi; z−i)∑n+1
k=1 n! · gn+1(zk; z−k)

=
v(xi; z−i)∑n+1
k=1 v(xk; z−k)

.

These quantities are exactly the weight functions, wyi , used to define the confidence set in Eq. (3) in the main
text: wyi (x) = wi(Z1, . . . , Zn, (x, y)) for i = 1, . . . , n+ 1. That is, Eq. (3) gives the confidence set defined in
Eq. (A2) for data under feedback covariate shift. Applying Theorem 2 then yields Theorem 1.
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A1.2 A randomized confidence set achieves exact coverage

Here, we introduce the randomized β-quantile and a corresponding randomized confidence set that achieves
exact coverage. To lighten notation, for a discrete distribution with probability masses w = (w1, . . . , wn+1) on

points s = (s1, . . . , sn+1), respectively, where si ∈ R and wi ≥ 0,
∑n+1
i=1 wi = 1, we will write Quantileβ(s, w) =

Quantileβ(
∑n
i=1 wiδsi). Observe that Quantileβ(s, w) is always one of the support points, si. Now define

the β-quantile lower bound as

QuantileLBβ (s, w) = inf

s :
∑
i:si≤s

wi < β,
∑
i:si≤s

wi +
∑

j:sj=Quantileβ(s,w)

wj ≥ β

 ,

which is either a support point strictly less than the β-quantile, or negative infinity. Finally, letting Fs,w
denote the CDF of the discrete distribution supported on s with probability masses w, and using the short-
hand QFβ(s, w) = Fs,w(Quantileβ(s, w)) and LFβ(s, w) = Fs,w(QuantileLBβ(s, w)), the randomized
β-quantile is a random variable that takes on the value of either the β-quantile or the β-quantile lower
bound:

RandomizedQuantileβ(s, w) =

QuantileLBβ(s, w) w. p.
QFβ(s,w)−β

QFβ(s,w)−LFβ(s,w) ,

Quantileβ(s, w) w. p. 1− QFβ(s,w)−β
QFβ(s,w)−LFβ(s,w) .

(A3)

We use this quantity to define the randomized full conformal confidence set, which, for any miscoverage
level, α ∈ (0, 1), and x ∈ X is the following random variable:

Crand
α (x) =

{
y ∈ R : S((x, y), Z1:n) ≤ RandomizedQuantile1−α(s(Z1, . . . , Zn, (x, y)), w(Z1, . . . , Zn, (x, y))

}
,

(A4)

where s(Z1, . . . , Zn, (x, y)) = (S1, . . . , Sn, S((x, y), Z1:n), Si = S(Zi, Z−i ∪ {(x, y)}) for i = 1, . . . , n, and
w(Z1, . . . , Zn, (x, y)) = (wy1(x), . . . , wyn+1(x)) where wyi (x) is defined in Eq. (4). Note that for each value of
y ∈ R, an independent randomized β-quantile is instantiated; some values will use the β-quantile as the
threshold on the score, while the others will use the β-quantile lower bound. Randomizing the confidence
set in this way yields the following result.

Theorem 3. Suppose data are generated under feedback covariate shift and assume P̃X;D is absolutely
continuous with respect to PX for all possible values of D. Then, for any miscoverage level, α ∈ (0, 1), the
randomized confidence set Crand

α in Eq. (A4) satisfies the exact coverage property:

P(Ytest ∈ Crand
α (Xtest)) = 1− α, (A5)

where the probability is over (Z1, . . . , Zn, Ztest) and the randomness in Crand
α .

Proof. Denote Zn+1 = Ztest and Z = (Z1, . . . , Zn+1). For a vector of n + 1 data point values, z =
(z1, . . . , zn+1), use the following shorthand:

Qβ(z) = Quantileβ(s(z), w(z)),

Lβ(z) = QuantileLBβ(s(z), w(z)),

Rβ(z) = RandomizedQuantileβ(s(z), w(z)),

QFβ(z) = QFβ(s(z), w(z)),

LFβ(z) = LFβ(s(z), w(z)),

where s(z1, . . . , zn+1) = (S(z1, z−1), . . . , S(zn+1, z−(n+1))). As in the proof of Lemma 1, consider the event,
Ez, that {Z1, . . . , Zn+1} = {z1, . . . , zn+1}. Assuming for simplicity that the scores are distinct almost surely,
by Proposition 1

S(Zn+1, Z1:n) | Ez ∼
n+1∑
i=1

wi(z1, . . . , zn+1) δS(zi,z−i),
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and consequently

P(S(Zn+1, Z1:n) ≤ R1−α(z) | Ez)
= P(S(Zn+1, Z1:n) ≤ R1−α(z) | Ez,R1−α(z) = Q1−α(z)) · P(R1−α(z) = Q1−α(z) | Ez)+

P(S(Zn+1, Z1:n) ≤ R1−α(z) | Ez,R1−α(z) = L1−α(z)) · P(R1−α(z) = L1−α(z) | Ez)

= P(S(Zn+1, Z1:n) ≤ Q1−α(z) | Ez) ·
(

1−
QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)

)
+

P(S(Zn+1, Z1:n) ≤ L1−α(z) | Ez) ·
QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)

= QF1−α(z) ·
(

1−
QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)

)
+ LF1−α(z) ·

QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)

= −
(
QF1−α(z)− LF1−α(z)

)
·

QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)
+ QF1−α(z)

= −QF1−α(z) + (1− α) + QF1−α(z)

= 1− α.

Since we condition on Ez, we equivalently have

P(S(Zn+1, Z1:n) ≤ R1−α(Z) | Ez) = 1− α,

and since this equality holds for all events Ez, where z is a vector of n + 1 data point values, taking an
expectation over Ez yields

P(S(Zn+1, Z1:n) ≤ R1−α(Z)) = 1− α.

Finally, since

Yn+1 ∈ Crand
α (Xn+1) ⇐⇒ S(Zn+1, Z1:n) ≤ R1−α(Z),

the result follows.

Note that standard covariate shift is subsumed by feedback covariate shift, so Theorem 3 can be used to
construct a randomized confidence set with exact coverage under standard covariate shift as well. In fact,
this approach is how we randomize a data splitting approach to achieve exact coverage; see Appendix A1.4.

A1.3 Data splitting

In general, computing the confidence set, Cα(x), using Alg. 1 requires fitting (n + 1) × |Y| regression
models. A much more computationally attractive alternative is called a data splitting or split conformal
approach [42, 34], in which we 1) randomly partition the labeled data into disjoint training and calibration
data sets, 2) fit a single regression model to the training data, and 3) use the scores that it provides for
the calibration data (but not the training data) to construct confidence sets for test data points. Though
this approach only requires fitting a single model, the trade-off is that it does not use the labeled data as
efficiently: only some fraction of our labeled data can be used to train the regression model. This limitation
may be inconsequential for settings with abundant data, but can be a nonstarter for low-n settings such as
many protein design problems.

Here, we show how a data splitting approach for feedback covariate shift simplifies our setting to standard
covariate shift. We can then use the data splitting method from Tibshirani et al. [60] to produce confidence
sets with coverage; the subsequent two subsections show how to introduce randomization to achieve exact
coverage.

To begin, we recall the standard covariate shift model [52, 58, 59]. Each training data point, Zi = (Xi, Yi)
for i = 1, . . . , n, is drawn independently and identically from some distribution: Xi ∼ PX , Yi ∼ PY |Xi . A
test data point, Ztest = (Xtest, Ytest), is drawn from a different input distribution but the same conditional
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distribution, Xtest ∼ P̃X , Ytest ∼ PY |Xtest
, independently from the training data. In contrast to feedback

covariate shift, here the test data point cannot be chosen in a way that depends on the training data.
Returning to feedback covariate shift, suppose we randomly partition all of our labeled data into two

disjoint sets: a training data set and a calibration data set. Let µ denote the regression model fit to the
training data; we henceforth consider µ as a fixed predictor, and make no further use of the training data.
That is, we are conditioning on the training data. As such, without loss of generality we will use Z1, . . . , Zm
to refer to the calibration data and Zm+1 to refer to the test data point. Now suppose the test input
distribution is induced by the trained regression model, µ; we will write P̃X;µ. Observe that, conditioned on
the training data, we now have a setting where the calibration and test data are drawn from different input
distributions but the same conditional distribution, PY |X , and are independent of each other. That is, data
splitting has returned us to standard covariate shift.

To construct a confidence set under standard covariate shift, define the following likelihood ratio function:

v(x) =
p̃X;µ(x)

pX(x)
, (A6)

where pX and p̃X;µ refer to the densities of the training and test input distributions, respectively. We restrict
our attention to score functions of the following form [3]:

S(x, y) =
|y − µ(x)|
u(x)

. (A7)

where u is any heuristic, nonnegative notion of uncertainty; one can also set u(x) = 1 to use the residual as
the score. Note that, since we condition on the training data and treat the regression model as fixed, the
score of a point, (x, y), is no longer also a function of other data points. Finally, for any miscoverage level,
α ∈ (0, 1), and any x ∈ X , define the split conformal confidence set as

Csplit
α (x) = µ(x)± q · u(x),

q = Quantile1−α

(
m∑
i=1

wi(x) δSi + wn+1(x) δ∞

)
,

(A8)

where Si = S(Xi, Yi) for i = 1, . . . ,m and

wi(x) =
v(Xi)∑m

j=1 v(Xj) + v(x)
, i = 1, . . . ,m, (A9)

wm+1(x) =
v(x)∑m

j=1 v(Xj) + v(x)
.

For data under standard covariate shift, the split conformal confidence set achieves coverage, as first shown
by Tibshirani et al. [60].

Theorem 4 (Corollary 1 in [60]). Suppose calibration and test data are under standard covariate shift,
and assume P̃X;µ is absolutely continuous with respect to PX . For score functions of the form in Eq. (A7),
and any miscoverage level, α ∈ (0, 1), the split conformal confidence set, Csplit

α (x), in Eq. (A8) satisfies the
coverage property in Eq. (1).

Note that since standard covariate shift is a special case of feedback covariate shift, this result also follows
as a corollary of Theorem 2.

In settings under feedback covariate shift with abundant data, Theorem 4 allows us to use the split
conformal confidence set in Eq. (A8) to achieve coverage. To achieve exact coverage, we can introduce
randomization, as we discuss next.

A1.4 Data splitting with randomization achieves exact coverage

Here, we stay in the setting and notation of the previous subsection and demonstrate how randomizing the
β-quantile enables a data splitting approach to achieve exact coverage. For any score function of the form
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in Eq. (A7), any miscoverage level, α ∈ (0, 1), the randomized split conformal confidence set is the following
random variable for x ∈ X :

Crand,split
α (x) =

{
y ∈ R : S(x, y) ≤ RandomizedQuantile1−α ((S1, . . . , Sm, S(x, y)), (w1(x), . . . , wm+1(x)))

}
,

(A10)

where the randomized β-quantile, RandomizedQuantileβ is defined in Eq. (A3), Si = S(Xi, Yi) for i =
1, . . . ,m, and wi(·) for i = 1, . . . ,m + 1 is defined in Eq. (A9). Observe that for each value y ∈ R, an
independent randomized β-quantile is drawn, such that the scores of some values are compared to the β-
quantile while the others are compared to the β-quantile lower bound. The exact coverage property of this
confidence set follows as a consequence of Theorem 3.

Corollary 1. Suppose calibration data, Z1, . . . , Zm, and a test data point, Zm+1, are drawn under standard
covariate shift, and assume P̃X is absolutely continuous with respect to PX . For score functions of the form in
Eq. (A7), and any miscoverage level, α ∈ (0, 1), the randomized split conformal confidence set, Crand,split

α (x),
in Eq. (A10) satisfies the exact coverage property in Eq. (A5).

Proof. Since standard covariate shift is a special case of feedback covariate shift, the calibration and test
data can be described by feedback covariate shift where P̃X;D = P̃X;µ. The randomized split conformal
confidence set, Crand,split

α , is simply the randomized full conformal confidence set, Crand
α , defined in Eq. (A4),

instantiated with the scores S((x, y), Z1:m) = S(x, y) and S(Zi, Z−i∪{(x, y)}) = S(Zi) for i = 1, . . . ,m, and
weights resulting from P̃X;D = P̃X;µ. The result then follows from Theorem 3.

While we only need to fit a single regression model, µ, used to compute the scores, naively it might seem
that in practice, we can only approximate Crand,split

α (x) by introducing a discrete grid of candidate values,
Y ⊂ R, and computing a randomized β-quantile for |Y| different discrete distributions. Fortunately, we can
construct an alternative confidence set that also achieves exact coverage, the randomized staircase confidence
set, Cstaircase

α , which only requires sorting m scores and an additional O(m) floating point operations to
compute (see Alg. 2).

At a high level, its construction is based on the observation that for any x ∈ X and y ∈ R, the quantity
P(y ∈ Crand,split

α (x)), where the probability is over the randomness in Crand,split
α (x), is a piecewise constant

function of y. Instead of testing each value of y ∈ R, we can then construct this piecewise constant function,
and randomly include entire intervals of y values with the same value of P(y ∈ Crand,split

α (x)).
Fig. A1 illustrates this observation, which we now explain. First, the discrete distribution in Eq. (A10)

has probability masses w1(x), . . . , wm+1(x) at the points S1, . . . , Sm, S(x, y). Given the values of the m
calibration data points and the test input, x, all of these quantities are fixed—except for the score S(x, y).
That is, the only quantity that depends on the value of y is S(x, y), which is the location of the probability
mass wm+1(x); the remaining m support points and their corresponding probability masses do not not change
with y.

Now consider the calibration scores, S1, . . . , Sm, in sorted order. Observe that for any pair of succes-
sive sorted scores, S(i) and S(i+1), the entire interval of y values such that S(x, y) ∈ (S(i), S(i+1) belongs
to one of three categories: S(x, y) ≤ β-quantile lower bound (of the discrete distribution with proba-
bility masses w1, . . . , wm+1 at support points S1, . . . , Sm, S(x, y), respectively), S(x, y) = β-quantile, or
S(x, y) > β-quantile. An interval of y values that belongs to the first category is deterministically included
in Crand,split

α (x), regardless of the randomness in the randomized β-quantile (color-coded green in Fig. A1),
while an interval that belongs to the last category is deterministically excluded (color-coded purple in Fig.
A1). The only y values whose inclusion is not deterministic are those in the second category (color-coded
teal and blue), which are randomly included with the probability, given in Eq. (A3), that the randomized
β-quantile equals the β-quantile. Consequently, we can identify the intervals of y values belonging to each
of these categories, and for those in the second category, compute the probability that the randomized
β-quantile is instantiated as the β-quantile, which is P(y ∈ Crand,split

α (x)).
This probability turns out to be a piecewise constant function of y. Note that it is computed from two

quantities: the c.d.f. at the β-quantile and the c.d.f at the β-quantile lower bound (see Eq. (A3)). As
depicted in Fig. A1 (third panel from top), for any two successive sorted calibration scores, S(i) and S(i+1),
both of these quantities are constant over S(x, y) ∈ (S(i), S(i+1). That is, both the c.d.f. at the β-quantile
and the c.d.f. at β-quantile lower bound are piecewise constant functions of y, which only change values
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Figure A1: Depiction of how the probability P(y ∈ Crand,split
α (x)) is a piecewise constant function of y. (a)

Given the values of the calibration data and test input, the scores S1, . . . , Sm and corresponding probability
masses w1, . . . , wm (black stems), as well as the probability mass for the test input, wm+1 = 0.3, are fixed.
The only quantity that depends on y is S(x, y). Four example values are shown as dashed green, teal,
blue, and purple stems, representing values in [0, S(1)), (S(1), S(2)), (S(2), S(3)), and (S(3),∞], respectively
(see color legend). Note that in this example, 1 − α = 0.4. (b) The 0.4-quantile and 0.4-quantile lower
bound of the discrete distribution in the top panel as a function of S(x, y), where the colors correspond
to values of S(x, y) in the intervals just listed. Note the discontinuity in the 0.4-quantile lower bound at
S(x, y) = S(1). (c) The c.d.f. of the discrete distribution at the 0.4-quantile and 0.4-quantile lower bound.

Note the discontinuities when S(x, y) equals a calibration score. (d) the probability P(y ∈ Crand,split
α (x)),

which equals 1 or 0 if S(x, y) = 0.4-quantile lower bound or S(x, y) > 0.4-quantile, respectively, and otherwise
equals the probability in Eq. (A3) that the randomized 0.4-quantile equals the 0.4-quantile: 1−QF−0.4

QF−LF , where
QF and LF denote the c.d.f. at the 0.4-quantile and 0.4-quantile lower bound, respectively. Color legend:
calculations for the plots (calculations for S(x, y) = S(i) omitted).

at the calibration scores, S1, . . . , Sm (and can take on different values exactly at the calibration scores).
Consequently, the probability P(y ∈ Crand,split

α (x)) is also a piecewise constant function of y, which only
changes values at the calibration scores. It attains its highest value at µ̂(x) and decreases as y moves further
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Algorithm 2 Randomized staircase confidence set
Input: Miscoverage level, α ∈ (0, 1); calibration data, (Z1, . . . , Zm); test input, Xm+1; subroutine for likelihood ratio function,
v(·), defined in Eq. (A6); subroutine for uncertainty heuristic, u(·); subroutine for regression model prediction, µ(·).
Output: Randomized staircase confidence set, C = Cstaircase

α (Xm+1).

1: for i = 1, . . . ,m do . Compute calibration scores
2: Si ← |Yi − µ(Xi)|/u(Xi)
3: vi ← v(Xi)
4: end for
5: vm+1 ← v(Xm+1)
6: for i = 1, . . . ,m+ 1 do . Compute calibration and test weights
7: wi ← vi∑m+1

j=1 vj

8: end for
9: C ← ∅

10: LowerBoundIsSet← False

11: S(0) = 0, w0 = 0 . Dummy values so for-loop will include [0, S(1)]
12: for i = 0, . . . ,m− 1 do
13: if

∑
j:Sj≤S(i)

wj + wm+1 < 1− α then . S(x, y) ≤ β-quantile lower bound, so include deterministically

14: C = C ∪
[
µ(x) + S(i) · u(x), µ(x) + S(i+1) · u(x)

]
∪
[
µ(x)− S(i+1) · u(x), µ(x)− S(i) · u(x)

]
15: else if

∑
j:Sj≤S(i)

wj +wm+1 ≥ 1−α and
∑
j:Sj≤S(i)

wj < 1−α then . S(x, y) = β-quantile, so randomize inclusion

16: if LowerBoundIsSet = False then
17: LowerBoundIsSet← True . Set β-quantile lower bound
18: LF =

∑
j:Sj≤S(i)

wj

19: end if

20: F ←
∑
j:Sj≤S(i)

wj+wm+1−(1−α)∑
j:Sj≤S(i)

wj+wm+1−LF

21: b ∼ Bernoulli(1− F )
22: if b then
23: C = C ∪

[
µ(x) + S(i) · u(x), µ(x) + S(i+1) · u(x)

]
∪
[
µ(x)− S(i+1) · u(x), µ(x)− S(i) · u(x)

]
24: end if
25: end if
26: end for
27: if

∑m
i=1 wi < 1− α then . For S(x, y) > S(m), either S(x, y) = β-quantile or S(x, y) > β-quantile

28: if LowerBoundIsSet = False then
29: LF =

∑m
i=1 wi

30: end if
31: F ← 1−(1−α)

1−LF
32: b ∼ Bernoulli(1− F )
33: if b then
34: C = C ∪

[
µ(x) + S(m) · u(x),∞

]
∪
[
−∞, µ(x)− S(m) · u(x)

]
35: end if
36: end if

away from it, resembling a staircase, as depicted in Fig. A1 (fourth panel from the top).
Therefore, instead of computing a randomized β-quantile for all y ∈ R, we can simply compute

the value of this probability on the m + 1 intervals between neighboring sorted calibration scores:
[0, S(1)), (S(1), S(2)), . . . , (S(m−1), S(m)), (S(m),∞], as well as its value exactly at the m calibration scores.
These probabilities may equal 1 or 0, which correspond to the two cases earlier described wherein y
is deterministically included or excluded, respectively. If the probability is not 1 or 0, then we can
randomly include the entire set of values of y such that S(x, y) falls in the interval. Due to the
form of the score in Eq. (A7), this set comprises two equal-length intervals on both sides of µ(x):
(µ̂(x)− S(i+1), µ̂(x)− S(i)) ∪ (µ̂(x) + S(i+1), µ̂(x) + S(i)).

Finally, if we assume that scores are distinct almost surely, then our treatment of values of y such that
S(x, y) = Si for i = 1, . . . ,m, does not affect the exact coverage property. For simplicity, Alg. 2 therefore
includes or excludes closed intervals that contain these y values as endpoints, rather than treating them
separately.

More general score functions. In the reasoning above, we use the assumption that the score func-
tion takes the form in Eq. (A7) only at the end of the argument, two paragraphs ago. We can relax
this assumption as follows. For any continuous score function, consider the preimage of the intervals
[0, S(1)), (S(1), S(2)), . . . , (S(m−1), S(m)), (S(m),∞] under the function S(xm+1, ·) (a function of the second
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argument with xm+1 held fixed), rather than the intervals given explicitly in Lines 14, 23, and 34 of Alg. 2.
This algorithm then gives exact coverage for any continuous score function, although it will only be compu-
tationally feasible when the preimages can be computed efficiently.

A2 Efficient computation for ridge regression and Gaussian pro-
cess regression

A2.1 Ridge regression

When the likelihood of the test input is a function of the prediction from a ridge regression model, it is
possible to compute the scores and weights for constructing the confidence set by fitting n + 1 models and
O(n ·p · |Y|) additional floating point operations, instead of naively fitting (n+1)×Y models. A construction
that achieves this is presented in Alg. 3.

As an example of the TestCovariateLikelihood subroutine, for the protein design experiments we
computed the likelihood in Eq. (6) in Lines 11 and 15 of Alg. 3 as

v(Xi;Z−i,y)← exp(λ · (ai + biy))

pX(Xi) ·
∑
x∈X exp(λ · (Ci + yA−i,n)Tx)

,

v(Xn+1;Z1:n)← exp(λ · an+1)

pX(Xn+1) ·
∑
x∈X exp(λ · βTx)

,

(A11)

respectively, where pX is the likelihood under the training input distribution, and the domain X is the
combinatorially complete set of the protein sequences under consideration (a total of 8192 sequences for the
data set used in Section 3.1).

Computing these likelihoods is dominated by the (n + 1) × |Y| normalizing constants, which can be
computed efficiently using a single tensor product between an (n+ 1)× p× |Y| tensor containing the model
parameters, Ci + yA−i,n and β, and an |X | × p data matrix containing all inputs in X . For domains, X ,
that are too large for the normalizing constants to be computed exactly, one can turn to tractable Monte
Carlo approximations.

Algorithm 3 Efficient computation of scores and weights for ridge regression-based feedback covariate shift
Input: training data, {(Xi, yi)}ni=1; test input, Xn+1; grid of candidate label values, Y ⊂ R; subroutine,
TestCovariateLikelihood(·), that takes in an input outputs its likelihood under the test input distribution.
Output: scores Si(Xn+1, y) and likelihood ratios v(Xi, Z

y
−i) for i = 1, . . . , n+ 1, y ∈ Y.

1: for i = 1, . . . , n do
2: Ci ←

∑n−1
j=1 Y−i;jA−i;j

3: ai ← CTi Xi
4: bi ← AT

−i;nXi
5: end for
6: β ← (XTX + γI)−1XTY
7: an+1 ← βTXn+1

8: for i = 1, . . . , n do
9: for y ∈ Y do

10: Si(Xn+1, y)← |Yi − (ai + biy)| . Can vectorize via outer product between (b1, . . . , bn) and vector of all y ∈ Y.
11: v(Xi;Z−i,y)← TestCovariateLikelihood(ai + biy) . Can vectorize (see commentary on Eq. (A11)).
12: end for
13: end for
14: Sn+1(Xn+1, y)← |y − an+1|
15: v(Xn+1;Z1:n)← TestCovariateLikelihood(an+1)

A2.2 Gaussian process regression

Here we describe how the scores and weights for constructing the confidence set in Eq. (3) can be computed
efficiently, when the likelihood of the test input distribution is a function of the predictive mean and variance
of a Gaussian process regression model.
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For an arbitrary kernel and two data matrices, V ∈ Rn1×p and V′ ∈ Rn2×p, let K(V,V′) denote the
n1 × n2 matrix where the (i, j)-th entry is the covariance between the i-th row of V and j-th row of V′.
The mean prediction for Xi of a Gaussian process regression model fit to the i-th augmented LOO data set,
µy−i(Xi), is then given by

µy−i(Xi) = K(Xi,X−i)[K(X−i,X−i) + σ2I]−1Y y−i,

and the model’s predictive variance at Xi is

K(Xi, Xi)−K(Xi,X−i)[K(X−i,X−i) + σ2I]−1K(X−i, Xi),

where the rows of the matrix X−i ∈ Rn×p are the inputs in Zy−i, Y
y
−i = (Y−i, y) ∈ Rn is the vector of labels

in Zy−i, and σ2 is the (unknown) variance of the label noise, whose value is set as a hyperparameter. Note
that the mean prediction is a linear function of the candidate value, y, which is of the same form as the
ridge regression prediction in Eq. (5); furthermore, the predictive variance is constant in y. Therefore, we
can mimic Alg. 3 to efficiently compute scores and weights by training just n+ 1 rather than (n+ 1)× |Y|
models.

A3 Details for design experiments using AAV capsid packaging
data

A4 Additional results on protein design using combinatorially
complete fluorescence data sets

Figure A2: Quantifying the predictive uncertainty for designed proteins, using the red fluorescence data set.
(a) Distributions of fitnesses of designed proteins, (b) empirical coverage, compared to the theoretical lower
bound of 1 − α = 0.9 (dashed gray line), and (c) distributions of confidence interval widths for different
values of the inverse temperature, λ, and different amounts of training data, n, over T = 5000 trials. The
interval widths in (c) are reported as a fraction of the range of true fitnesses in the combinatorially complete
data set, [0.025, 1.692]; widths reported as > 1 signify confidence intervals that contain [0.025, 1.692]. In (a),
and (c), the whiskers signify the minimum and maximum observed values.
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Figure A3: Using conformal prediction for standard covariate shift [60] to quantify predictive uncertainty for
designed proteins. (a) Empirical coverage, compared to target coverage of 1−α = 0.9 (dashed gray line), and
(b) distributions of confidence interval widths for different values of the inverse temperature, λ, and different
amounts of training data, n, over T = 5000 trials for the blue fluorescence data set. Interval widths in (b) are
reported as a fraction of the range of true fitnesses in the combinatorially complete data set, [0.091, 1.608],
and whiskers signify the minimum and maximum widths. (c, d) Analogous to (a, b), respectively, for the
red fluorescence data set. Interval widths in (d) are reported as a fraction of the range of true fitness values
in the combinatorially complete data set, [0.025, 1.692], and whiskers signify the minimum and maximum
widths.
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