CS276: Cryptography		Due date: September 19, 2017
	Problem Set 1	
Instructor: Alessandro Chiesa		GSI: Benjamin Caulfield

Problem 1

Assume that f is a length preserving one-way function, i.e., for every $x \in \{0,1\}^*$ it holds that |f(x)| = |x|. For each of the following functions g, prove that g is a one-way function, or provide a counterexample to demonstrate that it is not.

A:
$$g(x) = f(f(x))$$

B: $g(x) = f(\bar{x})$
C: $g(x) = f(x) \oplus x$
D: $g(x,y) = f(x \oplus y)$
E: $g(x) = f(x) || f(\bar{x})$

(Above \bar{x} denotes the bitwise complement of x and \parallel denotes concatenation, e.g., $1011\|\overline{1011} = 10110100$.)

Hint: To show g is not a one-way function, construct an f from an arbitrary one-way function h. Then prove that f is one-way but g is not. To show that g is one-way, assume that a PPT-inverter A exists for g and use it to construct a PPT-inverter A' for f.

Problem 2

Prove that if one-way functions exist then $P \neq NP$.

Problem 3

Let p be a prime and let g and h be (not necessarily distinct) generators of \mathbb{Z}_p^* . Prove or disprove the following statements:

A:
$$\{x \leftarrow \mathbb{Z}_p^* : g^x \mod p\} = \{x \leftarrow \mathbb{Z}_p^* : y \leftarrow \mathbb{Z}_p^* : g^{xy} \mod p\}$$

B: $\{x \leftarrow \mathbb{Z}_p^* : g^x \mod p\} = \{x \leftarrow \mathbb{Z}_p^* : h^x \mod p\}$
C: $\{x \leftarrow \mathbb{Z}_p^* : g^x \mod p\} = \{x \leftarrow \mathbb{Z}_p^* : x^g \mod p\}$
D: $\{x \leftarrow \mathbb{Z}_p^* : x^g \mod p\} = \{x \leftarrow \mathbb{Z}_p^* : x^{gh} \mod p\}$

(Recall that $\{x \leftarrow \mathbb{Z}_p^* : g^x \mod p\}$ is a probability distribution. You are being asked to prove or disprove the statement that two probability distributions are *identical*.)

Problem 4

Suppose that you have a polynomial-time algorithm A that solves the Discrete Logarithm Problem in a special case. Namely on inputs p, q, and $q^x \mod p$, the algorithm q outputs q if q is a prime,

g is a generator of \mathbb{Z}_p^* and $g^x \mod p$ is prime.

Show that there exists a probabilistic polynomial-time algorithm B that solves any instance of the Discrete Logarithm Problem.

Note: The general instance of the Discrete Logarithm Problem still assumes that g is a generator and p is prime (but not that q^x is prime).

Keep in mind that you are trying to find a PPT solver for the problem, so you only need to solve the problem with non-negligible probability. But you do need to succeed with non-negligible probability on all inputs. It is not enough to provide an algorithm that will solve the problem on non-negligibly many inputs, assuming the inputs are chosen uniformly at random.

Problem 5

In this problem, we study how to efficiently sample generators modulo a prime.

Let p be a prime. The group \mathbb{Z}_p^* can be shown to be cyclic of order p-1; in fact, while proving this, one also obtains the fact that the number of elements of order p-1 in \mathbb{Z}_p^* (i.e., the number of generators in \mathbb{Z}_p^*) is equal to $\phi(p-1)$. Since $\phi(n) = \Theta(n/\log\log n)$, the quantity $\phi(p-1)/p-1$ is non-negligible. In particular, by choosing an element g of \mathbb{Z}_p^* at random, the probability that g is a generator of \mathbb{Z}_p^* is non-negligible. However, given an element g in \mathbb{Z}_p^* , how can we decide if it is a generator or not?

Describe a polynomial-time algorithm that, on input an element $g \in \mathbb{Z}_p^*$, an odd prime p, and the factorization of p-1, decides whether g is a generator of \mathbb{Z}_p^* .

(Note: Efficiently sampling generators modulo a prime is sometimes needed in practice, such as in Elgamal's public-key cryptosystem. But, how does one obtain the factorization of p-1? Usually, one generates the prime p along with the factorization of p-1. For example, in Elgamal's public-key cryptosystem a prime p is chosen to have the form p=2q+1 for some prime q, so that p-1=2q; a prime of this form is called a safe prime.)

Problem 6

Give a strategy to distinguish between $(g^x, g^y, g^{xy}) \mod p$ and $(g^x, g^y, g^r) \mod p$ with non-negligible advantage, where x, y, r are chosen at random such that $1 \le x, y, r \le p-1$, and g is a generator of \mathbb{Z}_p^* .