CS276: Cryptography September 8, 2015

Pseudorandom Generators

Instructor: Alessandro Chiesa Scribe: Tobias Boelter

Context and Summary

In the last lecture we have had a look at the universal one-way function, hardcore predicates for
OWFs and the Goldreich-Levin Theorem, which says that (z,r) mod 2 is hardcore for f(z) || r, if
f is a one-way permutation.

Today we will have a look at the indistinguishably of distributions and pseudorandom generators.
Therefore we will introduce the notion of computational indistinguishability that is much more
practical than statistical indistinguishability. We will see our first proof by a hybrid argument.
Finally we will define the notion of pseudorandom generators and construct a PRG with one bit
expansion from one-way permutations.

1 Indistinguishability of Distributions
Definition 1 Denote by A(D) the set of all distributions over the domain D.

Definition 2 X is a family of distributions over D(k) A {0,13"5) | if X = { X}, ren, where

each Xy, is in A(D(k)). Here n(k) is again o fized polynomial.

Definition 3 A family of distributions X is efficiently samplable if there exists a probabilistic
polynomial time machine S such that the random variables S(1¥) and X}, are identically distributed.

In the following we will discuss, what it means for a families of distributions X and)Y to be “close”.

Definition 4 Two families of distributions X and Y are statistically indistinguishable, denoted
by X = Y, if their statistical distance is negligible in k, where the statistical distance is defined as

de def 1
5(k) - Apy (X0, Y3) 5 O [PrlXy = 2] - Pr{Yi = 2]|.
z€D(k)

A7y (X, Yy) is also called the total variation distance and the % s for normalization.

Lemma 5 The total variation distance of two distributions Xy, Yr can only get smaller if applied
to a function f:
Arv (f(Xk), f(Yr)) < Arv (X, Yi)

4-1

The notion of statistical indistinguishability is very rigid. We want to have a notion of indistin-
guishability for the case where two distributions are not the same, but nobody in this universe will
ever be able to tell the difference. Therefore we change to the computational setting.

Remark 6 The derandomization of BPP with a pseudorandom generator is direct descendant of
the paradigm shift from statistical to computational indistinguishability.

Definition 7 Two families of distributions X and) are computationally indistinguishable,
denoted by X = Y, if every uniform/non-uniform probabilistic polynomial time distinguisher D has
only negligible advantage in distinguishing the distributions:

d(k) " [Pr[D(1%, X}) = 1] — Pr[D(1*,Yy,) = 1]| is negligible in k.

The notation Pr[D(1%, X)) = 1] is an abbreviation for Pr[b =1 | x + Xy, b+ D(1¥ x)].
Lemma 8 For all probabilistic polynomial time computable functions f, X £y — f(X) = F).

Proof: Suppose there exists an probabilistic polynomial time distinguisher that can distinguish
f(X) from f()) with non-negligible probability. Then D o f distinguishes X and) with the same
probability. O

Remark 9 If f is non-uniform then D o f will also be non-uniform. If we started with non-
uniformity in the indistinguishability definition, we also have the possibility to take non-uniform
functions here.

Next, we will prove that if two efficiently samplable families of distributions X and) are computa-
tionally indistinguishable, then a polynomial number of (independent) samples of X are computa-
tionally indistinguishable from a polynomial number of (independent) samples of V. We will only
look at the proof in the non-uniform case and leave the uniform case as an exercise for the reader.

In the proof we will use a so-called hybrid argument that we will see in many proofs from now on.

Theorem 10 Let X and Y be efficiently samplable families that are computationally indistinguish-

able. Then also X = Y, where X Adef {(X,gl), . ,X,ip(k)))}keN and Y Adef {(Yk(l), . ,Yk(p(k)))}keN

Proof: |by hybrid argument; Goldwasser, Micali] We make the proof by contradiction. Suppose
there exists a probabilistic polynomial time distinguisher D such that d(k) is non-negligible. Now

for each i € {1,...,p(k)}, we define a hybrid random variable ngi)

i) def 1 i i+1 k
a7 = (x M XDy ey

Notice that H,SO) =), H,(cp(k)) = X. They are called the extreme hybrids, i.e. those that match the
target distributions. The main idea behind the hybrid argument is that if D can distinguish these
extreme hybrids, then it can also distinguish neighboring hybrids even though it was not designed
to do so.

Let’s take d(k) and rewrite it. In the following we will, like often in the future, drop the input 1* to
the distinguisher in the notation for simplicity.

d(k) = [Pr[D(X}) = 1] — Pr[D(Yx) = 1]]

p(k)—1 p(k)—1 '
~IY oty =1 Y ot < 1)
i=0
p(k) 1

IN

> IPeD(EHE) = 1)~ PrD(H™) = 1)
That means that there is an index ¢ such that

PrD(}) = 1] = PeD() =)] > S0,

We want to stress again that D was not designed to work on such hybrids in the first place. Never-
theless it does a good job on distinguishing them, at least for a specific index 1.

Now we can construct a distinguisher D’ for X and Y as follows: First sample z1, ..., z; uniformly
random from Xj. Then sample z;41,. .., 2p4) from Yy and finally return D(z).
We then get
/ / 7 1+1 d(k)
PH{D/(X,) = 1] = Pr(D'(¥) = 1) = [Pr{D(H{) = 1] ~ Pr{D(HE™) = 1) > To
in contradiction to the computational indistinguishability of a single sample of X from a single
sample of). O

Remark 11 Let’s discuss the uniform vs. non-uniform case. If D is uniform, is D' uniform? That
is unclear. D does not know which i to pick, because i is a function of k. We can resolve this issue
by just picking i at random. The analysis then works similar and is left to the reader. As a rule of
thumb, one should start with the proof for the uniform case and the non-uniform case is often easier.

To recapitulate what just happened: There are three ingredients in a proof by hybrid argument:

(i) Construct a polynomial number of hybrids. The extreme hybrids match the target.

(ii) Under the assumption of a distinguisher for the extreme hybrids, show through averaging that
this distinguisher also works for two specific neighboring hybrids.

(iii) From the ability of distinguishing neighbors, construct a distinguisher for single samples, which
leads to a contradiction.

We want to stress the danger of writing a faulty proof of theorems similar to this one by induction.
Here, induction turns out to be (at least) tricky. Assume in the proof you had an behavior that the
size of the distinguisher doubles every time or the advantage lowers every time by half. At the end
this would result into a runtime of 2P(%) or a advantage of only fracl2?(*) respectively. In some
sense, argument has to be opened up and not just applied several times “black-box style”.

4-3

2 Pseudorandomness

With the power of the notion of computational indistinguishability we can now define pseudoran-
domness. For now denote by U; the uniform distribution of [-bit strings.

Definition 12 A family of distributions X = {Xj}ren is called pseudorandom if there exists
a polynomial 1(n) such that X is computationally indistinguishable from the uniform family U =

{Ui(k) }ren

It took actually quite long in history to come up with this definition of pseudorandomness. In
previous work, Kolmogorov defined a k-bit string to be random if the minimal size of an algorithm
that outputs it is k. This notion is very beautiful, but at the same time extremely useless because
undecidable. Generally speaking, Cryptography is much more pragmatic.

Next, we will define the notion of pseudorandom generators. Intuitively speaking, a pseudorandom
generator is an efficient deterministic algorithm G that stretches a short random seed into a long
pseudorandom string.

Definition 13 A pseudorandom generator (PRG) with output (k) is a deterministic polynomial
time algorithm, such that

(i) |G(1*,s)] = U(Is])
(i) Its output is pseudorandom, i.e. {G(1%,Up)}y = Ui }re-

Vital for a PRG to be useful is that I(k) > k. If we take I(k) = k + 1 this is already non-trivial, but
we will now construct such a PRG from a OWP with hardcore predicate.

Theorem 14 Let f be a one way permutation with hardcore predicate B. Then G(s) =l (f(s), B(s))

is a PRG with one bit expansion.

Proof: Suppose there exists a probabilistic polynomial time distinguisher such that

d(k) = |Pr[D(f(Ux), B(Uy)) = 1] — Pr[D(Ug+1) = 1]| is not negligible in k.

We make some rearrangements:

d(k) = [Pr{D(f(UL), BU)) = 1] ~ Pr{D(U12) = 1]
= [PH[D(/(Uy), BWK)) = 1] ~ PrID(f(U), Uh) = 1]
= [PH[D(/(Uy), BWR) = 1] ~ 1 - PrID(f(Us), BUR)) = 1] ~ 3 - Pr[D(f(Ue), BOW)) = 1]

= 5 IPHDU W), BE) = 1] = PrD(f (V). BT) = 1]
Without loss of generality we assume now, that
Pr[D(f(Ux), B(Uy)) =1] = Pr[D(f(Us), B(Ux)) = 1] >

4-4

for some polynomial p and infinitely many n. Note that we got rid of the absolute value bars.
Finally, we use D to construct an algorithm A that guesses B(x). Upon input y = f(z) for some x,
algorithm A works as follows:

(i) Uniformly choose o < {0,1}.

(ii) Invoke D upon (y, o).

(iii) If D returns 1, then output o. Otherwise, output 7.

It yields that the probability of A’s success is non negligible:

PHA(S(U)) = b(U)] = 5 - PrIA((UL) = BUWo = BUW] + 5 - PrIAf(U)) = B0 = BTy
= - PD(f(U), BU) = 1] + 5 - PrID(f(U), B{OW)) = 0
= 3 PD((), BUW) = 1] + 31 = Pr{D(/(U3), BTw) = 1)
=+ 5 PrIDU(U), BWU) = 1] - 5 - PrD(f(U), BT)) = 1)
S 1 1 1
=5 + B . m
in contradiction to the assumption that b is a hard-core predicate for f. O

