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1 Overview

In last lecture we discussed about the hardness amplification lemma for One-Way Function (OWF).
In particular , we saw how to convert a weak one way function to a strong one. In this lecture
we will look at the notion of an Universal OWF, hardcore predicates for OWF and discuss the
Goldreich-Levin construction of a hardcore predicate for a One-Way Permutation (OWP).

2 Universal OWF

Universal OWF theorem constructs a specific OWF under the assumption that OWF exists. On a
philosophical note, the theorem says that even if the candidate constructions of OWFs like RSA,
Discrete Log etc are broken there exists a function which is one-way if P 6= NP. More formally,

Theorem 1 [Lev87] If one way functions exist then there exists a specific function f∗ which is one
way.

Proof: To prove this theorem, we will first show that if OWFs exist then there is there is a OWF
which can be evaluated in time quadratic in its input length. Using this fact we will then construct
a specific function which is one-way.

Lemma 2 If {fk}k is a family of one-way functions then there exists another family of functions
{gk}k such that {gk}k is one-way and for all k ∈ N, gk can be evaluated in time (ng(k))

2

Proof: The proof of this lemma uses a technique called as Padding which has has its roots in
complexity theory. Let fk : {0, 1}n(k) → {0, 1}m(k) be one-way. From the property of one-way
functions (efficient evaluation) there exists a specific polynomial p(·) such that for all k ∈ N, fk can
be evaluated in time p(n(k)). We now define a function gk : {0, 1}p(n(k)) → {0, 1}m(k)+p(n(k))−n(k)

such that gk(x||w) = f(x)||w where |x| = n(k) and |w| = p(n(k))− n(k). We first claim that {gk}k
is one-way.

Claim 3 If fk1 is one-way then so is gk.

Proof: Assume for the sake of contradiction that gk is not one-way. Then there exists an adversary
A such that A inverts gk(x) for a random x in the domain of gk with non-negligible probability. We
will be using A to invert fk.

1For the ease of notation we will be considering fk instead of the function family {fk}k
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I(y)

• Sample w $← {0, 1}p(n(k))−n(k)

• x||w ← A(y||w, 1n(k)).

• Output x

It is easy to see that the I inverts y with the same probability as the inversion probability of A
which is non-negligible from our assumption. This is a contradiction to the fact that fk is one-way.

�

Now lets analyze the evaluation time of gk. We can parse the input into x||w in time p(n(k))2 2.
Evaluating fk takes time p(n(k)) and hence the total time for evaluating gk is bounded by p(n(k))2.

�

Lets now construct the universal OWF f∗. Let M1,M2, · · · , be an enumeration of the Turing
machines such that Mi(|x|) runs in time poly(i, |x|). Note that such an enumeration can be done by
an uniform machine given the size of the alphabet. We define f∗(x) as :

f∗(x) =M
≤|x|2
1 (x)||M≤|x|

2

2 (x)|| · · · ||M≤|x|
2

|x| (x)

whereM≤|x|
2

i (x) denotes running the machineMi on input x for at most |x|2 steps. We first observe
that f∗ can be computed in time polynomial in the length of |x|. The enumeration of the machines
takes time O(|x|) as we are interested in |x| machines and running each machine takes |x|2 time.
Hence, f∗ can be computed in time O(|x|3). Now, we show that f∗ is one-way. Since gk can be
computed by a poly-time machine there exists an index N such that MN computes gk. For all
|x| > N , f∗(x) computes gk(x) in the index N . Since gk is one way, it is also easy to see that f∗ is
one-way. �

3 Hardcore predicates

Lets define the notion of a hardcore predicate for a one-way function.

Definition 4 Bk : {0, 1}n(k) → {0, 1} is a hardcore predicate for a one-way function fk : {0, 1}n(k) →
{0, 1}m(k) if

• Bk is efficiently computable.

• It is “hard" to compute Bk(x) given k and fk(x). Formally, for all non-uniform PPT adver-
saries A,

Pr

b = Bk(x)

∣∣∣∣∣x
$← {0, 1}n(k)

y ← fk(x)
b← A(1k, fk(x))

 ≤ 1/2 + negl(k)

2An one tape Turing machine might take quadratic time to parse the input.
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Pictorially we could represent the notion of one-way functions and hardcore bits as follows:

Lets see if there exits a specific index i ∈ [n(k)] such that Bk(x) = xi is hardcore for a one-way
function.

Claim 5 There is a one-way function family {gk}k such that for all i ∈ [n(k)], Bi
k(x) = xi is not

hardcore for gk.

Proof: Let fk : {0, 1}n(k) → {0, 1}m(k) be a one-way function. Lets now construct a function
family gk : {0, 1}n(k)+1+log(n(k)+1) → {0, 1}m(k)+1+log(n(k)+1) where

gk(z) = gk(x||j) = fk(x−j)||xj ||j

The explanation for the above equation is that gk first parses the input into n(k) + 1 bit x and
log(n(k)+1) bit j. It then applies f on all bits of x except jth bit. That is, x−j = x1 · · ·xj−1xj+1 · · ·
xn(k)+1. It then outputs f(x−j)||xj ||j.

It is easy to see that gk can be computed in polynomial time and is one-way given that f is one way
(It follows a similar argument as in Claim 3). We now show that for all i ∈ [n(k)], Bi

k(x) = xi is not
a hardcore predicate for gk. To prove this, we construct an adversary Ai which will predict Bi

k(x)
with non-negligible advantage.

Ai(Y ) = Ai(y||xj ||j) =
{
xj , j = i

b
$← {0, 1} , j 6= i

}

We now claim that the Pr[b = Bi
k(x)] is

1
2 + 1

(2(n(k)+1)) . This follows directly from the observation
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that j = i, happens with probability 1
n(k)+1 since j ∈ {0, 1}log(n(k)+1) and is sampled uniformly at

random for the generating the challenge. �

A natural question to ask is whether there exists a hardcore bit Bk for an one-way function fk. It
is still an open problem!

The next question we ask is given a one-way function fk can we construct a one-way function gk and
predicate Bk such that Bk is hardcore for gk. This is trivial to achieve. Consider gk(b||x) = 0||fk(x)
and Bk(b||x) = b. One can easily verify that the hardcore bit is information theoretically hidden.

Lets consider the following question.

Given a one-way permutation fk, does there exists a one-way permutation gk and a predicate Bk

such that Bk is hardcore for gk?.

The answer to the above question was given by Goldreich and Levin in [GL89].

Theorem 6 [GL89] If fk is a OWP then there exists a OWP gk and a predicate Bk such that Bk

is a hardcore predicate for gk

Proof: We will first construct a OWP gk from a OWP fk and then define the hardcore predicate
for gk 3.

Let f : {0, 1}n → {0, 1}n be a OWP. We define g : {0, 1}2n → {0, 1}2n as

g(x||r) = f(x)||r

It is easy to see that since f is a permutation so is g. The one-wayness of g follows from a similar
argument as in Claim 3. Now lets define a predicate for g and then show that the predicate is indeed
hardcore. The predicate we are going to consider is:

B(x||r) =< x, r > mod 2

B can be computed efficiently (in polynomial time).

Lemma 7 B(x||r) is hard to compute with non-negligible advantage greater than 1/2 given g(x||r)

Proof: Lets assume for the sake of contradiction that B(x||r) is can be computed with non-
negligible advantage greater than 1/2 given g(x||r). Then there exists an adversary A and a poly-
nomial p(·) such that for infinitely many k’s:

δA = Pr

b = (< x, r > mod 2)

∣∣∣∣∣x, r
$← {0, 1}n

y ← f(x)
b← A(1k, y||r)

 > 1/2 + 1/p(k)

We will now consider an inverter for f using A. We will motivate the intuition for the proof by
considering the following scenarios.

3For the ease of notation we will be ignoring the subscript k in fk, gk and Bk
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• Warmup 1: δA = 1: Lets define ei to be a bit string of length n such that the ith position has
a 1 and the rest are 0. The inverter I(y) for f works as follows: for every i ∈ [n], compute
bi ← A(y||ei) and finally output b1 · · · bn. Lets see why the Inverter works. Since δA = 1, A
is able to correctly output the hardcore bit for every x, r. In particular, it should output the
hardcore it for x, ei for all i ∈ [n]. Since < x, ei > mod 2 = xi the Inverter is able to correctly
output x such that f(x) = y.

• Warmup II: δA > 3/4 + 1/p(n). We first observe that we cannot use the same trick as before
because we cannot bound the probability that A correctly outputs the hardcore bit for every
ei. We will now make use of the fact that inner product is a bi-linear function. We observe
that < x, ei >=< x, r > ⊕ < x, r ⊕ ei >.
We say that x ∈ {0, 1}n is good if

Pr
r,A

[A(f(x)||r) =< x, r >] ≥ 3

4
+

1

2p(n)

where the probability also includes the random coin tosses made by A.

If x is good then, we would like to estimate the probability that

Pr
r,A

A(f(x)||r) =< x, r >
∧A(f(x)||r ⊕ ei) =<
x, r ⊕ ei >

 = 1− Pr
r,A

[A(f(x)||r) 6=< x, r > ∨A(f(x)||r ⊕ ei) 6=< x, r ⊕ ei >]

≥ 1− (Pr
r,A

[A(f(x)||r) 6=< x, r >] + Pr
r,A

[A(f(x)||r ⊕ ei) 6=< x, r >])

≥ 1− (
1

4
− 1

2p(n)
)− (

1

4
− 1

2p(n)
)

= (
1

2
+

1

p(n)
)

The first inequality follows from the previous equation as a result of union bound and the
second inequality follows from the definition of x is good.

We are ready to describe the inverter I(y) that inverts the one-way challenge y.

I(y)

– for i = 1, · · · , n
∗ for j = 1 · · · ,m = poly(p(n))

· r $← {0, 1}n

· ci,j ← A(y||r)⊕A(y||r ⊕ ei)
∗ bi ←Majority(ci1, · · · , cim)

– Output b1 · · · bn

By a simple application of Chernoff bound we get the success probability that I correctly
computes bi to be at least 1− 1

n2n . The probability that we don’t error in any of the i′s is at
least 1− 1

2n from union bound.

We will now prove that the number of good x′s is at least 2n

2p(n) . We will now show that this
will complete the analysis for this case.
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We have seen above that

Pr[I inverts f(x)|x is good] ≥ 1− 1

2n

Pr[I inverts f(x)] ≥ Pr[I inverts f(x)|x is good]Pr[x is good]

≥ (1− 1

2n
)

1

2p(n)

≥ 1

3p(n)

which is non-negligible.

Claim 8 |good| ≥ 2n

2p(n)

Proof: Assume for the sake of contradiction that |good| < 2n

2p(n) .

Pr[A(f(x)||r) =< x, r >] = Pr[A(f(x)||r) =< x, r > |x is not good]Pr[x is not good]
+ Pr[x is good].P r[A(f(x)||r) =< x, r > |x is good]
≤ Pr[A(f(x)||r) =< x, r > |x is not good] + Pr[x is good]

≤ 3

4
+

1

2p(n)
+

1

2p(n)

=
3

4
+

1

p(n)

which is a contradiction to the assumption that δA ≥ 3/4 + 1/p(n). �

• Warmup III: δA ≥ 1/2 + 1/(p(n)) and an additional assumption which we will describe later.
Like in the previous case, we will define x ∈ {0, 1}n to be ok if

Pr
r,A

[A(f(x)||r) =< x, r >] ≥ 1

2
+

1

2p(n)

By an exact same argument as in Claim 8 we can prove that the number of ok x’s is at least
2n

2p(n) . But now we cannot prove that A will succeed in outputting the hardcore predicate for
both f(x)||r and f(x)||r⊕ ei with non-negligible advantage greater than 1/2 if x ∈ ok. There-
fore, we will make an additional assumption that there exists an oracle θ which on input y draws
m independent samples r1, · · · , rm uniformly from {0, 1}n and outputs (r1, z1), · · · (rm, zm)
where for each i ∈ [m], zi =< f−1(y), ri >. Now the inverter just has to query A on input
y||rj ⊕ ei for each j ∈ [m] and take the majority. The inverter I(Y ) works as follows:

I(y)

– for i = 1, · · · , n
∗ (r1, z1) · · · (rm, zm)← θ(y)

∗ for j = 1 · · · ,m = poly(p(n))

· ci,j ← zj ⊕A(y||rj ⊕ ei)
∗ bi ←Majority(ci1, · · · , cim)

– Output b1 · · · bn
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The analysis of the success probability of I is similar to the above case.

• δA ≥ 1/2 + 1/p(n) In this we relax the requirement that such a θ exists.

We first make the observation that for the majority of cij ’s to be correct with probability
1− 1

n.n it is enough that all the r′is are pairwise independent and not totally independent (by
Chebychev’s tail bounds for pairwise independent variables). Now we will try to simulate the
effect of θ.

θ(y)

– Sample r1, · · · , rlogm
$← {0, 1}m

– Sample z1, · · · , zlogm
$← {0, 1}

– For S ⊆ [logm]

∗ Compute rS = ⊕i∈S(ri)

∗ Compute zS = ⊕i∈S(zs)

It is easy to observe that rS ’s are pairwise independent. The final observation is that z1, · · · , zlogm

are all correct with probability 1/m. By linearity of inner product with probability 1/m all
the zS ’s are correct and hence θ(y) is correct with probability 1/m. The analysis is similar to
the above case but we also get a factor of 1/m in the success probability of I.

�

Thus, we can conclude from Lemma 7 and the observation that B is efficiently computable that B
is a hardcore predicate for g �
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