
CS276: Cryptography September 16, 2015

PRGs) PRFs, Pseudorandom Permutations, and Feistel Permutations

Instructor: Alessandro Chiesa Scribe: Brian Gluzman

1 Introduction

Today we will constuct PRFs (Pseudorandom Functions) from PRGs (Pseudorandomness Genera-
tors). We will go on to define Pseudorandom and Strongly Pseudorandom Permutations. We end
by introducing an example of a strongly psuedorandom permutation through Fiestel Permutations.

2 Constructing PRFs from PRGs

We begin by recalling the following definition and property from the previous class. The latter will
be instrumental in our proof to follow.

Definition 1 PRF F is pseudorandom if 8ppt D:

|Pr
⇥
DFk(1k) = 1

⇤
� Pr

⇥
DUk(1k) = 1

⇤
|

is negligible in k.

Proposition 2 For a PRG G acting on inputs of size k with expansion factor l, we have:

G(U1
k )...G(Up

k )
⇠= Upl(k)

We now begin the construction. Let G be a PRG with expansion factor l(k) = 2k. Denote G0, G1

as the first,last k bits of G’s output, respectively (i.e. G(s) = G0(s)||G1(s) where |s| = |G0(s)| =
|G1(s)| = k).

Now, define we will define our pseudorandom function F as follows. Let fs be defined by:

8s 2 {0, 1}k fs(x1...xk) := Gxk(Gxk�1(...Gx1(s)...))

And so:

F = {Fk}k2N with Fk = {fs|s {0, 1}k}

Theorem 3 F is a PRF.

Proof: We begin by pictorally representing the fs. We can think of fs as a labelled tree of k levels
with the root being labelled as s. For a node sm at level i, it has two children in level i+ 1; the left
child is labelled with the result of applying G0 on sm and the right child is labelled with the result
of appying G1 on sm. The leaves of this tree are then the outputs of fs. We see this in the following
example for k = 4:

6-1



s

s1

s11

s111s110

G0 G1

s10

s110s100

G0 G1

G0 G1

s0

s01

s011s010

G0 G1

s00

s001s000

G0 G1

G0 G1

G0 G1

For example, the leaf s011 is associated with output of the call:

fs(011) = G1(G1(G0(s))) = G1(G1(s0)) = G1(s01) = s011

Now, we proceed with the proof. Assume (towards contradiction) that there exists PPT D such that
D distinuishes F from U with probability �(k) non-negligible. We proceed by a hybrid argument in
order to create a distinguisher for G.

Remark 4 It is tempting to use the leaves of the tree to construct the hybrid. Namely, we would
fill a number of slots with randomness, and fill the remaining slots with the leaves from tree above.
However, we quickly see that there are 2k leaves, so the hybrids would need to be at least 2k in size
which is far too large. Instead, we consider the following argument.

In light of the above, we will consider hybrids of levels in the tree instead of hybrids of leaves. More
specifically, H(i)

k is defined by selecting the first i levels in the tree uniformly at random from Uk

(i.e. for any r < i, we have that the value associated with the node sr is produced from (re)sampling
from Uk for a total of |r| times). For all levels greater than i, we apply G0 or G1 to the result
from the previous level as described in the tree above. Pictorally, can observe the example H

(1)
3 as

represented as below (sr  $ means "sample from Uk):

s $

s1  $

s11

s111s110

G0 G1

s10

s110s100

G0 G1

G0 G1

s0  $

s01

s011s010

G0 G1

s00

s001s000

G0 G1

G0 G1

We can now make the following observation.

Observation 5 H
(0)
k = Fk, H

(k)
k = UK

6-2



Using the standard procedure for a hybrid argument, we note that there exists i such that D dis-
tinguishes H

(i)
k and H

(i+1)
k with probability greater than �(k)

k for some �(k) 2 poly(k).

We now would like to construct a D0 that attacks G (actually, in this case, G applied on q in-
puts of length k) and succeeds with non-negligible probability. We first note that D asks at most
q(k) queries. On input z(1), ..., z(q), D0 will first pick j  {1, 2, ..., q}. D0 will then run D and
simulate its oracle by using z(j) to answer the queries which D dispatches. We outline how z(j) is
used to answer the queries from D below.

Given some query qi, D0 will answer by using the following procedure based on traversing the
tree mentioned at the beginning of this proff. The first j levels of the trees will be traversed accord-
ing to the first j bits of qi. More specifically, for t < j, D0 takes the left branch from the t-th level
if the t-th bit in qi is 0 and take the right branch otherwise. From the j-th level to the (j + 1)-th
level, we label the two children of the j-th node (i.e. the children are at the (j + 1)� th level) with
z(j) (or z(j+l) if we had already performed l � 1 labellings at this level) if the pair of children at
the (j + 1)-th level are unlabelled. Otherwise, we simply use the labelling already provided. We
then use this string when computing the values going downards in the tree and where the paths are
selected by the remaining k � j bits in qi. For example, if j = 1 and q1 = 0110, we would traverse
down the left branch and then the right brach in the tree (corresponding to 01 in q1). If there is
no labelling on the children of this node, we would then label them as z(j). From this point, we
can return the result of the query as G0(G1(z(j))) because the last 2 bits of q1 are 10. Then for the
query q2 = 0110, we hit the same labelling at level j+1, so we return G0(G0(z(j))) as the answer to q2.

Now, from here we see that:

z(j) ⇠ Uql(k) ) D0 sees H
(i+1)
k

z(j) ⇠ G(Uk)) D0 sees H
(i)
k

And by the hybrid argument and Property 2, above, the theorem follows. ⇤

3 Pseudorandom Permutations

Now we turn our attention to pseudorandom permutations.

Definition 6 A permutation ensemble is an ensemble P = {Pk}k where Pk is a distribution
over permutations f : {0, 1}k ! {0, 1}k.

Definition 7 The uniform permutation ensemble is the ensemble ⇧ = {⇧k}k where ⇧k is
uniform over permutations f : {0, 1}k ! {0, 1}k.

Let A
O
= B mean "A is oracle indistinguishable with respect to B".

Definition 8 P is pseudorandom if P O
= ⇧.

Lemma 9 P O
= ⇧) P O

= U

6-3



Proof: (Sketch) We note that ⇧
O
= U because:

Pr
⇥
DUk(1k) finds a collision

⇤
 time(D)2

2k

From here, we can apply indistinugishability between P and ⇧, and the lemma follows. ⇤

Now we will examine the properties required for permutations to be useful in a cryptographic sense.

Definition 10 A permutation ensemble P is efficiently computable and invertable if:

(1) 9ppt S such that S(1k) = Pk

(2) 9ppt E such that 8f 2 S(1k), E(1k, f, x) = f(x)

(3) 9dpt I such that 8f 2 S(1k), I(1k, f, y) = f�1(y)

Now we get to a notion of pseudorandomness for permutations that is stronger than the ones defined
earlier.

Definition 11 P is strongly pseudorandom if:

(P,P�1)
O
= (⇧,⇧�1)

and 8ppt D,

|Pr
h
DPk,P�1

k (1k) = 1
i
� Pr

h
D⇧k,⇧

�1
k (1k) = 1

i
| is negligible in k

4 Feistel Permutation

We will soon construct a strongly pseudorandom permutation. We begin with the construction of
Feistel Permutations, as follows.

Given a function f : {0, 1}k ! {0, 1}k, let gf : {0, 1}2k ! {0, 1}2k be defined by:

gf (x||y) = y||f(y)� x

We note that gf is indeed a permutation. For we have:

g�1
f (z||w) = f(z)� w||z

and we see that:

g�1
f (gf (x||y)) = g�1

f (y||f(y)� x) = f(y)� (f(y)� x)||y = x||y

It should also be clear that both gf and g�1
f are efficiently computable given f . gf is called a Feistel

Permutation. Compositions of gf ’s for selections of f ’s are called Feistel Networks.

Now, to get a strong pseudorandom permutation we compose gf ’s (for different f ’s). However,
we make the following observations.

6-4



Observation 12 gf is not a pseudorandom permutation. We see this by the fact that:

gf (x||0k) = 0k||f(0k)� x

for any x 2 {0, 1}k.

Observation 13 For any f1, f2, we have that gf2 � gf1 is also not a pseudorandom permutation.
We see that:

(gf2 � gf1)(0k0k) = f1(0
k)||...

and that:

(gf2 � gf1)(1k0k) = f1(0
k)� 1k||...

But now we see that f1(0k)�1k = f1(0k), and so the fact that gf2 �gf1 is not pseudorandom follows.

Remark 14 For any f1, f2, f3, we have that gf3 � gf2 � gf1 is pseudorandom but not strongly pseu-
dorandom. Showing this is much more difficult than for the above two cases, so it is omitted.

5 Luby-Rackoff Construction (1988)

Consider some function ensemble F = {Fk}k. Consider G = {Gk}k where:

Gk = {gf4 � gf3 � gf2 � gf1 |f1, f2, f3, f4 2 Fk}

Theorem 15 F O
= U ) (G,G�1)

O
= (⇧,⇧�1)

Proof: Define R = {Rk}k where Rk = {gu4 � gu3 � gu2 � gu1 |1, u2, u3, u4 2 Uk}. Our proof will
consist of two parts:

(S1) (G,G�1)
O
= (R,R�1)

(S2) (R,R�1)
O
= (⇧,⇧�1)

We will prove S1 now and prove S2 tomorrow.

Proof of S1 We will use a hybrid argument, so assume there exists some machine D that can distin-
guish G from R with non-negligible advanage. We proceed by defining 5 hybrids H(0)

k , H
(1)
k , ..., H

(4)
k .

We explicitly write out the first two hybrids:

H
(0)
k = {gf4 � gf3 � gf2 � gf1 |f1, f2, f3, f4 2 Fk} = Gk

H
(1)
k = {gf4 � gf3 � gf2 � gu1 |f2, f3, f4 2 Fk, u1 2 Uk}

The remaining hybrids are defined similarly, and we observe that H
(4)
k = Rk.

Now, by an averaging argument, there exists i such that (H(i)
k , (H(i)

k )�1) and (H(i+1)
k , (H(i+1)

k )�1)

6-5



we will now be able to define a machine D
A that is able to distinguish neighboring hybrids (where

A is an oracle which is either Fk or Uk).

For simplicity, let us define D
A for the case where i = 2. The cases where i = 0, 2, 3, 4 follow

an identical construction. Let D
A
(1k) be defined by:

(1) f4  Fk

(2) f3  A

(3) u2, u1  Uk

(4) Construct the Feistel Network gf4 � gf3 � gu2 � gu1

(5) Run D on the Feistel Network constructed in (4)

We can deduce that:

A ⇠ Fk ) D
A sees (H(i)

k , (H(i)
k )�1)

A ⇠ Uk ) D
A sees (H(i+1)

k , (H(i+1)
k )�1)

From here, it is straightforward to apply the remainder of the hybrid argument and we obtain our
result (S1). ⇤

6-6


