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1 Introduction

Let us think about the following fundamental question: what is a proof? Or more specifically, what
are the properties of a proof? Mathematicians and computer scientists have different answers to
this question. From the latter perspective, below are a couple properties of a good proof.

• The proof should be efficiently verifiable, i.e., there is an efficient algorithm (verifier) that can
check whether the proof is correct in polynomial time.

• The verifying process should be sound, i.e., the mentioned verifier should accept if and only if
the proof is correct.

With the properties above in mind, we introduce the concept of proof systems. A proof system
consists of a prover and a verifier. At the beginning, both of them are given an input x. Then, the
prover needs to send a proof π to convince the verifier that x has some property. Informally, there
are two properties required for proof systems in general:

• (Completeness) If x indeed has the desired property and an honest prover sends a correct
proof, the verifier should accept the proof.

• (Soundness) If x does not have the desired property but a dishonest prover sends a fake proof,
the verifier should reject the proof.

Prover P Verifier V
Proof π

x

accepts/rejects

Formal definitions for proof systems will be given later. As we will see below, soundness is sometimes
allowed to be imperfect, i.e., it is fine if a fake proof is rejected with high probability. Furthermore,
the computational powers for the prover and the verifier differ for each class of proof systems.

Today we will study different proof systems with emphasis on the so-called Zero-Knowledge Proof
System, a proof system in which, despite being able to verify that the proof is correct, the verifier
cannot learn anything from the proof.
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2 Proof Systems for NP Problems

The above definition of proof systems evokes the definition of NP. Recall that a language L is in NP
if and only if, there exists a polynomial-time algorithm V such that

x ∈ L⇔ ∃w, V (x,w) = 1.

We can simply view w as a proof that x ∈ L and V as the verifying algorithm. We can then define
the proof system as follows:

• The computationally unbounded prover P , when received x, searches for a witness w such that
V (x,w) = 1. P then sends x as a proof to the verifier.

• The verifier V just runs V (x,w) where w is the proof received from the prover. Note that the
verifier runs in polynomial time.

It is clear that the completeness and (perfect) soundness hold here.

For concreteness, let us consider the following example of NP language.

Definition 1 (Graph Isomorphism) The Graph Isomorphism language GI consists of all tuples
of graphs (G0, G1) where G0 = (V0, E0) and G1 = (V1, E1) are isomorphic undirected graphs, i.e.,
there exists a permutation σ : V0 → V1 such that (u, v) ∈ E0 if and only if (σ(u), σ(v)) ∈ E1.

For Graph Isomorphism, a witness is just the permutation σ and a proof system for it can be defined
as follows:

• The prover enumerates to find the permutation σ and sends it to the verifier.

• The verifier checks whether the input σ satisfies (u, v) ∈ E0 if and only if (σ(u), σ(v)) ∈ E1.

3 Interactive Proof Systems

Unfortunately, many problems outside of NP are not known to have proof systems as simple as those
in NP. We will use Graph Non-Isomorphism, the complement of GI, as our example here.

Definition 2 (Graph Non-Isomorphism) The Graph Non-Isomorphism language GNI consists
of all tuples of graphs (G,G0) such that G0 = (V0, E0) and G1 = (V1, E1) are non-isomorphic
undirected graphs, i.e., there exists no permutation σ : V0 → V1 such that (u, v) ∈ E0 if and only if
(σ(u), σ(v)) ∈ E1.

In this case, unlike Graph Isomorphism, it is unclear how a prover can convince the verifier that
there is no such permutation. For instance, due to limited computational power of the verifier, the
prover cannot send all the permutations and the permuted graphs according to each permutation to
the verifier.

To tackle this, we introduce interactive proof systems. In an interactive proof system, the verifier
and the prover can send multiple messages to each other and they can use previous messages to
help determine their actions. It turns out that, in contrast to non-interactive proof systems, we can
create an interactive proof system for GNI as follows.
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• The verifier works as follows:

– Randomly select a bit b← {0, 1}.
– Randomly select a permutation σ : Vb → Vb.

– Permute Gb according to σ. Let us call the resulting graph H.

– Query the prover with H to ask for b′ such that H is isomorphic to Gb′ .

– Accepts if and only if b′ = b.

• The prover works as follows:

– When received a query H, checks (by enumerating all permutations) whether H is iso-
morphic to G0. If so, answer 0. Otherwise, answer 1.

Prover P Verifier V
H

b′

(G0, G1)

accepts/rejects

To see that this is a valid proof system, we need to check its soundness and completeness.

• (Completeness) Suppose (G0, G1) ∈ GNI. Since the two graphs are not isomorphic, H is only
isomorphic to one of them. As a result, the honest prover can tell which graph H is isomorphic
to and recover b′ = b, which means that the verifier accepts.

• (Soundness) Suppose (G0, G1) /∈ GNI. In this case, H is isomorphic to both graphs. Even if
a dishonest prover wants to fake the proof, he has no way of knowing what b is. As a result,
he can only guess b right half the time.

We note that, while the soundness is only 1/2, the verifier can make multiple queries and reduce the
soundness to be negligible in the size of the input.

We conclude this section by giving a formal definition for interactive proof systems.

Definition 3 (Interactive Proof System) A language L has an interactive proof system if and
only if there exists (P, V ) where V is polynomial bounded such that

• (Completeness) ∀x ∈ L,Pr[outputV (P (x)↔ V (x)) = 1] = 1, and,

• (Soundness) ∀x /∈ L,∀P ∗,Pr[outputV (P ∗(x)↔ V (x)) = 1] is negligible in |x|,

where outputV (P (x)↔ V (x)) denote the output of V when V interacts with P on input x.

Remark 4 What happens if the verifier is deterministic? If the verifier is deterministic, then the
prover can simulate the verifier. Hence, in this case, interactive proof systems have only as much
power as non-interactive proof systems.
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4 Zero-Knowledge Proof Systems

Interaction not only allows proof systems to prove more languages, it also allows us to design proof
systems that have interesting properties, one such property is zero-knowledge. Informally, a proof
system satisfies this property if the verifier “does not learn anything” from the proof besides the fact
that the input x is indeed in the language.

For simplicity, we restrict ourselves to languages in NP. In this particular scenario, the prover does not
want the verifier to learn the witness w. Moreover, we will assume that the prover has polynomially
bounded computational power but the prover knows w (as a part of the prover’s input).

Recall the proof system for Graph Isomorphism from Section 2. In the proof system, the prover
sends the permutation σ, which is the witness, to the verifier directly. Thus, the verifier learns σ.
Here we will design a proof system such that the verifier does not learn anything about σ.

The prove system works as follows:

• First, the prover random a permutation ϕ : V0 → V0. Let H be the result of permuting G0 by
ϕ. The prover sends H to the verifier.

• The verifier selects a random bit b← {0, 1}. The verifier then sends b to the prover to ask the
prover to show that H is isomorphic to Gb.

• If b = 0, the prover sends ψ = φ back to the verifier. Otherwise, the prover sends ψ = φ ◦ σ−1
where σ is the permutation that maps G0 to G1.

• The verifier accepts if and only if H is equal to Gb permuted by ψ.

Prover P Verifier V

H

b
ψ

(G0, G1)

accepts/rejects

σ

To check that this is a valid proof system, we show its completeness and soundness here.

• (Completeness) Suppose (G0, G1) ∈ GI. In this case, it is obvious that the verifier accepts if
the verifier is honest.

• (Soundness) Suppose (G0, G1) /∈ GI. No matter what H is, H can only be isomorphic to at
most one of (G0, G1). As a result, since b is selected at random, the probability that the prover
can finds ψ is at most 1/2 (even if the prover is dishonest).

Again, we can repeat the process multiple times to reduce the soundness to be negligible in |(G0, G1)|.

Furthermore, the proof system above seems like a zero-knowledge proof system since, even if the
verifier receives ψ, it should not help him find σ. More formally, we say that a proof system is zero-
knowledge if the distribution of messages in the interaction can be simulated by the verifier himself.
This means that he does not learn anything at all from the interaction. The formal definition of a
zero-knowledge proof system is shown below.
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Definition 5 (Zero-Knowledge Proof System) A language L ∈ NP has a zero-knowledge proof
system if there exists a pair (P, V ) such that both P, V are polynomially-bounded and

• (Completeness) ∀x ∈ L,∀w ∈ R(x),Pr[outputV (P (x,w)↔ V (x)) = 1] = 1.

• (Soundness) ∀x /∈ L,∀P ∗,Pr[outputV (P ∗(x)↔ V (x)) = 1] is negligible in |x|.

• (Zero-Knowledge) There exists a PPT S (simulator) such that

∀x ∈ L,∀w ∈ R(x), viewV (P (x,w)↔ V (x)) = S(x).

where R(x) denote the set of all witnesses of x and viewV (P (x,w)↔ V (x)) denote the distribution
of the messages in the interactions.

Remark 6 Zero-knowledge definition we used above is called perfect honest-verifier zero-knowledge.
There is also a notation for dishonest verifier where the simulator must be able to simulate viewV ∗(P (x,w)↔
V ∗(x)) even for dishonest V ∗. Moreover, when viewV (P (x,w) ↔ V (x)) = S(x) is changed to
viewV (P (x,w) ↔ V (x))

c
= S(x) or viewV (P (x,w) ↔ V (x))

s
= S(x), then the notation becomes

computational zero-knowledge and statistical zero-knowledge respectively.

Finally, note that, for our interactive proof system for GI, a simulator S(G0, G1) can be defined as
follows:

• Randomly select a bit b ∈ {0, 1}.

• Randomly select a permutation ψ.

• Let H be the result of permuting Gb by ψ.

• Output (H,ψ, b).

It is easy to check that the distribution of (H,ψ, b) output from S(G0, G1) is the same as that in
the interactions. Hence, the defined proof system for GI is indeed a zero-knowledge proof system.
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