
CS276: Cryptography Due date: September 19, 2017

Problem Set 1
Instructor: Alessandro Chiesa GSI: Benjamin Caulfield

Problem 1

Assume that f is a length preserving one-way function, i.e., for every x ∈ {0, 1}∗ it holds that
|f(x)| = |x|. For each of the following functions g, prove that g is a one-way function, or provide a
counterexample to demonstrate that it is not.

A: g(x) = f(f(x))

B: g(x) = f(x̄)

C: g(x) = f(x)⊕ x
D: g(x, y) = f(x⊕ y)

E: g(x) = f(x)‖f(x̄)

(Above x̄ denotes the bitwise complement of x and ‖ denotes concatenation, e.g., 1011‖1011 =
10110100.)

Hint: To show g is not a one-way function, construct an f from an arbitrary one-way function h.
Then prove that f is one-way but g is not. To show that g is one-way, assume that a PPT -inverter
A exists for g and use it to construct a PPT -inverter A′ for f .

Problem 2

Prove that if one-way functions exist then P 6= NP .

Problem 3

Let p be a prime and let g and h be (not necessarily distinct) generators of Z∗p. Prove or disprove
the following statements:

A: {x← Z∗p : gx mod p} = {x← Z∗p ; y ← Z∗p : gxy mod p}
B: {x← Z∗p : gx mod p} = {x← Z∗p : hx mod p}
C: {x← Z∗p : gx mod p} = {x← Z∗p : xg mod p}
D: {x← Z∗p : xg mod p} = {x← Z∗p : xgh mod p}

(Recall that {x ← Z∗p : gx mod p} is a probability distribution. You are being asked to prove or
disprove the statement that two probability distributions are identical.)

Problem 4

Suppose that you have a polynomial-time algorithm A that solves the Discrete Logarithm Problem
in a special case. Namely on inputs p, g, and gx mod p, the algorithm A outputs x if p is a prime,

1-1

g is a generator of Z∗p and gx mod p is prime.

Show that there exists a probabilistic polynomial-time algorithm B that solves any instance of the
Discrete Logarithm Problem.

Note: The general instance of the Discrete Logarithm Problem still assumes that g is a generator
and p is prime (but not that gx is prime).

Keep in mind that you are trying to find a PPT solver for the problem, so you only need to solve the
problem with non-negligible probability. But you do need to succeed with non-negligible probability
on all inputs. It is not enough to provide an algorithm that will solve the problem on non-negligibly
many inputs, assuming the inputs are chosen uniformly at random.

Problem 5

In this problem, we study how to efficiently sample generators modulo a prime.

Let p be a prime. The group Z∗p can be shown to be cyclic of order p − 1; in fact, while proving
this, one also obtains the fact that the number of elements of order p− 1 in Z∗p (i.e., the number of
generators in Z∗p) is equal to φ(p − 1). Since φ(n) = Θ(n/ log log n), the quantity φ(p − 1)/p − 1 is
non-negligible. In particular, by choosing an element g of Z∗p at random, the probability that g is a
generator of Z∗p is non-negligible. However, given an element g in Z∗p, how can we decide if it is a
generator or not?

Describe a polynomial-time algorithm that, on input an element g ∈ Z∗p, an odd prime p, and the
factorization of p− 1, decides whether g is a generator of Z∗p.

(Note: Efficiently sampling generators modulo a prime is sometimes needed in practice, such as in
Elgamal’s public-key cryptosystem. But, how does one obtain the factorization of p − 1? Usually,
one generates the prime p along with the factorization of p−1. For example, in Elgamal’s public-key
cryptosystem a prime p is chosen to have the form p = 2q + 1 for some prime q, so that p− 1 = 2q;
a prime of this form is called a safe prime.)

Problem 6

Give a strategy to distinguish between (gx, gy, gxy) mod p and (gx, gy, gr) mod p with non-negligible
advantage, where x, y, r are chosen at random such that 1 ≤ x, y, r ≤ p− 1, and g is a generator of
Z∗p.

1-2

