Universal OWF and Hardcore predicates

Instructor: Alessandro Chiesa Scribe: Akshayaram Srinivasan

1 Overview

In last lecture we discussed about the hardness amplification lemma for One-Way Function (OWF). In particular, we saw how to convert a weak one way function to a strong one. In this lecture we will look at the notion of an Universal OWF, hardcore predicates for OWF and discuss the Goldreich-Levin construction of a hardcore predicate for a One-Way Permutation (OWP).

2 Universal OWF

Universal OWF theorem constructs a specific OWF under the assumption that OWF exists. On a philosophical note, the theorem says that even if the candidate constructions of OWFs like RSA, Discrete Log etc are broken there exists a function which is one-way if $P \neq NP$. More formally,

Theorem 1 [Lev87] If one way functions exist then there exists a specific function f^* which is one way.

Proof: To prove this theorem, we will first show that if OWFs exist then there is a OWF which can be evaluated in time quadratic in its input length. Using this fact we will then construct a specific function which is one-way.

Lemma 2 If $\{f_k\}_k$ is a family of one-way functions then there exists another family of functions $\{g_k\}_k$ such that $\{g_k\}_k$ is one-way and for all $k \in \mathbb{N}$, g_k can be evaluated in time $(n_q(k))^2$

Proof: The proof of this lemma uses a technique called as Padding which has has its roots in complexity theory. Let $f_k: \{0,1\}^{n(k)} \to \{0,1\}^{m(k)}$ be one-way. From the property of one-way functions (efficient evaluation) there exists a specific polynomial $p(\cdot)$ such that for all $k \in \mathbb{N}$, f_k can be evaluated in time p(n(k)). We now define a function $g_k: \{0,1\}^{p(n(k))} \to \{0,1\}^{m(k)+p(n(k))-n(k)}$ such that $g_k(x||w) = f(x)||w|$ where |x| = n(k) and |w| = p(n(k)) - n(k). We first claim that $\{g_k\}_k$ is one-way.

Claim 3 If f_k^1 is one-way then so is g_k .

Proof: Assume for the sake of contradiction that g_k is not one-way. Then there exists an adversary A such that A inverts $g_k(x)$ for a random x in the domain of g_k with non-negligible probability. We will be using A to invert f_k .

¹For the ease of notation we will be considering f_k instead of the function family $\{f_k\}_k$

I(y)

- Sample $w \stackrel{\$}{\leftarrow} \{0,1\}^{p(n(k))-n(k)}$
- $x||w \leftarrow A(y||w, 1^{n(k)}).$
- Output x

It is easy to see that the I inverts y with the same probability as the inversion probability of A which is non-negligible from our assumption. This is a contradiction to the fact that f_k is one-way.

Now lets analyze the evaluation time of g_k . We can parse the input into x||w in time $p(n(k))^2$. Evaluating f_k takes time p(n(k)) and hence the total time for evaluating g_k is bounded by $p(n(k))^2$.

Lets now construct the universal OWF f^* . Let M_1, M_2, \dots , be an enumeration of the Turing machines such that $M_i(|x|)$ runs in time $\mathsf{poly}(i,|x|)$. Note that such an enumeration can be done by an uniform machine given the size of the alphabet. We define $f^*(x)$ as:

$$f^*(x) = M_1^{\leq |x|^2}(x)||M_2^{\leq |x|^2}(x)||\cdots||M_{|x|}^{\leq |x|^2}(x)$$

where $M_i^{\leq |x|^2}(x)$ denotes running the machine M_i on input x for at most $|x|^2$ steps. We first observe that f^* can be computed in time polynomial in the length of |x|. The enumeration of the machines takes time O(|x|) as we are interested in |x| machines and running each machine takes $|x|^2$ time. Hence, f^* can be computed in time $O(|x|^3)$. Now, we show that f^* is one-way. Since g_k can be computed by a poly-time machine there exists an index N such that M_N computes g_k . For all |x| > N, $f^*(x)$ computes $g_k(x)$ in the index N. Since g_k is one way, it is also easy to see that f^* is one-way.

3 Hardcore predicates

Lets define the notion of a hardcore predicate for a one-way function.

Definition 4 $B_k: \{0,1\}^{n(k)} \to \{0,1\}$ is a hardcore predicate for a one-way function $f_k: \{0,1\}^{n(k)} \to \{0,1\}^{m(k)}$ if

- B_k is efficiently computable.
- It is "hard" to compute $B_k(x)$ given k and $f_k(x)$. Formally, for all non-uniform PPT adversaries A,

$$Pr \left[b = B_k(x) \middle| \begin{matrix} x \xleftarrow{\$} \{0,1\}^{n(k)} \\ y \leftarrow f_k(x) \\ b \leftarrow A(1^k, f_k(x)) \end{matrix} \right] \le 1/2 + negl(k)$$

²An one tape Turing machine might take quadratic time to parse the input.

Pictorially we could represent the notion of one-way functions and hardcore bits as follows:

Lets see if there exits a specific index $i \in [n(k)]$ such that $B_k(x) = x_i$ is hardcore for a one-way function.

Claim 5 There is a one-way function family $\{g_k\}_k$ such that for all $i \in [n(k)]$, $B_k^i(x) = x_i$ is not hardcore for g_k .

Proof: Let $f_k:\{0,1\}^{n(k)}\to\{0,1\}^{m(k)}$ be a one-way function. Lets now construct a function family $g_k:\{0,1\}^{n(k)+1+\log(n(k)+1)}\to\{0,1\}^{m(k)+1+\log(n(k)+1)}$ where

$$g_k(z) = g_k(x||j) = f_k(x_{-j})||x_j||j$$

The explanation for the above equation is that g_k first parses the input into n(k)+1 bit x and $\log(n(k)+1)$ bit j. It then applies f on all bits of x except j^{th} bit. That is, $x_{-j}=x_1\cdots x_{j-1}x_{j+1}\cdots x_{n(k)+1}$. It then outputs $f(x_{-j})||x_j||j$.

It is easy to see that g_k can be computed in polynomial time and is one-way given that f is one way (It follows a similar argument as in Claim 3). We now show that for all $i \in [n(k)]$, $B_k^i(x) = x_i$ is not a hardcore predicate for g_k . To prove this, we construct an adversary A_i which will predict $B_k^i(x)$ with non-negligible advantage.

$$A_i(Y) = A_i(y||x_j||j) = \begin{cases} x_j , j = i \\ b \stackrel{\$}{\leftarrow} \{0, 1\}, j \neq i \end{cases}$$

We now claim that the $Pr[b=B_k^i(x)]$ is $\frac{1}{2}+\frac{1}{(2(n(k)+1))}$. This follows directly from the observation

that j=i, happens with probability $\frac{1}{n(k)+1}$ since $j \in \{0,1\}^{\log(n(k)+1)}$ and is sampled uniformly at random for the generating the challenge.

A natural question to ask is whether there exists a hardcore bit B_k for an one-way function f_k . It is still an open problem!

The next question we ask is given a one-way function f_k can we construct a one-way function g_k and predicate B_k such that B_k is hardcore for g_k . This is trivial to achieve. Consider $g_k(b||x) = 0||f_k(x)|$ and $B_k(b||x) = b$. One can easily verify that the hardcore bit is information theoretically hidden.

Lets consider the following question.

Given a one-way permutation f_k , does there exists a one-way permutation g_k and a predicate B_k such that B_k is hardcore for g_k ?.

The answer to the above question was given by Goldreich and Levin in [GL89].

Theorem 6 [GL89] If f_k is a OWP then there exists a OWP g_k and a predicate B_k such that B_k is a hardcore predicate for g_k

Proof: We will first construct a OWP g_k from a OWP f_k and then define the hardcore predicate for g_k ³.

Let $f:\{0,1\}^n \to \{0,1\}^n$ be a OWP. We define $g:\{0,1\}^{2n} \to \{0,1\}^{2n}$ as

$$g(x||r) = f(x)||r$$

It is easy to see that since f is a permutation so is g. The one-wayness of g follows from a similar argument as in Claim 3. Now lets define a predicate for g and then show that the predicate is indeed hardcore. The predicate we are going to consider is:

$$B(x||r) = \langle x, r \rangle \mod 2$$

B can be computed efficiently (in polynomial time).

Lemma 7 B(x||r) is hard to compute with non-negligible advantage greater than 1/2 given g(x||r)

Proof: Lets assume for the sake of contradiction that B(x||r) is can be computed with non-negligible advantage greater than 1/2 given g(x||r). Then there exists an adversary A and a polynomial $p(\cdot)$ such that for infinitely many k's:

$$\delta_A = Pr \left[b = (\langle x, r \rangle \mod 2) \middle| \begin{matrix} x, r \xleftarrow{\$} \{0, 1\}^n \\ y \leftarrow f(x) \\ b \leftarrow A(1^k, y||r) \end{matrix} \right] > 1/2 + 1/p(k)$$

We will now consider an inverter for f using A. We will motivate the intuition for the proof by considering the following scenarios.

³For the ease of notation we will be ignoring the subscript k in f_k , g_k and B_k

- Warmup 1: $\delta_A = 1$: Lets define e^i to be a bit string of length n such that the i^{th} position has a 1 and the rest are 0. The inverter I(y) for f works as follows: for every $i \in [n]$, compute $b_i \leftarrow A(y||e^i)$ and finally output $b_1 \cdots b_n$. Lets see why the Inverter works. Since $\delta_A = 1$, A is able to correctly output the hardcore bit for every x, r. In particular, it should output the hardcore it for x, e_i for all $i \in [n]$. Since $\langle x, e_i \rangle \mod 2 = x_i$ the Inverter is able to correctly output x such that f(x) = y.
- Warmup II: $\delta_A > 3/4 + 1/p(n)$. We first observe that we cannot use the same trick as before because we cannot bound the probability that A correctly outputs the hardcore bit for every e^i . We will now make use of the fact that inner product is a bi-linear function. We observe that $\langle x, e_i \rangle = \langle x, r \rangle \oplus \langle x, r \oplus e_i \rangle$.

We say that $x \in \{0,1\}^n$ is good if

$$\Pr_{r,A}[A(f(x)||r) = \langle x,r \rangle] \ge \frac{3}{4} + \frac{1}{2p(n)}$$

where the probability also includes the random coin tosses made by A.

If x is good then, we would like to estimate the probability that

$$\Pr_{r,A} \begin{bmatrix} A(f(x)||r) = \langle x, r \rangle \\ \land A(f(x)||r \oplus e_i) = \langle \\ x, r \oplus e_i \rangle \end{bmatrix} = 1 - \Pr_{r,A} [A(f(x)||r) \neq \langle x, r \rangle \lor A(f(x)||r \oplus e_i) \neq \langle x, r \oplus e_i \rangle] \\
\ge 1 - (\Pr_{r,A} [A(f(x)||r) \neq \langle x, r \rangle] + \Pr_{r,A} [A(f(x)||r \oplus e_i) \neq \langle x, r \rangle]) \\
\ge 1 - (\frac{1}{4} - \frac{1}{2p(n)}) - (\frac{1}{4} - \frac{1}{2p(n)}) \\
= (\frac{1}{2} + \frac{1}{p(n)})$$

The first inequality follows from the previous equation as a result of union bound and the second inequality follows from the definition of x is good.

We are ready to describe the inverter I(y) that inverts the one-way challenge y.

$$I(y)$$

$$- \text{ for } i = 1, \dots, n$$

$$* \text{ for } j = 1 \dots, m = poly(p(n))$$

$$\cdot r \stackrel{\$}{\leftarrow} \{0, 1\}^n$$

$$\cdot c_{i,j} \leftarrow A(y||r) \oplus A(y||r \oplus e_i)$$

$$* b_i \leftarrow Majority(c_{i1}, \dots, c_{im})$$

$$- \text{ Output } b_1 \dots b_n$$

By a simple application of Chernoff bound we get the success probability that I correctly computes b_i to be at least $1 - \frac{1}{n2^n}$. The probability that we don't error in any of the i's is at least $1 - \frac{1}{2^n}$ from union bound.

We will now prove that the number of $good\ x's$ is at least $\frac{2^n}{2p(n)}$. We will now show that this will complete the analysis for this case.

We have seen above that

$$Pr[I \text{ inverts } f(x)|x \text{ is } good] \ge 1 - \frac{1}{2^n}$$

$$Pr[I \text{ inverts } f(x)] \ge Pr[I \text{ inverts } f(x)|x \text{ is } good]Pr[x \text{ is } good]$$

$$\ge (1 - \frac{1}{2^n})\frac{1}{2p(n)}$$

$$\ge \frac{1}{3p(n)}$$

which is non-negligible.

Claim 8 $|good| \ge \frac{2^n}{2p(n)}$

Proof: Assume for the sake of contradiction that $|good| < \frac{2^n}{2p(n)}$.

$$\begin{split} Pr[A(f(x)||r) = < x, r >] &= Pr[A(f(x)||r) = < x, r > |x \text{ is not } good] Pr[x \text{ is not } good] \\ &+ Pr[x \text{ is } good]. Pr[A(f(x)||r) = < x, r > |x \text{ is } good] \\ &\leq Pr[A(f(x)||r) = < x, r > |x \text{ is not } good] + Pr[x \text{ is } good] \\ &\leq \frac{3}{4} + \frac{1}{2p(n)} + \frac{1}{2p(n)} \\ &= \frac{3}{4} + \frac{1}{p(n)} \end{split}$$

which is a contradiction to the assumption that $\delta_A \geq 3/4 + 1/p(n)$.

• Warmup III: $\delta_A \ge 1/2 + 1/(p(n))$ and an additional assumption which we will describe later. Like in the previous case, we will define $x \in \{0,1\}^n$ to be ok if

$$\Pr_{r,A}[A(f(x)||r) = \langle x,r \rangle] \ge \frac{1}{2} + \frac{1}{2p(n)}$$

By an exact same argument as in Claim 8 we can prove that the number of ok x's is at least $\frac{2^n}{2p(n)}$. But now we cannot prove that A will succeed in outputting the hardcore predicate for both f(x)||r and $f(x)||r \oplus e_i$ with non-negligible advantage greater than 1/2 if $x \in ok$. Therefore, we will make an additional assumption that there exists an oracle θ which on input y draws m independent samples r_1, \dots, r_m uniformly from $\{0,1\}^n$ and outputs $(r_1, z_1), \dots (r_m, z_m)$ where for each $i \in [m]$, $z_i = \langle f^{-1}(y), r_i \rangle$. Now the inverter just has to query A on input $y||r_i \oplus e_i$ for each $j \in [m]$ and take the majority. The inverter I(Y) works as follows:

$$I(y)$$

$$- \text{ for } i = 1, \dots, n$$

$$* (r_1, z_1) \cdots (r_m, z_m) \leftarrow \theta(y)$$

$$* \text{ for } j = 1 \cdots, m = poly(p(n))$$

$$\cdot c_{i,j} \leftarrow z_j \oplus A(y||r_j \oplus e_i)$$

$$* b_i \leftarrow Majority(c_{i1}, \dots, c_{im})$$

$$- \text{ Output } b_1 \cdots b_n$$

The analysis of the success probability of I is similar to the above case.

• $\delta_A \geq 1/2 + 1/p(n)$ In this we relax the requirement that such a θ exists.

We first make the observation that for the majority of c_{ij} 's to be correct with probability $1 - \frac{1}{n \cdot n}$ it is enough that all the $r'_i s$ are pairwise independent and not totally independent (by Chebychev's tail bounds for pairwise independent variables). Now we will try to simulate the effect of θ .

$$\theta(y)$$
- Sample $r_1, \dots, r_{\log m} \overset{\$}{\leftarrow} \{0, 1\}^m$
- Sample $z_1, \dots, z_{\log m} \overset{\$}{\leftarrow} \{0, 1\}$
- For $S \subseteq [\log m]$
* Compute $r_S = \bigoplus_{i \in S} (r_i)$
* Compute $z_S = \bigoplus_{i \in S} (z_s)$

It is easy to observe that r_S 's are pairwise independent. The final observation is that $z_1, \dots, z_{\log m}$ are all correct with probability 1/m. By linearity of inner product with probability 1/m all the z_S 's are correct and hence $\theta(y)$ is correct with probability 1/m. The analysis is similar to the above case but we also get a factor of 1/m in the success probability of I.

Thus, we can conclude from Lemma 7 and the observation that B is efficiently computable that B is a hardcore predicate for g

References

- [GL89] Oded Goldreich and Leonid A Levin, A hard-core predicate for all one-way functions, Proceedings of the twenty-first annual ACM symposium on Theory of computing, ACM, 1989, pp. 25–32.
- [Lev87] Leonid A Levin, One way functions and pseudorandom generators, Combinatorica 7 (1987), no. 4, 357–363.